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Background. Large-scale bisulfite treatment and short reads sequencing technology allow comprehensive estimation of methylation
states of Cs in the genomes of different tissues, cell types, and developmental stages. Accurate characterization of DNAmethylation
is essential for understanding genotype phenotype association, gene and environment interaction, diseases, and cancer. Aligning
bisulfite short reads to a reference genome has been a challenging task.We compared five bisulfite short readmapping tools, BSMAP,
Bismark, BS-Seeker, BiSS, and BRAT-BW, representing two classes of mapping algorithms (hash table and suffix/prefix tries). We
examined their mapping efficiency (i.e., the percentage of reads that can be mapped to the genomes), usability, running time,
and effects of changing default parameter settings using both real and simulated reads. We also investigated how preprocessing
data might affect mapping efficiency. Conclusion. Among the five programs compared, in terms of mapping efficiency, Bismark
performs the best on the real data, followed by BiSS, BSMAP, and finally BRAT-BW and BS-Seeker with very similar performance.
If CPU time is not a constraint, Bismark is a good choice of program for mapping bisulfite treated short reads. Data quality impacts
a great deal mapping efficiency. Although increasing the number ofmismatches allowed can increasemapping efficiency, it not only
significantly slows down the program, but also runs the risk of having increased false positives. Therefore, users should carefully
set the related parameters depending on the quality of their sequencing data.

1. Introduction

DNAmethylation is the addition of a methyl group (CH
3
) at

the 5th carbon position of the cytosine ring. Most cytosine
methylation occurs in the sequence context of 5CG3 (also
called CpG dinucleotide) in mammalian DNA but some in
CpH dinucleotides (where H = C, T, or A). The human
genome is not methylated uniformly, and some small regions
called CpG islands are usually unmethylated and GC rich.
DNA methylation is responsible for regulation of gene
expression, silencing of genes on the inactive X chromosome,
imprinted genes, and parasitic DNAs [1]. DNAmethylation is
also a major contributor to the generation of disease-causing
germ-linemutations and somaticmutations that cause cancer
[2]. Therefore, accurate genome-wide determination of DNA
methylation in different cells, tissues, and developmental
stages is crucial for identification of causes for phenotype
differences and diseases and cancer.

Large-scale characterization of DNA methylation has
been made possible by bisulfite conversion of genomic DNA
combined with next generation sequencing. After bisulfite
treatment of DNAs, unmethylated Cs are converted to Ts
and subsequent mapping of the short reads to a reference
genome allows inference of methylated versus unmethylated
Cs.Thus, inference onDNAmethylation is highly dependable
on the mapping of bisulfite treated short reads to a reference
genome. Similar to regular next generation sequencing anal-
ysis, the great challenge is to be able to map thousands of
millions of reads in reasonable time and with high mapping
efficiency (i.e., the percentage of reads that are mapped to a
reference genome).

Many tools have been developed to tackle this compu-
tational challenge such as MAQ [3], Bismark [4], BSMAP
[5], PASH [6], RMAP [7], GSNAP [8], Novoalign [9], BFAST
[10], BRAT-BW [11], Methylcoder [12], CokusAlignment [13],
BS-Seeker [14], BS-Seeker2 [15], Segemehl [16], BiSS [17],
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BatMeth [18], and the latest one ERNE-bs5 [19].Themajority
of these bisulfite sequencing mappers first conduct some
sequence conversions (e.g., Cs to Ts and Gs to As) either on
the reads or the reference genomes, or both and then use
existing regular aligners such as Bowtie [20], Bowtie2 [21],
BLAT [22], SOAP [23], and BWA [24] to map short reads
to a reference genome. Fonseca et al. [25] classified the tools
according to their indexing techniques and supported fea-
tures such as mismatches, splicing, indels, gapped alignment,
and minimum and maximum of read lengths. Chatterjee
et al. [26] compared Bismark, BSMAP, andRMAPBS in terms
of uniquely mapped reads percentages, multiple mapping
percentages, CPU running time, and reads mapped per
second. They also pointed out that trimming the data before
aligning could improve mapping efficiency. However, the
study did not examine how setting different parametersmight
impact program performance.

