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Abstract

Objective—We assessed the neural correlates of adult ADHD in treatment-naïve participants, an 

approach necessary for identifying neural substrates unconfounded by medication effects.

Method—The sample consisted of 24 medication-naïve adults with Diagnostic and Statistical 

Manual of Mental Disorders (4th ed.; DSM-IV) diagnosed ADHD and 24 healthy controls, 

comparable on age, sex, handedness, reading achievement, IQ, and psychiatric comorbidity. All 

participants were assessed with structured diagnostic interviews. Magnetic resonance imaging 

(MRI)-based regional voxel-based morphometry (r-VBM) was used to assess volumetric 

differences in a priori defined brain regions of interest.

Results—VBM analysis revealed group differences in the hypothesized cortical and subcortical 

areas; however, only cerebellar volume reductions in ADHD retained significance (p < .05) after 

corrections for multiple comparisons.

Conclusion—These results support the notion that medication-naïve ADHD as expressed in 

adulthood, manifests subtle brain volume reductions from normal in the cerebellum, and possibly 

in other syndrome-congruent gray-matter structures. Larger samples are required to confirm these 

findings.
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Introduction

ADHD in adults is a childhood-onset, persistent, neurobiological disorder associated with 

high levels of morbidity and dysfunction estimated to afflict up to 5% of adults worldwide 

(American Psychiatric Association [APA], 1994; Kessler et al., 2006). Convergent data from 
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neuroimaging, neuropsychological, and neurochemical studies have implicated 

abnormalities in neural systems dedicated to attention and executive function (EF) in these 

patients. Because much of the neuroimaging literature on ADHD derives from studies that 

included participants treated with psychostimulants and other medications (Seidman et al., 

2011), it remains unclear whether the findings observed represent the effects of the disorder 

or those of its treatment. A key step needed to help resolve this critical issue is to study 

medication-naïve participants, who reach adulthood while still meeting diagnostic criteria 

for ADHD. This approach can help answer a fundamental scientific question as to what is 

the nature of brain abnormalities in the pure form of untreated adult ADHD reflecting the 

natural history of the neural underpinnings of this disorder. To the best of our knowledge, 

this issue has not been answered satisfactorily to-date in the neuroimaging literature of 

adults with ADHD.

A small number of previous pediatric studies using treatment-naïve populations showed an 

association of ADHD with brain alterations in the anterior cingulate cortex (ACC), 

cerebellar vermis and white matter (Bledsoe, Semrud-Clikeman, & Pliszka, 2009; 

Castellanos et al., 2002; Pliszka et al., 2006). For example,Bledsoe et al. (2009) showed 

reduced area in the posterior inferior cerebellar vermis in treatment-naïve ADHD children 

compared with treated and not treated controls. One study of adults reported brain dopamine 

transporter levels in drug-naïve adults with ADHD; however, brain structure was not 

reported (Volkow et al., 2007). To the best of our knowledge, there is only one small 

structural neuroimaging study that showed abnormalities in the ACC in medication-naïve 

adults with ADHD (Makris et al., 2010), a small pilot study focusing on the ACC conducted 

by our group. While limited, these magnetic resonance imaging (MRI) findings to date are 

consistent with current models in ADHD clinical research, and with basic neuroscience 

supporting the relevance of these brain structures to the phenomenology of ADHD 

symptoms and cognitive control (Bush, Luu, & Posner, 2000; Makris, Biederman, 

Monuteaux, & Seidman, 2009; Seidman, Valera, & Makris, 2005; Sonuga-Barke, 2003).

Recently, clinical neuroscientific thinking has increasingly moved toward a neural systems 

approach to understanding cognitive function in the brain (Makris et al., 2009). Where first-

generation clinical neuroscience concerned itself primarily with localizing structural 

abnormalities and the function of individual structures, the development of new imaging and 

analysis techniques has made it possible to directly examine a range of properties of the 

neural substrates of normal and abnormal behavior. This is an essential development from 

the perspectives of psychiatry and classical neuropsychology, two fields that have 

historically emphasized systems level analyses to understand complex brain function and 

behavior. Within a neural systems formulation of ADHD, the set of gray structures 

hypothesized to be principally involved are the dorsolateral prefrontal cortex (DLPFC), 

ACC, orbitofrontal cortex (OFC), lateral parietotemporal cortex (IPL/TOP), and caudate 

nucleus and cerebellum (CBL) (Makris et al., 2009; Seidman et al., 2011; Seidman et al., 

2005; Valera, Faraone, Murray, & Seidman, 2007).

