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Abstract
One of the most common complications of childhood 
obesity is the non-alcoholic fatty liver disease (NAFLD), 
which is the most common form of liver disease in 
children. NAFLD is defined by hepatic fat infiltration 
> 5% hepatocytes, as assessed by liver biopsy, in the 
absence of excessive alcohol intake, viral, autoimmune 
and drug-induced liver disease. It encompasses a wide 
spectrum of liver diseases ranging from simple steato-
sis to non-alcoholic steatohepatitis, which, in turn, can 
evolve into cirrhosis and end stage liver disease. Obes-
ity and insulin resistance are the main risk factors for 
pediatric NAFLD. In fact, NAFLD is strongly associated 
with the clinical features of insulin resistance especially 
the metabolic syndrome, prediabetes and type 2 dia-
betes mellitus (T2D). In particular, it has been clearly 
shown in obese youth that the prevalence of metabolic 
syndrome, pre-diabetes and type 2 diabetes increases 

with NAFLD severity progression. Evidence that not 
all of the obese patients develop NAFLD suggests 
that the disease progression is likely to depend on 
complex interplay between environmental factors and 
genetic predisposition. Recently, a non-synonymous 
SNP (rs738409), characterized by a C to G substitu-
tion encoding an isoleucine to methionine substitu-
tion at the amino acid position 148 in the patatin like 
phospholipase containing domain 3 gene (PNPLA3 ), 
has been associated with hepatic steatosis in a multi-
ethnic cohort of adults as well as in children. Another 
important polymorphisms that acts with PNPLA3  to 
convey susceptibility to fatty liver in obese youths is the 
rs1260326 polymorphism in the glucokinase regulatory 
protein. The pharmacological approach in NAFLD chil-
dren poorly adherent to or being unresponsive/partially 
responsive to lifestyle changes, is aimed at acting upon 
specific targets involved in the pathogenesis. There are 
some therapeutic approaches that are being studied 
in children. This article reviews the current knowledge 
regarding the pediatric fatty liver disease, the new in-
sights and the future directions.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: The prevalence of hepatic steatosis is in-
creased in the last three decades concomitantly with 
the increased prevalence of pediatric obesity. Non-al-
coholic fatty liver disease (NAFLD) is the most common 
form of liver disease in children. The PNPLA3 rs738409 
and the glucokinase regulatory protein rs1260326 are 
the strongest variants associated with fatty liver in 
paediatrics. Important risk factors are obesity, insulin 
resistence, gender, ethnicity and excessive dietetic in-
take of n-6 polyunsatured fatty acids and fructose. New 
pharmacological approaches are object of study, in 
NAFLD children poorly adherent to or being unrespon-
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sive/partially responsive to lifestyle changes.
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INTRODUCTION
In the last three decades with the increased prevalence 
of  childhood obesity, there has been an increase also of  
the obesity complications in paediatrics. One of  the most 
common complications of  childhood obesity is the non-
alcoholic fatty liver disease (NAFLD), which is the most 
common form of  liver disease in children[1]. 

NAFLD is defined by hepatic fat infiltration > 5% 
hepatocytes, as assessed by liver biopsy, in the absence 
of  excessive alcohol intake, viral, autoimmune and drug-
induced liver disease[2,3]. It encompasses a wide spectrum 
of  liver diseases ranging from simple steatosis to non-
alcoholic steatohepatitis (NASH), which, in turn, can 
evolve into cirrhosis and end stage liver disease[3,4].

The prevalence of  NAFLD has more than doubled 
over the past 20 years. According to a landmark study 
by Schwimmer et al[1] based on autoptic data obtained in 
1138 children and adolescents of  the San Diego county 
(CA), its prevalence in the general pediatric population is 
estimated to be nearly 13%, while among obese and over-
weight children and, particularly, adolescents it rises up 
to 46%[1]. Nevertheless, other studies report quite a wide 
range of  steatosis prevalence, likely due to the different 
diagnostic methods used. In fact, although liver histol-
ogy is important for NAFLD evaluation, performing 
biopsies is not always indispensable from a clinical point 
of  view; therefore, surrogate markers are often used in 
epidemiological and clinical studies. One of  the marker 
most commonly used is liver aminotransferase [aspartate 
aminotransferase, and alanine aminotransferase (ALT)] 
evaluation. Children with NAFLD typically have elevated 
liver enzymes values[5], which is why elevated serum lev-
els of  liver enzymes, even though may misrepresent the 
entity of  intrahepatic damage, are used as a non-invasive 
test to screen for pediatric NAFLD[6] . 

