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Abstract
AIM: To investigate whether naofen is involved in tu-
mor necrosis factor (TNF)-α-mediated apoptosis of he-
patocytes induced by lipopolysaccharide (LPS). 

METHODS: In vivo , rats were treated with LPS or anti-
TNF-α antibody, whereas in vitro , primary hepatocytes 
and Kupffer cells (KCs) were separately isolated from 
rat livers using collagenase perfusion, and primary 
hepatocytes were cultured in medium containing LPS 
or TNF-α, or in conditioned medium from LPS-treated 
KCs (KC-CM)/KC-CM + anti-TNF-α antibody. Naofen 
and TNF-α mRNA expression was examined by real-
time reverse transcription-polymerase chain reaction. 
Immunoblotting was used to measure protein expres-
sion. Hepatocyte apoptosis was determined by terminal 
deoxynucleotidyl transferase-mediated dUTP nick end 
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labeling (TUNEL) assay. 

RESULTS: LPS significantly induced both naofen ex-
pression and caspase-3 activity in the rat liver, which 
coincided with an increase in the number of TUNEL-
positive hepatocytes. The increase of TNF-α expression 
induced by LPS was preceded by increases in naofen 
and caspase-3 activity. Elevation of naofen expression 
and caspase-3 activity was abrogated by pretreatment 
with anti-TNF-α antibody. In KCs, LPS caused an in-
crease in TNF-α that was almost consistent with that 
in the liver of LPS-treated rats. In hepatocytes, neither 
LPS nor TNF-α alone affected either naofen expression 
or caspase-3 activation. The incubation of hepatocytes 
with KC-CM significantly enhanced both naofen expres-
sion and caspase-3 activity. Moreover, the effects of the 
KC-CM-induced increase in naofen expression and cas-
pase-3 activity were blocked by anti-TNF-α antibody. 

CONCLUSION: TNF-α released from KCs treated with 
LPS may induce hepatic naofen expression, which then 
stimulates hepatocellular apoptosis through activation 
of caspase-3.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Naofen, a WD40-repeat protein, is increased 
in the liver but not in the kidneys, thymus or spleen of 
rats injected with lipopolysaccharide (LPS). Increased 
naofen expression is blocked by pretreatment with anti-
tumor necrosis factor (TNF)-α antibody. TNF-α has no 
effect on naofen expression or caspase-3 activation in 
primary hepatocytes, but conditioned medium from 
LPS-treated Kupffer cells (KC-CM) significantly enhanc-
es both. KC-CM-induced increase in naofen expression 
and caspase-3 activity is blocked by anti-TNF-α anti-
body. LPS in the liver may enhance release of TNF-α 



surface. In contrast, caspase-9 is activated by cytochrome 
c released from mitochondria. Proapoptotic signals ac-
tivate an initiator caspase that, in turn, activates effector 
caspases, for example, caspase-3. Sequential activation 
of  caspases results in cleavage of  substrate proteins and 
breakdown of  DNA molecules, leading to apoptosis. So 
far, although many studies of  hepatocyte apoptosis have 
been conducted, the precise molecular mechanisms re-
main incompletely defined. Therefore, the identification 
of  signal pathways in LPS-mediated hepatocyte apoptosis 
would contribute to understanding the pathophysiologi-
cal roles of  apoptosis in liver diseases.

Recently, naofen was found as an intracellular protein 
reactive to anti-verotoxin Ⅱ antibody and classified in the 
aspartate-tryptophan (WD) 40-repeat protein family[16]. 
In deoxycorticosterone-induced renal hypertension in 
rats, naofen is increased in vascular endothelial cells and 
suppresses nitric oxide synthesis[16]. Naofen also induces 
apoptosis in streptozotocin-induced diabetic rat kidney[17] 
and mediates spontaneous and TNF-α induced apoptosis 
in human embryonic kidney (HEK) 293 cells[18]. Further-
more, naofen was increased in hepatocytes, causing apop-
tosis in LPS-treated rat liver[19]. Thus, it was hypothesized 
that naofen may be involved in TNF-α-induced apop-
tosis of  hepatocytes. The present study was undertaken 
to examine whether naofen participates in the TNF-α-
mediated apoptosis of  hepatocytes in LPS-treated rats. 
Moreover, the correlating mechanisms were evaluated, 
utilizing primary cultures of  KCs and hepatocytes.

MATERIALS AND METHODS
Animal treatment
Male Sprague-Dawley rats (weighing 200-250 g; SLC Inc., 
Guangxi, China) were maintained in climate-controlled 
rooms under a 12-h light-dark cycle. All experiments 
were conducted in accordance with the Institutional 
Guidelines of  Guangxi Medical University for the care 
and use of  laboratory animals. 