The main aim of the present study was to investigate ADHD-associated regions of interest 

(ROIs), including frontal, lateral parietotemporal, striatal, and cerebellar abnormalities in a 

sample of medication-naïve adults with ADHD. Based on empirical data and accepted 
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models of ADHD (Barkley, 1997; Makris et al., 2009; Sonuga-Barke, 2003), we 

hypothesized that treatment-naïve participants who reach adulthood while still meeting 

diagnostic criteria for ADHD show structural alterations in the ACC, DLPFC, OFC, IPL/

TOP, caudate nucleus and CBL. We tested the above questions using MRI and regional 

voxel-based morphometry (r-VBM) analysis.

Method

Participants

Males and females between the ages of 18 and 59 years participated in the study. ADHD (n 

= 24) and control (n = 24) adults were group matched to be comparable on age, sex 

distribution, handedness, and IQ (Tables 1 and 2). With the exception of one participant who 

met criteria for ADHD-NOS (Attention Deficit / Hyperactivity Disorder: Not Otherwise 

Specified), all other participants with ADHD met full Diagnostic and Statistical Manual of 

Mental Disorders (4th ed.; DSM-IV; APA, 1994) criteria for ADHD with childhood onset 

and persistence of symptoms onto adult life. While a majority of participants in this analysis 

had been included in a previously published VBM work by our group, the previous study 

did not address the treatment-naïve subsample separately (Seidman et al., 2011). Thus, this 

is our first report of the structural imaging dataset of medication-naïve adults, with and 

without ADHD, using all the treatment-naïve participants available.

Exclusion criteria have been described previously (Seidman et al., 2011). These excluded 

participants with current mood, anxiety, other disruptive behavior, psychoactive substance 

use disorders, deafness, blindness, psychosis, neurological disorder, sensorimotor handicaps, 

inadequate command of the English language, or a Full Scale IQ estimate less than 80 as 

measured by the Wechsler Adult Intelligence Scale–3 (WAIS-3; Wechsler, 1997). 

Socioeconomic status (SES) was assessed with the Hollingshead scale (Hollingshead, 1975). 

We recruited ADHD patients from referrals to psychiatric clinics at the Massachusetts 

General Hospital (MGH) and advertisements in the greater Boston area, and control 

participants through advertisements in the same geographical area. After complete 

description of the study to the participants, written informed consent was obtained, and all 

participants received an honorarium for participating. The study was approved by the MGH 

Human Subjects institutional review board (IRB) committee.

Assessment Measures

Highly trained and well-supervised lay interviewers, blind to ascertainment status, 

interviewed all participants with the Structured Clinical Interview for DSM-IV (First, 

Spitzer, Gibbon, & Williams, 1997) supplemented with modules from the Kiddie SADS–E 

(Orvaschel, 1994) to cover ADHD and other childhood disorders. All interviews were 

audiotaped for random quality control assessments.

Throughout the study, interviewers were supervised by a diagnostic committee of board 

certified child and adolescent psychiatrists and experienced licensed psychologists at weekly 

meetings. The interviewers’ data were reviewed by a diagnostic committee, so that a Best 

Estimate diagnosis could be made. The diagnostic committee was blind to the participant’s 
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ascertainment group, all data collected from other family members, and all nondiagnostic 

(e.g., brain imaging) data. Diagnoses were made for two points in time: lifetime and past 

month prior to interview. As noted in previous work, we computed kappa coefficients of 

diagnostic agreement by having members of the committee diagnose participants from the 

audiotapes. Based on 500 assessments from interviews of children and adults, the median 

kappa coefficient was .98. Kappa coefficients for individual diagnoses included ADHD 

(0.88), conduct disorder (1.0), major depression (1.0), mania (0.95), separation anxiety (1.0), 

agoraphobia (1.0), panic (.95), substance use disorder (1.0), and tics/Tourette’s (0.89).