RISK FACTORS FOR THE DEVELOPMENT 
OF PEDIATRIC NAFLD
Obesity and insulin resistance are the main risk factors 
for pediatric NAFLD[1,7,8]. In fact, NAFLD is strongly 
associated with the clinical features of  insulin resistance 
especially the metabolic syndrome (MS), prediabetes and 
type 2 diabetes mellitus (T2D)[9-11]. In particular, it has 
been clearly shown in obese youth that the prevalence 
of  metabolic syndrome, pre-diabetes and type 2 diabetes 
increases with progression of  NAFLD severity[12].

This picture is strongly contributed by pubertal in-
sulin resistance, a physiologic state characterized by an 
increased insulin resistance during the adolescence and 
resolving at the end of  the pubertal development and 
probably consequent to the increase in growth hormone 
action during this stage of  life[8,13]. In fact, although obesi-
ty is the most important cause of  NAFLD among obese 
and adolescents, it is important to note that a transient 
insulin resistant state occurs during puberty[14], and that 
this state worsens the insulin resistance present in obese 
children in turn accelerating the progression to MS and 
type 2 diabetes. In healthy individuals this phenomenon 
is balanced by an increased insulin secretion by the beta 
cell, but in obese individuals the co-occurrence of  obesity 
and puberty represents the perfect storm causing such a 
high degree of  insulin resistance that the beta cell is not 
always able to produce enough insulin to maintain the 
glycemic control[15-17]. 

Two other critical risk factors for NAFLD develop-
ment are represented by the gender and the ethnic back-
ground. In fact, NAFLD is more common in boys than 
in girls[15] with a male to female ratio of  2:1. This has 
been explained by the liver-protective role of  estrogens, 
as well as by the potentially negative role of  androgens in 
aggravating NASH[18,19]. The beneficial effects of  estro-
gens on liver could be mediated by the beneficial effect 
on insulin action. Studies showed that insulin sensitiv-
ity is greater in premenopausal women compared with 
age-matched men, and metabolic-related cardiovascular 
diseases and type 2 diabetes are less frequent in premeno-
pausal women[20,21]. Also, estrogens deficiency leads to 
increased fat mass and body weight in postmenopausal 
women, which has been associated with increased in-
traabdominal fat[22]. Moreover, Camporez et al[23] showed 
that, in mice, endogenous estrogens are important to 
protect against high-fat diet induced skeletal muscle insu-
lin resistance, whereas E2 treatment in estrogen-deprived 
mice increased insulin sensitivity in both liver and skeletal 
muscle. Also, the estrogens effect is important in turn 
preventing diet-induced ectopic lipid deposition and he-
patic and muscle insulin resistance.

The risk linked to the ethnic background has been 
investigated in large multiethnic populations. A corner-
stone article by Browning et al[15] described for the first 
time that the prevalence of  NAFLD is the highest in 
the American Hispanic population (45%) and the lowest 
among African Americans (24%), with the Caucasians 
showing an intermediate prevalence (33%). Ethnic differ-
ences could possibly be due to different degree of  insulin 
resistance, and of  visceral adiposity at equivalent body 
mass index, but may also be a result of  genetics as well as 
socio-economic factors, including type of  diet, exercise 
choice and living location[24]. 