In this paper, we present how modifying default parame-
ters in each program might change the results (i.e., mapping
efficiency and CPU time) and the sensitivity of each program
to the characteristics of data.Thoughwe examinedmany soft-
ware packages, we mainly focused on two mappers: BSMAP
and Bismark since they are representatives of two different
index algorithms, namely, Burrows-Wheeler Transform in
Bismark and hash table in BSMAP. In general, genome index-
ing based tools performed better than read indexing tools and
read indexing does not provide any significant speedup [27];
therefore, we did not include RMAP in our analysis. We also
show that trimming data improves mapping efficiency. The
paper is organized as follows: first, we briefly describe the
bisulfite sequencemapping problem andmapping techniques
used by the tools. Then we describe the datasets used in the
study and criteria used to evaluate the performance of the
tools. Finally we show results on evaluating the tools using
both real and simulated data.

2. Overview of the Computational Problem,
Algorithms, and Tools

2.1. Computational Challenges of Mapping Bisulfite Short
Reads. Over the decades, bisulfite sequencing has remained
the gold standard for DNA methylation analysis. After bisul-
fite treatment, unmethylated Cs are converted to thymines
(T), whereas methylated Cs are unchanged. Several factors
make bisulfite short reads more complicated to map than
regular reads. Firstly, up to four strands are analyzed fromone
genomic region.There are two scenarios after PCR amplifica-
tion. In the first case, if the sequencing library is generated in
a directional manner, the strand that the reads are amplified
from is known a priori. However, if nondirectional, the
Watson andCrick strands of bisulfite treated sequences are no
longer complementary to each other due to the conversion,
and there are four different strands after PCR amplification:
BSW (bisulfite Watson), BSWR (reverse complement of
BSW), BSC (bisulfite Crick), and BSCR (reverse complement
of BSC), all amplified and sequenced at roughly the same
frequency [13]. The search space is, therefore, significantly
increased relative to the original reference sequence [5].

Secondly, sequence complexity is reduced as all unmethylated
Cs are changed into Ts. In the mammalian genome, because
Cmethylation occurs almost exclusively at CpGdinucleotide,
the majority of Cs in BSW and BSC strands will be converted
to Ts. Therefore, most reads from the two strands will be C-
poor. However, PCR amplification will complement all Gs
with Cs in BSWR and BSCR strands, so reads from these two
strands are typically G-poor and have a normal C content.
As a result, we expect the overall C content of bisulfite reads
to be reduced by approximately 50% after the two processes
(converting Cs to Ts in bisulfite treatment and transcribing
Gs to Cs in PCR amplification) [5]. Lastly, C to T mapping is
asymmetric. The T in the bisulfite reads could be mapped to
either C or T in the reference genome but not vice versa.This
complicates the mapping process.

2.2. Algorithms and Tools for Bisulfite Short Reads Mapping.
For most of the existing programs, alignment process is to
build auxiliary data structures called indices for the reference
genome, the reads or both. The indices are then used to find
matching genomic positions for each read. There are many
available methods to build the indices [28]. The two most
popular techniques are hash tables and suffix/prefix tries [27]
reviewed below together with some representative programs
(Figure 1). A comprehensive comparison of detailed func-
tionalities of the programs is shown in Table 1.

Indexing using hash tables can be divided into three
strategies: hashing the genome, hashing the reads, or a
combination of both. All hash table algorithms essentially
follow the seed-and-extend technique. The algorithm keeps
the positions of each k-mer fragment of the read/genome
in a hash table using k-mer as the key and searches the
sequence databases for k-mer matches (called seeds) [28].
After this, seeds can be joined without gaps and refined
by local sequence alignment. Tools using this indexing
technique include BSMAP (genome hashing) [5], GSNAP
(genome hashing) [8], Novalign (genome hashing) [9],
BFAST (genome hashing/suffix array) [29], RMAP (read
hashing) [7], BiSS (genome hashing) [17], PASH (read hash-
ing) [6], MAQ (read hashing) [3], and ERNE-bs5 (genome
hashing) [19].