A neuropsychological battery was also administered that included estimates of IQ and 

academic achievement, which are reported here. IQ was estimated from the Block Design 

and Vocabulary subtests of the WAIS-3 (Wechsler, 1997). Academic achievement was 

assessed with the Reading and Arithmetic tests of the Wide Range Achievement Test–Three 

(WRAT-III; Wilkinson, 1993). Learning disability was defined by a score less than or equal 

to 85 on the WRAT-III Reading and/or Arithmetic scaled scores (Seidman et al., 2006).

MRI Acquisition and Analyses

Whole-brain MR images were collected on a Siemens 1.5 Tesla scanner at the MGH 

Martinos Center (Charlestown, Massachusetts). As described in previous studies (Seidman 

et al., 2011), a sagittal localizer scan was performed for placement of slices, followed by a 

coronal T2-weighted sequence to rule out unexpected neuropathology. Two sagittal 3D MP-

RAGE (T1-weighted, nonselective inversion-prepared spoiled gradient echo pulse) 

sequences were collected (TR/TE/T1/flip = 2.73 s/3.39 ms/1.0 s/7, bandwidth =190 Hz/

pixel, sampling matrix = 256 × 192 pixels, FOV = 256 × 256 mm, effective slice thickness = 

1.33 mm on a 170 mm slab of 128 partitions) and used for morphometric analyses 

conducted at the MGH Center for Morphometric Analysis (CMA).

Image Analysis

Structural scans were coded and cataloged for blind analysis using FSL-VBM 1.1, a voxel-

based morphometry style analysis (Ashburner & Friston, 2000; Good et al., 2001) carried 

out with FSL tools (Smith et al., 2004) that we used previously (Seidman et al., 2011). First, 

all structural data were resampled to 2 × 2 × 2 mm3, then images were brain-extracted using 

BET (Smith, 2002). Next, tissue-type segmentation was carried out using FAST4 (Zhang, 

Brady, & Smith, 2001), resulting in gray-matter partial volume images. Utilizing CMA 

parcellations of those scans we created cortical and subcortical masks for each participant 

and separated each participant’s gray-matter partial volume into a cortical part and a 

subcortical part. Accordingly, we created an MNI152 cortical template and subcortical 

template, also based on CMA parcellations (Makris et al., 2009; Seidman et al., 2011).

For cortical gray-matter partial volume images, we aligned them to the MNI152 cortical 

template, using the affine registration tool FLIRT (Jenkinson, Bannister, Brady, & Smith, 

2002; Jenkinson & Smith, 2001) followed by nonlinear registration using FNIRT 

(Andersson, Jenkinson, & Smith, 2007a, 2007b). The resulting images were averaged to 

create a study-specific cortical template, to which the native cortical gray-matter images 

were then nonlinearly reregistered, by using FNIRT (Andersson et al., 2007a, 2007b). The 

Makris et al. Page 4

J Atten Disord. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



registered cortical partial volume images were then modulated (to correct for local 

expansion or contraction), by dividing the Jacobian of the warp field. Similar procedures 

using the MNI subcortical template were applied to subcortical gray-matter partial volume 

images. The modulated segmented images (cortical and subcortical) were then smoothed 

with an isotropic Gaussian kernel with a sigma of 3 mm (full width at half-maximum = 7.05 

mm).

Voxelwise general linear model (GLM) was applied using permutation-based nonparametric 

testing (5,000 permutations). Voxel-based thresholding, uncorrected and corrected for 

multiple comparisons, was adopted. The uncorrected significance level was set at p < .01 for 

preliminary identification of reductions or increases in gray-matter volume. The significance 

level with the familywise error (FWE) corrected was set at p < .05. Threshold-free cluster 

enhancement (Smith & Nichols, 2009) was used to control FWE. Based on previous studies 

of our group and others in ADHD (Makris et al., 2009; Makris et al., 2010; Seidman et al., 

2011) we selected six a priori anatomical ROIs, namely, the ACC, DLPFC, OFC, IPL/TOP, 

caudate nucleus, and CBL.

Results

Demographic, Intellectual Functioning, and Clinical Characteristics

As Table 1 shows, medication-naïve adults with ADHD did not significantly differ from 

control participants on age, sex, handedness, IQ, or reading achievement. Both groups had 

above average IQ. The only significant differences observed were in social class, which was 

lower in ADHD participants (Biederman et al., 2008), and on the WRAT-III arithmetic test, 

which is commonly lower in ADHD and considered to be an effect of the disorder 

(Biederman et al., 2008; Seidman, Biederman, Monuteaux, Doyle, & Faraone, 2001; 

Seidman et al., 2006). As shown in Table 2, there were no significant differences between 

groups on rates of major depressive, anxiety, bipolar, psychoactive substance abuse, 

smoking, or antisocial disorders at the time of the structured interview, and rates were quite 

low in both groups.