The accumulation of  fat, as triacylglycerol (TAG), in 
the hepatocyte is the fingerprint of  fatty liver. The TAG 
accumulated in the liver mostly derive from adipose tis-
sue lipolysis (60%) and hepatic de novo lipogenesis (26%) 
whereas only a small amount directly derives from the 
diet as chylomicron remnants (14%)[25]. A large body of  
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evidence suggests that not only the amount, but also the 
quality of  dietary fat plays a role in NAFLD develop-
ment[26]. In particular, recently published literature pro-
vides clues that the dietary imbalance between omega-6 
(n-6) and omega-3 (n-3) polyunsatured fatty acids (PU-
FAs) leads to development of  an adverse cardiovascular 
and metabolic profile, thus contributing to the pathogen-
esis of  NAFLD[27]. N-6 and n-3 are essential fatty acids; 
this means that they are not synthesized by human body. 
N-6 species are mainly represented by linoleic acid while 
n-3 are represented by alpha-linolenic acid, mainly found 
in plants and limited sets of  seeds and nuts[28]. N-6 is 
readily converted by the body into other species such as 
omega-9 and so incorporated into triglycerides, or con-
verted into arachidonic acid, which is the parent molecule 
of  the main regulators of  the inflammatory response in-
cluding prostaglandins (ciclooxigenase pathway), leukot-
rienes (lipoxygenase pathway) and tromboxane[28]. It has 
been demonstrated that individuals with NAFLD have 
a lower dietary intake of  n-3 PUFAs than healthy con-
trols[29] and an increased n-6/n-3 PUFA ratio consumed 
in the diet[29,30]. Consistent with these data, lipidomic stud-
ies have shown that the intrahepatic fat in subjects with 
steatohepatitis is composed by an excess n-6 PUFA[31]. In 
particular, studying the three groups of  subjects-NAFLD, 
NASH and healthy controls- it has been observed a pro-
gressive increase in the n-6/n-3 ratio from controls to 
NASH subjects[31]. 

Another dietary risk factor contributing to the devel-
opment of  NAFLD is the fructose. Nowadays, the major-
ity of  fructose consumption comes from the added sugars 
in the beverages more than from the fruit[32]. Strong evi-
dence exists that high in fructose intake results in increased 
de novo lipogenesis (DNL), dyslipidemia, insulin resistance, 
and obesity in humans[33]. Stanhope et al[33], studying the ef-
fect of  consumption of  glucose- or fructose-sweetened 
beverages providing 25% of  energy requirements for 10 

wk in overweight and obese subjects, provided the evi-
dence that the consumption of  fructose, instead of  glu-
cose, specifically increases DNL, promotes dyslipidemia, 
decreases insulin sensitivity, and increases visceral adipos-
ity in overweight/obese adults. 

Progression from NAFLD to NASH
A recent study demonstrated that NAFLD in children is 
a progressive disease[34]. In that study the authors showed 
that 6% of  subjects with early onset NAFLD develop 
cirrhosis and end-stage liver disease with the consequent 
need of  liver transplantation. 

The oxidative stress seems to explain the progression 
to NASH and liver fibrosis. Reactive oxygen species (ROS) 
can induce hepatocellular injury by the inhibition of  the 
mitochondrial respiratory chain enzymes, the inactivation 
of  glyceraldehyde-3-phosphate dehydrogenase and the 
inactivation of  membrane sodium channels. ROS further 
cause lipid peroxidation, cytokine production, and in-
duce Fas ligand, contributing to hepatocellular injury and 
fibrosis[12]. The risk of  progression varies by ethnicity, 
in fact, as recently demonstrated, the African American 
obese children and adolescents show a lower degree of  
liver damage than Caucasians and Hispanics, independent 
of  the degree of  hepatic fat accumulation and insulin 
resistance. These data suggest that African Americans 
are protected from hepatic damage even in presence of  
high degree of  hepatic fat accumulation and insulin resis-
tance[35]. 

GENETIC PREDISPOSITION
Evidence that not all of  the obese patients develop 
NAFLD suggests that disease progression is likely to 
depend on complex interplay between environmental fac-
tors and genetic predisposition (Figure 1). 