In particular, BSMAP is implemented based on SOAP
(Short Oligonucleotide Alignment Program) [23]. BSMAP
indexes the reference genome for all possible k-mers using
hash tables. BSMAP masks Ts in bisulfite reads as Cs (i.e.,
reverse bisulfite conversion) only at C position in the original
reference and keeps other Ts in the bisulfite reads unchanged.
Then BSMAP maps the masked BS read directly to the
reference genome. By combining bitwise masking and hash
table seeding in its algorithm, BSMAP offers fast and good
performance [5].

BiSS (Bisulfite Sequence Scorer) is based on Smith-
Waterman local alignment with a customized alignment
scoring function [17]. BiSS uses NextGenMap [30] to align
bisulfite reads to a reference genome. NextGenMap involves
three steps. In the first step, NextGenMap indexes the
reference genome in a hash table. The next step is to identify
the genomic region match. NextGenMap only considers
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Figure 1: Bisulfite mapping tools classification. The tools can be divided into two groups based on indexing strategies: hash tables or
suffix/prefix tries. Each of the groups is classified further into subgroups where some example programs are shown. ∗BFAST uses multiple
index strategies: both hashing and suffix tree.

regionswhere the number of k-mermatches exceeds a certain
threshold as a match. Unlike other methods, NextGenMap
adaptively chooses the threshold, meaning each read has
different threshold rather than one threshold for all reads
[30].

Indexing algorithm based on suffix/prefix tries essentially
converts the inexact string matching to exact matching
problem. The algorithm involves two steps: identifying exact
matches and building inexact alignments supported by exact
matches. Several representations for searching exact matches
in suffix/prefix tries are suffix tree, enhanced suffix array,
and FM-index [28]. Therefore, indexing using suffix/prefix
tries can be classified into three subgroups: indexing using
suffix tree, indexing using enhanced suffix array, and indexing
using FM-index based onBurrows-Wheeler Transform.Tools
falling into this category include Bismark (FM index), BS-
Seeker (and BS-Seeker2, FM index), BatMeth (FM index),
Segemehl (enhanced suffix array), Methylcoder (FM index),
Cokus Alignment (suffix tree), and BRAT-BW (FM index).

In particular, in Bismark, bisulfite reads are transformed
into a C to T and G to A version (equivalent to a C to
T conversion on the reverse strand). Then each of them is
aligned to equivalently preconverted forms of the reference
genome using four parallel instances of Bowtie or Bowtie2
[4]. Bowtie starts by building an FM index for the reference
genome and uses the modified FM index [31] to find the
matching location. Bowtie2 are designed to support reads
longer than 50 bps. The two versions of Bowtie performed
quite differently [27]. This read mapping enables Bismark to
uniquely determine the strand origin of a bisulfite read.

BS-Seeker is very much similar to Bismark. The only
difference is that BS-Seeker only works well for single-end
reads, whereas Bismark can work with both single-end and
paired-end reads. Also BS-Seeker can explicitly account for
tags generated by certain library construction protocols [14].
BS-Seeker records only unique alignments, defined as those

that have no other hits with the same or fewer mismatches in
the 3-letter alignment [14].

BRAT-BW is an evolution of BRAT [32]. Two FM indices
are built on the positive strand of the reference genome: in
the first, Cs are converted to Ts, and, in the second, Gs are
converted to As. Original reads with C to T conversion are
mapped to the first index and reverse complement reads with
all Gs changed to As being mapped to the second index.
BRAT-BWuses amultiseed approach similar to Bowtie2 [32].