VBM Measures

Voxel-by-voxel uncorrected t tests (at p < .01) revealed significant volumetric increases in 

some parts of DLPFC, OFC and IPL/TOP and decreases in dorsal ACC, CBL and caudate 

nucleus in individuals with ADHD compared with controls (Figure 1; Table 3): volume 

results at two different thresholds). With FWE correction (p < .05), the only difference 

between groups was for CBL volume, which was statistically smaller for ADHD adults 

relative to controls.

Discussion

Our findings highlight significant structural volumetric alterations in the cerebellum for 

treatment-naïve participants, who reached adulthood while still meeting diagnostic criteria 

for ADHD. Differences in the DLPFC, dorsal ACC, IPL/TOP, OFC and caudate nucleus in 

medication-naïve adult ADHD participants relative to controls did not survive multiple 

comparison testing. Importantly, these structures are known to be key components of the 
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neural systems responsible for attention, executive control and emotional regulation (Makris 

et al., 2009). To the best of our knowledge, this is the first documentation that medication-

naïve ADHD affects the adult brain in the cerebellum, a syndrome-congruent brain region 

contributing to the regulation of EFs.

The results of this study indicate that medication-naïve participants affected by ADHD reach 

adult life with structural brain alterations. These findings are in agreement with results of 

other published studies in this field showing that the ACC, caudate nucleus, and CBL are 

volumetrically reduced in medication-naïve children with ADHD (Bledsoe et al., 2009; 

Semrud-Clikeman, Pliszka, Lancaster, & Liotti, 2006) and our previous VBM study that 

demonstrated a significantly smaller caudate nucleus volume in a larger but mixed treated 

and treatment-naïve sample. In this subsample study the caudate nucleus and the dorsal 

ACC were smaller than in controls at p < .01 uncorrected, which is consistent with prior 

work. These ROIs are key structural components of the anatomical neural systems 

subserving EF, attention, impulsivity, and emotional regulation. The DLPFC, ACC, and 

OFC are also important regulators of other cortical and subcortical brain regions as well, and 

their deficiencies appear to be consistent with the symptoms encountered in ADHD (cf. 

review article, Seidman et al., 2005). The mesh of connections between these frontal cortical 

centers qualifies them as critical networking nodes for the interface of drive, emotion, 

cognition, and motor function as well as for the modulation of cognitive control (Bush et al., 

2000).

The observed morphometric phenotype characterized by alterations localized principally in 

the cerebellar hemispheres in medication-naïve adults with ADHD demonstrates that there is 

persistence of cerebral abnormalities. Moreover, there is an absence of resolution of an 

abnormal morphometric phenotype present earlier in childhood and adolescence, as has been 

shown in pediatric MRI studies (Castellanos et al., 2002). It is of interest that reductions in 

cerebellar volumes in previous work with children were shown to be present in ADHD 

children even after controlling for whole-brain volumes that had been significantly different 

(Castellanos et al., 2001). This observation combined with our current findings supports the 

conceptualization of the syndromatic continuity between pediatric and adult ADHD at the 

neural system level.

Although structural alterations in the cortical networks involved in EF, attention, and 

impulse control have been considered to be central to the symptoms of ADHD, the 

cerebellum may be another crucial structure accounting for ADHD’s phenomenology 

(Seidman et al., 2005; Valera et al., 2007; Valera et al., 2010). The notion of cerebellar 

involvement in ADHD has been proposed since the 1990s (Levinson, 1990) and since then 

volumetric changes have been documented in medicated children and adolescents (Berquin 

et al., 1998; Castellanos et al., 2001; Castellanos et al., 2002; Mostofsky, Reiss, Lockhart, & 

Denckla, 1998) as well as adults with ADHD, and in medication-naïve children with ADHD 

(Bledsoe et al., 2009). In the present study, the CBL showed the most statistically robust 

volume decreases in the brains of medication-naïve adult ADHD participants. Interestingly, 

these alterations were not diffusely scattered but localized in specific cerebellar regions 

(principally in the medial hemispheric zone, where 90% of the voxels showing statistically 

significant volumetric difference were localized) associated with motor (anterior lobe and 
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lobule VIIIA/B), executive (lobules VI, Crus I, and VIIB), and emotional (lobules VI and 

Crus I as well as vermal and medial lobule VII) functions (Stoodley & Schmahmann, 2009; 

Strick, Dum, & Fiez, 2009).