Recently, a non-synonymous SNP (rs738409), char-
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Figure 1  Risk factors for non-alcoholic fatty liver 
disease development. In this figure, all risk factors 
for non-alcoholic fatty liver disease (NAFLD) are sum-
marized. We divided the risk factors in modifiable and 
not modifiable. Among not modifiable risk factors we 
listed PNPLA3 rs738409, but as underlined in the text, 
the weight loss can modify the capacity of PNPLA3 
polymorphism to lead to hepatic steatosis. PNPLA3: 
Patatin like phospholipase 3 gene; GCKR: Glucoki-
nase regulatory protein; FDFT1: Farnesyl-diphosphate 
farnesyltransferase 1; NCAN: Neurocan; PPP1R3B: 
Protein phosphatase 1 regulatory subunit 3B; LY-
PLAL1: Lysophospholipase-like 1; GC: Group-specific 
component; LCP1: Lymphocyte cytosolic protein-1; 
LPPR4: Lipid phosphate phosphatise-related protein 
type 4; SLC38A8: Solute carrier family 38 member 8; 
APOC3: Apolipoprotein C3 gene; SAMM50: Sorting 
and assembly machinery component; PARVB: Parvin 
beta.
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animals are likely to be secondary rather than direct con-
sequences of  altered PNPLA3 activity. 

The effect of  this polymorphism on liver damage 
seems to be driven by the size of  abdominal fat, ex-
pressed as waist to height ratio (W/Hr)[38]. More recently 
it has been demonstrated that weight loss reduce the ef-
fect of  this polymorphism in obese children[48].

Other findings suggest also that the influence of  
PNPLA3 on hepatic fat in obese children and adoles-
cents might be modulated by dietary factors such as n-6/
n-3 polynsatured fatty acids (PUFA) intake[49]. Finally, 
the rs738409 PNPLA3 polymorphysm is considered, 
regardless of  metabolic profile, a risk factor for liver dis-
ease. In fact, in a recent study, in a hepatitis C-infected 
population, the PNPLA3 polymorphism influenced the 
development of  liver steatosis[50]. Moreover, it was also 
demonstrated as a novel genetic marker associated with 
progressive ALD (alcoholic liver disease)[51].

Another polymorphism that acts along with the 
PNPLA3 gene variant to convey susceptibility to fatty 
liver in obese youths is the rs1260326 polymorphism in 
the glucokinase regulatory protein (GCKR). This poly-
morphism is associated with hepatic fat accumulation 
along with large VLDL and triglyceride levels[52].

Speliotes et al[53], in addition to GCKR, identified vari-
ants in novel loci NCAN and LYPLAL1 associated with 
both increasing computer tomography (CT) hepatic stea-
tosis and histological NAFLD and identified variants in 
another locus, protein phosphatase 1 regulatory subunit 
3B (PPP1R3B), associated with CT steatosis but not his-
tologic NAFLD[53]. Recently Kitamoto et al[54] found that 
PNPLA3, SAMM50 sorting and assembly machinery 
component (SAMM50), parvin beta (PARVB) genetic 
regions was significantly associated with NAFLD in the 
Japanese population. Adams et al[55] showed that SNPs 
in two genes expressed in liver were associated with 
NAFLD in adolescents: group-specific component (GC) 
and lymphocyte cytosolic protein-1 (LCP1). SNPs in two 
genes expressed in neurons were also associated with 
NAFLD: lipid phosphate phosphatise-related protein 
type 4 (LPPR4) and solute carrier family 38 member 8 
(SLC38A8)[55]. 

TREATMENTS
Diet and lifestyle changes
The goal of  lifestyle interventions is a gradual and con-
trolled weight loss achieved by diet and physical exercise 
(Table 1). This aim is difficult to achieve and only a small 
percentage of  individuals is able to steadily lose weight 
and exercise regularly[56]. Weight loss in NAFLD patients 
improves hepatic insulin sensitivity by reducing hepatic 
NEFAs supply, improves extra-hepatic insulin sensitivity 
through better glucose utilization and reduces ROS gen-
eration and adipose tissue inflammation[56].