3. Methods

3.1. Datasets. We evaluated the tools on three types of
data, human blood data (GSM791828), human and mouse
brain data (GSE47966), and simulated mouse short read
data. First, human blood data, including ten datasets
(ID: SRR342552, SRR342553, SRR342554, SRR342555,
SRR342556, SRR342557, SRR342558, SRR342559,
SRR342560, and SRR342561) were downloaded from NCBI’s
short reads archive [33]. The DNA short read sequences
are nondirectional. Each file in SRA format contains about
23 million single-end whole genome shot gun bisulfite
sequence reads from human hematopoietic stem/progenitor
cells (HSPCs). The BS-Seq reads are conventional base
call qualities that are Sanger/Illumina 1.9 encoded Phred
values (Phred33) and trimmed to 76 bps. Second, human
and mouse brain data, including ten datasets from human
brain [33] and eight datasets from mouse brain [33] were
downloaded fromNCBI’s gene expression omnibus [34].The
DNA bisulfite short read sequences are directional. Each file
contains around 100 million single-end whole genome shot
gun bisulfite sequence reads from human and mouse frontal
cortex in SRA format. The BS-Seq reads are conventional
base call qualities that are Illumina HiSeq 2000 encoded
Phred values (Phred64) and trimmed to 101 bps. Third,
simulated bisulfite short reads data were generated from the
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mouse and human reference genome (versions mm10 and
hg19, resp.) using Sherman simulator [35]. Parameters such
as sequencing error, bisulfite conversion rate for cytosines in
CG-context, and CH-context in Sherman, are determined
based on literature for the mouse data [36] and cytosine
methylation reports from Bismark for the human data. Reads
with different read lengths were generated to mimic the real
mouse and human data. In Particular, for examining the
effect of sequencing error on mapping efficiency, 24 datasets
were generated from the mouse reference genome by varying
the sequencing error from 0 to 4.75% (the error rate is amean
error rate per bp). Each dataset contained 1 million short
reads with length of 101 bps and CG conversion rate of 10%
(10% of all CG-cytosines will be converted into thymines)
and CH conversion rate of 98.5% (98.5% of all CH-cytosines
will be converted into thymines). For examining the effect
of read length on mapping efficiency, 28 datasets were
generated by varying the read length from 40 to 160 bps with
sequencing error of 0.16%, CG conversion rate of 10%, and
CH conversion rate of 98.5% for the mouse data and with
sequencing error of 0.16%, CG and CH conversion rate of
19.73% and 98.9%, respectively for the human data. Both
human andmouse reference genomes (hg19 andmm10) were
downloaded from Ensembl [37].

3.2. Important Parameters in Mapping Tools. Programs often
have different default settings for the same parameters that
can influence their performance. For example, BiSS sets the
default mismatch to be 35% of the read, whereas Bismark sets
the equivalent parameter to zero. It is therefore important
and fair to compare them on a common ground. Several
important parameters that can greatly influence program
performance include (1) number of mismatches allowed in
the seed (e.g., Bismark); (2) number ofmismatches allowed in
the read (e.g., BSMAP, BS-Seeker, BiSS, and BRAT-BW); (3)
directionality of data library (directional or nondirectional);
(4) phred quality score (i.e., whether data have Phred score
of 33 or 64). In this study, we examined the effect of these
parameters on the performance of the programs and how
altering them can influence the final mapping results.

3.3. Evaluation Criteria. The performance of the tools is
evaluated mainly by two aspects: the mapping efficiency
(i.e., percentage of uniquely mapped reads) and the CPU
time. Uniquely mapped reads are reads that are mapped to
only one location. Computationally speaking, most reads
have multiple matches and from those matches, alignment
scores are determined. An alignment is unique when it has
much higher score than all other possible alignments, often
determined by some statistics or cutoffs. The greater the
difference between the best alignment score and the second-
best alignment score, the more unique the alignment is,
and the higher its mapping quality should be [38]. Mapping
quality is a nonnegative integer Q = −10 log 10p, where p
is an estimate of the probability that the alignment does not
correspond to the read’s true point of origin. Mapping qual-
ity is sometimes abbreviated MAPQ. (10 log 10Pr {mapping
position is wrong}).
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Figure 2: Mapping efficiency on ten human blood datasets for
BSMAP, Bismark, BS-Seeker, BRAT-BW, and BiSS with zero mis-
matches allowed between reads and the reference genome.