The cerebellum is massively interconnected with the frontal, parietal, temporal, and occipital 

cerebral cortex (Strick et al., 2009) exerting an influence over nonmotor regions of the 

cerebrum and, therefore, plays an important role in human cognitive and emotional 

functions (Strick et al., 2009). Our findings of cerebellar volumetric alterations support the 

idea that cortico-subcortico-cerebellar loops (Strick et al., 2009) may be affected in ADHD 

and contribute to the symptomatology of this disorder (Castellanos et al., 2002; Makris et 

al., 2009). We suggest that the association of these structural brain abnormalities with the 

above behavioral alterations provide the anatomical-behavioral profile of an untreated adult 

participant who meets criteria for ADHD. Thus, untreated participants with ADHD attain 

adulthood with distinct brain abnormalities in their cerebellum.

Although the other ROIs hypothesized to be different in ADHD than in controls did not 

survive multiple comparison testing, to reject them out of hand could conceivably be making 

a Type II error. It is true, of course, that a voxel-by-voxel t-test approach assessing 

thousands of voxels with no correction for multiple comparisons and no cluster thresholding 

will by definition result in many regions looking significant at p < .01. However, we are 

reluctant to completely reject our hypotheses for these ROIs due to the partial support 

observed and the wealth of literature supporting this hypothesis. Functionally, convergent 

evidence from functional magnetic resonance imaging (fMRI; Bush et al., 2000) and evoked 

potential experimentation in humans suggest that DLPFC and ACC are associated with 

monitoring of conflict and modulation of cognitive control as well as modulation of 

allocation of attention in real time. Interactions between the DLPFC, OFC, IPL, amygdala, 

and brainstem centers such as the locus coeruleus or the ventral tegmental area, enable the 

ACC to integrate sensitive information in real time to monitor conflict associated with 

competitive cognitive tasks and, in concert with the DLPFC, to modulate cognitive control 

and produce balanced behavior (Bush et al., 2000). Furthermore, lateral OFC connections 

with lateral prefrontal and dorsal ACC (BA 24, 32) neurons are relevant in translating 

motivational information into action. Moreover, a pattern of deficits involving all of these 

frontal structures may cause a breakdown in monitoring of conflict as well as inefficient 

modulation of cognitive control and allocation of attention, which may result in the 

impulsivity, hyperactivity, and inattention characteristic of ADHD.

Our findings need to be viewed in the light of some methodological limitations. While VBM 

allows a large number of brains to be measured without the influence of raters, it suffers 

from its own intrinsic limitations, as do other automated procedures, particularly the 

problem of coregistration. Despite these limitations, the current methods of registration used 

in this study represent state of the art technology in this domain. We also performed a large 

number of statistical tests on six ROIs that vary in size, and thus we are vulnerable to 

making a Type I error. However, our main finding on the cerebellum is consistent with a 

priori hypotheses and with the bulk of the literature in children and adults with ADHD. 

These results were observed using samples of limited size, which constrained the ability to 

find significant differences at the FWE threshold. This could account for the lack of 
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significance for some of the other ROIs. Moreover, generalizeability is limited until we 

conduct studies using larger samples.

Despite these considerations, in this sample of medication-naïve adults with ADHD we 

found volumetric alterations in critical cerebellar areas, which are key structures of the 

neural systems subserving EFs. Given their involvement in neural operations central to 

attention and EF, these syndrome-congruent MRI results in medication-naïve participants 

who reached adulthood while still meeting diagnostic criteria for ADHD, support the notion 

that ADHD is associated with cortical and functional alterations in brain regions that are 

critical for the regulation of EF across the life cycle.
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Figure 1. 
Voxel-based morphometric differences between medication-naïve adults with ADHD and 

controls using FSL.

Note: Areas in blue represent larger volumes in medication-naïve participants with ADHD 

as compared with controls. Instead, red and yellow represent smaller volumes in medication-

naïve participants with ADHD as compared with controls. p values are thresholded at p < .