Currently, there are no evidence-based guidelines 
establishing the optimal intervention. The only effective 
interventions are physical activity and dietary changes. 
In fact, reduction in sugar/sucrose and in soft drinks 

acterized by a C to G substitution encoding an isoleucine 
to methionine substitution at the amino acid position 148 
in the patatin like phospholipase 3 gene (PNPLA3), has 
been associated with hepatic steatosis in a multiethnic 
cohort of  adults[36] as well as in children[37,38]. PNPLA3 
encodes for a triglyceride hydrolase expressed in the liver 
and adipose tissue[39]. Metabolic studies in transgenic 
mice revealed that high level expression of  PNPLA3I148M 

in the liver, but not in adipose tissue, affected both he-
patic triacylglycerol (TAG) synthesis and catabolism. A 
surprising finding was that the PNPLA3I148M transgenic 
mice have significantly increased fatty acid synthesis and 
an altered spectrum of  TAG-fatty acids in the liver, with 
no evidence of  insulin resistance[40]. It is interesting that 
PNPLA3I148M transgenic mice develop steatosis on a su-
crose diet but not on a high-fat diet. Ingestion of  sucrose 
stimulates de novo synthesis of  fatty acids[41], whereas 
most of  the hepatic fatty acids in livers of  fat-fed mice 
are derived from circulating non esterified fatty acids 
(NEFAs). Perhaps PNPLA3 in hepatocytes is exposed 
preferentially to newly synthesized TAG and is shielded 
from fatty acids that enter the liver in lipoproteins or are 
synthesized from circulating NEFAs[40]. Alternatively, 
PNPLA3 may function specifically under conditions 
of  insulin-stimulated lipid anabolism. The finding that 
PNPLA3 is virtually absent from livers of  fasting animals 
and is strongly upregulated both transcriptionally[42-45] and 
post-translationally[39] by carbohydrate refeeding is consis-
tent with the latter hypothesis.

Moreover, purified recombinant PNPLA3 has been 
found to have 5 enzymatic activities: triacylglycerol, dia-
cylglycerol, and monoacylglycerol hydrolysis[42,46] as well 
as acyl-CoA thioesterase[42] and lysophosphatidic acid 
acyltransferase activity[47]. These different activities are 
not equally affected by the I148M substitution. In vitro 
assays, the I148M substitution results in a substantial loss 
of  triacylglycerol, monoacylglycerols, and diacylglycerols 
hydrolytic activity[33]; a modest reduction in acyl-CoA 
thioesterase activity[33]; and an increase in lysophosphatid-
ic acid acyltransferase activity[47]. None of  these activities 
alone can explain all of  the changes in TAG metabolism 
observed in the PNPLA3 I148M transgenic mice. There-
fore, some of  the metabolic changes observed in these 
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  Present        Under development

  Weight loss
  Physical activity
  Reduced dietary 
  sucrose intake
  Reduced dietary 
  fructose intake 
  Reduced dietary 
  omega 6 intake
  Increased dietary 
  omega 3 intake

Vitamin E
Metformin
Probiotics
Oral treatment 
with omega 3

Pentoxifylline
Farnesoid X receptor agonists
Toll-like receptors modifiers
Glucagon-like peptid-1 receptor 
agonists resistant to DPP-4 
mediated degradation
DPP-4 inhibitors 

Table 1  Current and future non-alcoholic fatty liver disease 
treatment strategies
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rich in fructose, most probably not only acts through a 
reduction in IR and lipogenesis, but also counteracts the 
recently evidenced hepatic pro-inflammatory/fibroge-
netic role of  fructose[57]. It should be taken in mind that 
diet in childhood must be balanced to allow a healthy and 
harmonic growth, including wellness of  bone structures. 
To intervene on dietary changes does not only mean to 
reduce the caloric intake, but also the single components 
of  the diet (Table 1). In fact, also diet composition plays 
an important role in the development of  NAFLD, as an 
increased dietary intake of  monounsaturated and poly-
unsaturated fatty acids (mainly omega 3 PUFA) has been 
associated with a reduction of  hepatic fat content, repre-
senting a reasonable intervention especially in the pediat-
ric population[58].

Pharmacological interventions for NAFLD
The pharmacological approach, in NAFLD children 
poorly adherent to or being unresponsive/partially re-
sponsive to lifestyle changes, is aimed at acting upon spe-
cific targets involved in etiopathogenesis (Table 1). 