3.4. Data Preprocessing. The original data were processed so
reads have better quality scores and consequently can be
mapped to reference genomes. Perl programming language
was used to trim the tail of a read with residues quality score
less than or equal to 2. After removing the tail, if the read
length is shorter than 30, the read is also discarded. We use
both trimmed and raw data in the analysis for the purpose of
comparison of how mapping efficiency can be improved by
preprocessing the data.

4. Results and Discussion

4.1. Performance Comparison of the Programs. Five bisulfite
reads mapping tools, BSMAP, Bismark, BS-Seeker, BiSS,
and BRAT-BW, were chosen to cover different algorithms
discussed in the algorithm overview section (also refer
to Table 1). BatMeth, Segmenhl, and ERNE-bs5 were not
included as BatMeth failed at last step of the reads alignment,
Segmenhl consumed toomuch computermemory (1 TB) and
could not be finished in reasonable time, and ERNE-bs5
produced inaccurate results on small test datasets.

The performance is evaluated by considering two fac-
tors: mapping efficiency and CPU running time. Mapping
efficiency is determined by the number of uniquely mapped
reads divided by the total number of reads.We set the number
of mismatches to zero for all the programs and compare
mapping efficiency and CPU running time of these programs
on ten human blood datasets. Among the five programs, in
terms of mapping efficiency (Figure 2), Bismark performs
the best, achieving the highest mapping efficiency (average
around 56% across the ten human blood samples), followed
by BiSS (average around 46%) and BSMAP (average around
42%), and finally BRAT-BW (average around 39%) and BS-
Seeker (average around 38%) with similar mapping efficiency
across samples.

However, for CPU running time, the trend is almost the
opposite (Figure 3), with BRAT-BW taking the shortest time



Advances in Bioinformatics 7

1

1.5

2

2.5

3

3.5

4

ln
(C

PU
 ru

nn
in

g 
tim

e)

CPU running time 

BSMAP
BS-Seeker
Bismark

BiSS

SR
R3

4
2
5
5
2

SR
R3

4
2
5
5
3

SR
R3

4
2
5
5
4

SR
R3

4
2
5
5
5

SR
R3

4
2
5
5
6

SR
R3

4
2
5
5
7

SR
R3

4
2
5
5
8

SR
R3

4
2
5
5
9

SR
R3

4
2
5
6
0

SR
R3

4
2
5
6
1

BRAT-BW

Figure 3: CPU running time (on a log scale) on human blood
data for BSMAP, Bismark, BS-Seeker, BRAT-BW, and BiSS with zero
mismatches allowed between reads and the reference genome.

(average 16 minutes across samples), followed by BSMAP
(average 29 minutes) and BS-Seeker (average 31 minutes).
Both BiSS (average 84 hours) and Bismark (average 11 hours)
took much longer time than the other three programs, sug-
gesting existence of the tradeoff between mapping efficiency
and running time. The observation that BiSS ran the slowest
might be because BiSS uses Smith-Waterman local sequence
alignment algorithm to align reads to potential genomic
locations [17]. Interestingly, although both Bismark (written
in Perl) and BS-Seeker (written in Python) use Bowtie (or
Bowtie2) for short reads mapping, Bismark ran much slower
than BS-Seeker but had much higher mapping efficiency.
We then used BSMAP and Bismark to map human fetal
brain and mouse brain short reads data (refer to Figure 5).
Consistent with the results for human blood data, Bismark
has higher mapping efficiency but longer CPU running time
than BSMAP. The mapping percentages are very similar
across samples (Figure 6). However, mapping efficiency for
the human and mouse brain data is higher than those for
human blood data, consistent with the original research
studies [39], suggesting that mapping efficiency is highly
dependent upon the specific experiments producing the data.