01 as shown on the color bar in the middle of the figure.

A = anterior; dACC = dorsal anterior cingulate cortex; CBL = cerebellum; DLPFC = 

dorsolateral prefrontal cortex; I = inferior; IPL/TOP = inferior parietal lobule/Temporo-

occipito-parietal region; L = left; OFC = orbitofrontal cortex; NC = normal controls; P = 

posterior; R = right; S = superior.
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Table 1

Demographic and Clinical Characteristics in Controls and ADHD.

Controls (n = 24) n (%) ADHD (n = 24) n (%) Test statistic P value

n (%) males 62.50% 62.50% χ2(1) = 0.00 1.00

Right handed 95.83% 79.17% χ2(1) = 2.01 .16

M ± SD M ± SD

Age (years) 36.8 ± 12.1 36.8 ± 12.9 t(48) = −0.01 .99

Hollingshead socioeconomic status 1.54 ± 0.5 2.76 ± 1.1 χ2(1) = 13 .01

IQ 113.8 ± 13.6 113.5 ± 13.6 t(46) = −0.06 .95

WRAT arithmetic 106.5 ± 12.4 98.8 ± 10.1 t(45) = 2.41 .02

WRAT reading 106.1 ± 10.4 106.6 ± 9.2 t(46) = −0.16 .87

Age of onset of ADHD (years) — 5.52 ± 2.2 — —

Number of ADHD symptoms 1.15 ± 1.9 13.4 ± 3.1 4.09 < .00

Note. WRAT = Wide Range Achievement Test.
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Table 2

Current Psychiatric Comorbidities in Controls and ADHD.

Controls (n = 24) n (%) ADHD (n = 24) n (%) Test statistic p value

Major depressive disorder 0 (0) 2 (8) Fisher’s exact ns

Bipolar disorder 0 (0) 0 (0) NA NA

Psychoactive substance use disorder 0 (0) 0 (0) NA NA

Smoking 0 (0) 1 (4) Fisher’s exact ns

Multiple (≥2) anxiety disorders 0 (0) 0 (0) NA NA

Oppositional defiant disorder 0 (0) 1 (4) Fisher’s exact Ns

Antisocial personality disorder 0 (0) 0 (0) NA NA
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Table 3

Voxel-Based Morphometric Differences Between Adults With ADHD and Controls in our Selected ROIs.

ROI–BA Clusters of three voxels or larger at statistical threshold for control participant > ADHD (a)

Volume reduction in ADHD MNI coordinates (x,y,z) Uncorrected p = .01 Corrected p = .05

ACC–Left hemisphere

  pmACC/BA24 −14,−18,42 32

DLPFC–Left hemisphere

  F3/BA46 −56,30,−6 34

IPL/TOP–Left hemisphere

  PO/BA40/S-II −66,−24,30 52

  SGa/BA40 −66,−24,30 (52)

  SGp/BA40 −56,−50,4 23

  PO/BA40/S-II −54,−34,26 16

  SGa/BA40 −54,−34,26 (16)

Cerebellum–Left

  VIIA_crusI-m −56,−66,−34 51

  VIIA_crusII-m −42,−78,−42 25

  VIIA_crusI-m −42,−78,−42 (25)

  VIIA_crusI-m −40,−74,−14 295

  IX-m −26,−70,−62 1,399

  VIIA_crusII-m −26,−70,−62 (1,399)

  VIIB-m −26,−70,−62 (1,399) 139

  VIIIA-m −26,−70,−62 (1,399) (139)

  VIIIB-m −26,−70,−62 (1,399) (139)

  X-h −26,−70,−62 (1,399)

  IV-m −18,−32,−36 29

  IV-m −14,−32,−22 19

  VIIA_crusII-m −4,−86,−24 16

  VIIA_crusI-m −4,−86,−24 (16)

  VI-v −2,−74,−14 825 19

  V-m −2,−74,−14 (825)

Cerebellum–Right

  VI-m −2,−74,−14 825

  VI-v −2,−74,−14 (825)

  X-h 12,−36,−46 59

  III-m 14,−30,−22 62

  IV-m 14,−30,−22 (62)

  IV-m 20,−46,−6 62

  IX-m 30,−72,−62 1,692

  VIIA_crusII-m 30,−72,−62 (1,692) 618

  VIIB-m 30,−72,−62 (1,692) (618)