Antioxidants, by reducing oxidative stress, protect sus-
ceptible components of  biological membranes from lipid 
peroxidation, and may, therefore, prevent the progression 
of  simple steatosis to NASH. The most studied antioxi-
dant in children with NAFLD is alpha tocopherol (vitamin 
E) and warrants consideration in obesity-related liver 
dysfunction for children unable to adhere to low-calorie 
diets[59]. Sanyal et al[60] showed that vitamin E therapy, as 
compared with placebo, was associated with a significant-
ly higher rate of  improvement in NASH (43% vs 19%, P 
= 0.001) in adults without diabetes. There was no benefit 
of  pioglitazone over placebo for improvement of  NASH 
but serum alanine and aspartate aminotransferase levels 
were reduced as well as with vitamin E.

For its pathogenic role, insulin resistance appears as 
an adequate therapeutic target. Metformin is the only 
insulin-sensitizing agent evaluated in children.

Lavine et al[61] in a more recent large, multicenter, ran-
domised double-bind placebo-controlled trial (TONIC 
study), evaluated the effect of  daily dosing of  800 IU 
of  vitamin E (58 patients), 1000 mg of  metformin (57 
patients) or placebo (58 patients) for 96 wk of  NAFLD 
course. The patients (aged 8-17 years) with biopsy-con-
firmed NAFLD and persistently elevated levels of  ALT, 
without diabetes or cirrhosis, were randomly assigned to 
1 of  3 groups. At 96 wk neither vitamin E nor metformin 
was superior to placebo in attaining the primary outcome 
of  sustained reduction in ALT level in pediatric NAFLD; 
vitamin E and metformin groups, however, showed an 
improvement in histological hepatocellular ballooning in 
NAFLD and NASH.

Another, single-arm, open-label, small pilot study on 
metfotmin (500 mg twice daily for 24 wk), conducted in 
10 non-diabetic children with biopsy proven NASH and 
elevated ALT levels showed reduction of  hepatic steato-
sis, as evaluated with Magnetic Resonance Spectroscopy 
(MRS) and low serum ALT levels[62].

FUTURE DIRECTIONS 
A growing body of  evidence[63] shows that the gut mi-
crobiota controls obesity and visceral fat storage. Specific 
variations in gut microbiota in early life may determine 
a major risk factor of  obesity and its complications later 
in life[64]. Small intestinal bacterial overgrowth (SIBO) (a 
frequent condition in obese individuals, mainly prompted 
by slowing of  the oro-coecal transit time) may promote 
NAFLD progression to non-alcoholic steatohepatitis by 
enhancing intestinal permeability and by favouring ab-
sorption of  endotoxins with pro-inflammatory and pro-
fibrogenetic effects on the liver[65]. 

Probiotics are live microorganisms which when con-
sumed in adequate amounts, confer an healthy benefit to 
the host[66]. Gut microbiota manipulation with probiotics 
in rodents with fatty liver reduces intestinal inflammation 
and improves the epithelial barrier function[67,68]. There-
fore, probiotics could represent a new effective treatment 
also in NAFLD human patients (Table 1). Loguercio 
and colleagues have shown that probiotics may reduce 
NAFLD liver injury and may improve liver function 
tests[69].

Moreover, recent pharmacological studies in NAFLD 
animal models and in adult humans focusing on the ef-
fect of  oral treatment with n-3 fatty acids, demonstrate 
that they have both anti-inflammatory and insulin sensi-
tizing properties, suggesting a potential role in treatment 
of  NAFLD[70]. In NAFLD children n-3-docosahexaenoic 
acid (DHA) treatment for 6 months improved ultrasono-
graphic fatty liver and insulin sensitivity[71]. Because this 
treatment is well tolerated in pediatric population, DHA 
deserve further studies in the management of  children 
with NAFLD. 