Even though tools have similar mapping efficiency, reads
that are actually mapped (i.e., mapped reads content) might
differ among different programs. To examine how much
difference the tools have in mapped reads content, we
compared uniquelymapped reads fromBismark andBSMAP.
On average, for human blood data, uniquely mapped reads
shared by both Bismark and BSMAP account for approxi-
mately 97% of the total mapped reads by BSMAP and only
69% by Bismark. The numbers change little with different
samples. Therefore, most of the mapped reads identified by
BSMAP are also identified by Bismark. The difference in
mapped reads content between Bismark and BSMAP can
be caused by several factors. First, the two use different
string matching strategies. Bismark uses Burrows Wheeler
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Figure 4: Unique mapping efficiency on ten human blood datasets
from BS-Seeker with different numbers of mismatches allowed
between reads and the reference genome (0, 1, 2, and 3 mismatches).

transform and FM-indexes for searching and BSMAP hashes
the reference genome for searching. In particular, Bismark
uses aligner Bowtie2, whereas BSMAP uses aligner SOAP
(older version of SOAP2) to map bisulfite short reads. As a
result, difference in mapping algorithms can contribute to
difference in mapped read content. According to Hatem et
al. [27], Bowtie maintained the best throughput with higher
mapping percentages, which could be why Bismark maps
more reads than BSMAP. Second, determining whether a
read is uniquely mapped is rather arbitrary and program spe-
cific [40]. Depending on how each programdefines “uniquely
mapped” computationally, uniquely mapped read content
can vary as a result. We also examined whether combining
multiple tools to analyze bisulfite short reads could improve
the overall mapping efficiency. We used BSMAP and BS-
Seeker to align the unmapped reads from Bismark to see
how much further BSMAP and BS-Seeker can improve the
overall mapping efficiency. Table 2 shows that using BSMAP
to align the unmapped reads from Bismark improves the
overall mapping efficiency slightly better than using BS-
Seeker (BSMAP: around 4% improvement; BS-Seeker: only
1%). The lesser improvement from BS-Seeker might be due
to the fact that both Bismark and BS-Seeker use Bowtie
to align reads although they may have different criteria in
postprocessing the mapped reads. Overall, results across
different datasets indicate that Bismark was able to identify
the most uniquely mapped reads, and addition of more
programs does not significantly improve mapping efficiency.

4.2. Effect of Varying Parameters inDifferent Tools. Wemainly
focus on how changing numbers of allowed mismatches
between reads and the reference genome affects mapping
efficiency. Different programs have parameters that serve
this purpose but sometimes have different meanings. For
example, BSMAP has the option of setting the number of
mismatches allowed in each short read using the parameter v.
If v is between 0 and 1, it is interpreted as the mismatch rate
with respect to the read length. Otherwise it is interpreted



8 Advances in Bioinformatics

Table 2: Improvement in mapping efficiency after using BSMAP and BS-Seeker to map unmapped reads from Bismark on human blood
data.

File name Total number of
reads

Unmapped reads in
BISMARK

Overall improvement
using BSMAP

Overall improvement
using BS-Seeker

SRR342552 23,472,574 10512269 3.72% 0.90%
SRR342553 23,749,583 10610307 4.24% 1.03%
SRR342554 25,232,053 11277407 4.29% 1.07%
SRR342555 23,750,428 10452979 4.23% 1.01%
SRR342556 23,140,352 10204603 4.28% 1.06%
SRR342557 23,089,492 10093756 4.33% 1.05%
SRR342558 21,205,564 9215604 4.26% 1.04%
SRR342560 26,174,056 11491673 4.17% 1.01%
SRR342561 25,457,341 11271400 4.16% 1.02%
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Figure 5: The effect of trimming reads on mapping efficiency on ten human blood, ten human brain, and eight mouse brain datasets for
BSMAP and Bismark.