  VIIIA-m 30,−72,−62 (1,692) (618)
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ROI–BA Clusters of three voxels or larger at statistical threshold for control participant > ADHD (a)

Volume reduction in ADHD MNI coordinates (x,y,z) Uncorrected p = .01 Corrected p = .05

  VIIIB-m 30,−72,−62 (1,692)

  VIIB-m 46,−52,−56 16

  VIIIA-m 46,−52,−56 (16)

  VIIA_crusII-m 50,−66,−46 32

  VIIA_crusI-m 50,−66,−46 (32)

  VIIA_crusI-m (56,−64,−34) 66

Caudate nucleus–Left hemisphere

  Caudate nucleus −6,18,12 95

OFC–Left Hemisphere

  OFC/BA47/12/VL −56,30,−6 34

ROI–BA Clusters of three voxels or larger at statistical threshold for ADHD > control participant (b)

Volume increase in ADHD MNI coordinates (x,y,z) Uncorrected p = .01 Corrected p = .05

DLPFC–Left hemisphere

  F2/BA8 −46,16,44 11

  F2/BA9 −46,16,44 (11)

  F3/BA46 −40,30,0 11

  F2/BA9 −38,20,24 33

  F1/BA9/Med 0,58,12 13

  FP/BA9/Med 0,58,12 (13)

DLPFC–Right hemisphere

  F1/BA9/Med 0,58,12 13

  F1/BA8/Lat 6,22,64 17

  FP/BA9/Lat 18,68,18 35

  F1/BA8/Lat 24,18,66 17

  F2/BA9 48,14,44 88

  F2/BA9 56,6,36 385

OFC–Left hemisphere

  OFC (aFOG/pFOG)/BA11 −18,32,−14 39

OFC–Right hemisphere

  OFC (aFOG/pFOG)/BA11 12,30,−16 67

  OFC (aFOG/pFOG)/BA11 30,32,−10 112

  OFC/BA47/12/VL 30,32,−10 (112)

IPL/TOP–Right hemisphere

  AG/BA39 36,−58,42 10

Cerebellum–Right

  VIIA_crusI-m 30,−66,−28 190

  VI-m 30,−66,−28 (190)

Note. FSL-voxel-based morphometry results comparing differences in gray-matter volume thresholded to a probability of p = .01 (uncorrected) 
and .05 (corrected). Local maxima are reported, including cluster size and anatomical region. Locations for statistical findings are reported in the 
standard Montreal Neurological Institute coordinate space (x, y, z). Some clusters border on more than one region—those clusters are reported 
more than once with cluster size in parentheses. ROIs are defined by the Center for Morphometric Analysis as in Caviness, Meyer, Makris, and 
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Kennedy (1996) for the cortex and Makris et al. (2005) for the cerebellum. Cortex: ACC = anterior cingulate cortex; amACC = anterior middle 
cingulate cortex; pmACC = posterior middle cingulate cortex; DLPFC = dorsolateral prefrontal cortex; F1 = superior frontal gyrus; F2 = middle 
frontal gyrus; F3 = inferior frontal gyrus; FP = frontal pole; IPL/TOP = inferior parietal lobule/temporo-occipito-parietal region; AG = angular 
gyrus; PO = parietal operculum; SGa = supramarginal gyrus anterior; SGp = supramarginal gyrus posterior; S-II = somatosensory II; OFC = 
orbitofrontal cortex; aFOG = anterior fronto orbital gyrus; pFOG = posterior fronto orbital gyrus; VL = ventrolateral. Cerebellum: III-m = centralis; 
IV-m = culmen superior; V-m = culmen inferior; VI-m = simplex; VI-v = declive; VIIA_crusI-m = superior semilunar lobule; VIIA_crusII-m = 
inferior semilunar lobule; VIIB-m = paramedian/gracilis; VIIIA-m = biventer (pars copularis); VIIIB-m = biventer (pars paraflocculus dorsalis); 
IX-m = tonsil; X-m = flocculus; X-h = flocculus. Misc: BA = Brodmann’s area; CMA = Center for Morphometric Analysis; Lat = lateral; Med = 
medial; MNI = Montreal Neurological Institute; ROI = region of interest. 

a
All results are in the direction of smaller volumes in the ADHD group than in control participants.

b
All results are in the direction of larger volumes in the ADHD group than in control participants.
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