A series of  other interesting approaches, hitherto 
explored only in NAFLD animal models or in few pi-
lot studies in adults will possibly become in future the 
object of  study in pediatric population (Table 1), as 
well: (1) tumor necrosis factor-α (TNF-α) and other 
adipocytokines produced by adipose tissue are involved 
in NAFLD progression. Pentoxifylline, a phosphodies-
terase inhibitor, exerts immunomodulatory functions by 
antagonizing the TNF-α pathway. In adults with NASH, 
pentoxifylline treatment showed good tolerability and 
could decrease serum ALT levels and improve histologi-
cal features[72]; (2) the nuclear bile acid receptor, Farne-
soid X receptor (FXR), strongly expressed in bowel and 
liver, is probably involved in NAFLD pathogenesis, by 
mediating control of  lipids and glucose homeostasis, and 
controlling bacterial flora growth. Altogether, these ef-
fects may induce reduction of  hepatic inflammation and 
fibrogenesis, through different mechanisms. Therefore, 
recently developed FXR agonists have a potential role in 
the pharmacological therapy of  NAFLD/NASH[73]; (3) 
toll-like receptors (TLRs) are receptors sensing microbial 
components of  gut microbiota. A number of  recent evi-
dences suggests the role of  SIBO and increased intestinal 
permeability in NAFLD, by exposing via portal vein the 
liver to an high load of  intestinal noxae including lipo-
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polysaccharide and other pathogen-associated molecular 
patterns[74]. Furthermore, TLRs stimulation causes down-
stream activation of  the inflammatory response. Pro-
inflammatory patterns result in production of  cytokines 
and chemokines implicated in progression from simple 
steatosis to steatohepatitis and fibro-cirrhosis; so thera-
peutic manipulation of  innate immune system through 
TLRs modifiers, formerly evaluated for autoimmune dis-
eases[75], might be a new potential therapeutic target for 
pediatric NAFLD, but further studies are necessary; and 
(4) glucagon-like peptid-1 (GLP-1) is an incretin secreted 
in response to food intake, allotted to multiple functions, 
including, the stimulation of  glucose-dependent insulin 
secretion and inhibition of  glucagon release. The enzyme 
dipeptidyl peptidase-4 (DPP-4) rapidly degrades circu-
lating GLP-1 (half-life: 1-2 min). Recent animal model 
and NAFLD adults studies showed an effective role of  
GLP-1 receptor agonists resistant to DPP-4 (such as 
exenatide and liraglutide) or DPP-4 inhibitors (e.g., some 
gliptins) as a promising new therapy in NAFLD for their 
ability in modulating fatty acid oxidation, decreasing lipo-
genesis, and improving hepatic glucose metabolism[76].

CONCLUSION
Non-alcoholic fatty liver disease, because of  the rise in 
the prevalence of  childhood obesity, is becoming one of  
the most important chronic liver disease among children. 
Evidence that only a sub-group of  obese patients de-
velop NAFLD suggests that disease progression is likely 
to depend on complex interplay between environmental 
factors and genetic predisposition (Figure 1). Recent 
researches led us to understand the genetic basis pre-
disposing to NAFLD. Many genes have been identified 
and many other will be identified and, actually, the most 
important it appears to be PNPLA3 gene. Probably, all 
the genetic polymorphisms implicated in NAFLD devel-
opment could have a summarizing effect. In fact, if  more 
predisposing NAFLD polymorphisms coexist in the 
same subject, the risk to develop NAFLD and to develop 
it more severely could increase. Other important findings 
are related to the diet. For example, strong evidence ex-
ists that high in fructose intake, usually present in bever-
ages, results in increased de novo lipogenesis and then in 
increased risk of  NAFLD. Moreover, also high n-6/n-3 
PUFA ratio consumed in the diet could predispose the 
NAFLD development. All these findings must drive the 
clinical practice: the diet is the first and important ap-
proach for the NAFLD prevention and treatment. In 
fact, there is the striking evidence that the weight loss can 
reduce the effect of  I148M polymorphisms on determin-
ing hepatic steatosis. In addition to weight loss, to reduce 
the fructose intake trough the beverages and increasing 
the n-3 fatty acids dietary intake could be also useful in 
contrasting the NAFLD.

In conclusion, waiting the new approaches, the dear 
and old diet is always a fundamental and irreplaceable 
NAFLD therapy.
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