as the maximum number of mismatches allowed in a read.
The default is 0.08. The maximum number of mismatches
allowed is 15 per read. BiSS has the option of setting the
number of mismatches allowed in each short read using the
parameter i (minimum identity between a read and a match)
ranging from 0 to 1. The default setting is 0.65, meaning
65% of a read and its corresponding match are identical. All
reads mapped with an identity lower than this threshold will
be reported as unmapped. Our results on changing these
parameters show that, in general, the mapping efficiency
increases with the number of mismatches. The results are
consistent across datasets and for all the programs tested. For
brevity, only the results fromBS-Seeker were used to illustrate
(Figure 4). BS-Seeker has the option of setting the number of
mismatches allowed in each short read using the parameter
m. The default is 2 and the maximum number allowed is 3.
Figure 4 shows that with the number of mismatches allowed
increasing from 0 to 3, mapping efficiency increases by 43%–
60%.Worth noting is thatwithmapping efficiency increasing,
CPU running time also increases significantly. Therefore, in

real practice, though it is desirable to have high mapping
efficiency, CPU time is another important aspect that users
need to consider before running the programs. Sometimes
cost of having high mapping efficiency becomes inhibitive
as it takes too much running time. For example, when we
changed Bismark’s allowed mismatches from 0 to 1, the time
it takes to finish the program doubles (e.g., increased from
657 to 1581 minutes to run on sample SRR342553). Another
important aspect to consider is that increasing the number
of mismatches allowed also runs the risk of increased false
positives, although in real practice it is difficult to determine
whether mapped reads having mismatches to the mapped
location are actually false positives or real variants from the
reference genome.

4.3. Effect of Data Preprocessing. We also preprocessed the
reads and used those tools to analyze the trimmed data.
Around 2%–4.5% of the blood data and around 1.1%–2.3%
were trimmed on the brain data. Figure 5 shows that the
mapping efficiency increases by around 5% for BSMAP and
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datasets.

around 3% for Bismark on the human blood data and by
around 10% for BSMAP and around 6% for Bismark on
the human fetal brain and mouse brain data. Therefore,
preprocessing reads before mapping is an effective approach
to improve mapping efficiency.

4.4. Effect of Read Length and Sequencing Error. We used
simulated data to see the effect of sequencing error and
read length on mapping efficiency. Sequencing error has
been found to be an important factor influencing the per-
formance of short reads mapping tools [3]. Consistent with
previous finding, our result shows that for both BSMAP
and Bismark, as sequencing error increases, mapping effi-
ciency decreases (Figure 7). Comparatively, BSMAP is more
sensitive to sequencing error than Bismark as the BSMAP’s
mapping efficiency decays exponentially with the increase of
sequencing error, while Bismark’s only gradually.

Read length is another important factor in short reads
mapping. Figure 8 shows opposite patterns for BSMAP and
Bismark. For BSMAP, as read length increases from 40 to
140 bps, mapping efficiency decreases but with read length
above 140 bps, an increase in read length results in an increase
in mapping efficiency. On the other hand, unique mapping
efficiency from BISMARK increases as read lengths increase
consistently. It is unclear what contributes to the pattern
exhibited by BSMAP.

5. Conclusion

Many bisulfite short read mapping tools are available and
choosing the best one among them is a difficult task. In
our experiments, even though Bismark produced the highest
uniquemapping efficiency on real data, its CPU running time
was not the shortest. BRAT-BW ran the fastest on real data
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but with lower mapping efficiency. Also, preprocessing data
before mapping can increase mapping efficiency regardless of
what tools are used. Changing parameters in the program can
affect the mapping results. Overall, as number of mismatches
increases, mapping efficiency increases. Short reads length
and sequencing error can affect the results. Bismark is more
sensitive to read lengths. The longer the read length, the
higher the mapping efficiency for Bismark, whereas there
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is no clear pattern for BSMAP. BSMAP is more sensitive
to sequencing error. A small increase in sequencing error
can result in significant decrease in mapping efficiency from
BSMAP.
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