Rats were injected with LPS (500 μg/kg; Sigma, St. 
Louis, MO, United States) via the femoral vein under 
ether anesthesia, and saline was used as a control as pre-
viously reported[19]. A second set of  experiments was 
performed to determine the influence of  anti-TNF-α 
on the expression of  naofen in response to LPS. Rats 
received femoral vein injection of  nonspecific IgG (2 
mg/kg; Biosensis, Thebarton, SA, Australia) + LPS (500 
μg/kg; Sigma), anti-TNF-α (2 mg/kg; R and D Systems, 
Minneapolis, MN, United States) + LPS (500 μg/kg), sa-
line + IgG (2 mg/kg), or saline + anti-TNF-α (2 mg/kg). 
The anti-TNF-α and IgG were administered 24 h before 
LPS. Ten rats were used for each time point. At 1, 3, 6, 9 
and 12 h after injection, animals were anesthetized with 
pentobarbital sodium (50 mg/kg intraperitoneally), and 
blood samples were collected from the inferior vena cava. 
The livers were removed, immediately frozen, and stored 
in liquid nitrogen for RNA and protein extraction. 
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from KCs, and induce hepatocyte apoptosis, for which 
naofen promotes caspase-3 activity through the mito-
chondrial pathway.
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INTRODUCTION
Lipopolysaccharide (LPS) is a major structural compo-
nent of  the outer membrane of  Gram-negative bacte-
ria[1]. Under normal conditions, a small amount of  LPS, 
mainly from the intestine, can periodically be taken up 
into the liver through the portal vein and then scavenged 
by Kupffer cells (KCs), the resident macrophages in 
the liver[2]. The liver functions as the first barrier to LPS 
entering the circulation and as a detoxification organ, 
therefore, it is deeply affected by endotoxemia. However, 
in patients with severe trauma, burns, intestinal ischemia 
and liver diseases, LPS can spill over into the systemic 
circulation because of  the increased permeability of  the 
intestinal wall and/or the decreased phagocytic ability 
of  liver KCs[3-5]. Under septic conditions, LPS-induced 
hepatocyte death may have a role in liver dysfunction, 
possibly associated with apoptosis of  hepatocytes[5-7]. It is 
clear that LPS does not directly have pathogenetic roles, 
but rather the effects are mainly dependent on the pro-
duction and release of  potent inflammatory mediators, 
such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, 
IL-6, and IL-10[8,9]. These mediators, especially TNF-α, 
can induce apoptotic liver injury[10] and the infiltration of  
inflammatory cells. The latter, in turn, can further exac-
erbate liver injury, which continues the vicious circle of  
infiltration/liver injury[3,6-8]. A number of  inflammatory 
liver diseases in humans, including viral hepatitis, alco-
holic liver disease, immune- or drug-induced liver injury 
and ischemia/reperfusion liver failure, have been shown 
to be dependent on TNF-α production[5,11,12]. Therefore, 
to control liver damage under such pathological condi-
tions, it may be important to understand the functions of  
TNF-α in liver injuries.

Hepatocyte apoptosis, as a general feature, is the most 
important event in the molecular mechanisms of  hepatic 
failure, because apoptosis is the first cellular response of  
the liver to a wide range of  toxic substances (including 
LPS), and necrosis in hepatic tissues is often found to 
follow the appearance of  apoptosis[13-15]. It has been well 
documented that the caspase cascade involved in apopto-
sis includes both initiator and effector caspases[13-15]. Two 
main initiator caspases, caspase-8 and caspase-9, medi-
ate distinct sets of  death signals. Caspase-8 is activated 
by death signals that bind to death receptors on the cell 



Preparation of hepatocytes and KCs
Hepatocytes and KCs were separately prepared from the 
livers of  Sprague-Dawley rats using collagenase perfu-
sion[20,21]. Hepatocytes were cultivated in Williams’ E 
medium containing 10% calf  serum, 2 mmol L-glutamate 
and antibiotics (100 U/mL penicillin G and 100 μg/mL 
streptomycin sulfate). KCs were cultured with RPMI 
1640 medium containing 10% calf  serum and antibiot-
ics. Hepatocytes (1 × 106) and 5 × 105 KCs per well were 
plated on a 6-cm plate and incubated at 37 °C under 5% 
CO2 and 95% O2 for 6 and 1 h, respectively. The culture 
medium was then changed to remove nonviable and un-
attached cells. The viability of  cells tested by trypan blue 
dye exclusion ranged between 87% and 95%. The purity 
of  hepatocytes examined by light microscopy and of  
KCs identified by phagocytosis of  latex beads (polystyrene 
beads, mean particle size 1.1 μm; Sigma) ranged between 
85% and 95%. Duplicate cultures were prepared for each 
treatment, and independent experiments were performed 
at least four times.

Preparation of Kupffer cell-conditioned medium
After 24 h of  culture, KCs were incubated in medium 
containing 100 ng/mL LPS for 1-12 h, and TNF-α ex-
pression was measured. In some experiments, KCs were 
treated with LPS for 6 h, and the culture medium, as 
Kupffer cell-conditioned medium (KC-CM), was col-
lected and centrifuged at 15000 g at 4 ℃ for 10 min to 
remove cell debris. To confirm the effects of  TNF-α, an 
antibody against TNF-α (500 ng/mL) was added to KC-
CM (6 h) and incubated at 37 ℃ for 1 h (6 h KC-CM + 
anti-TNF-α). Hepatocytes were incubated respectively 
with LPS (100 ng/mL), TNF-α (10 ng/mL), IgG (500 
ng/mL), 6 h KC-CM or 6 h KC-CM + anti-TNF-α for 
12 h, and the expression of  naofen, TNF-α and cas-
pase-3 activity was analyzed. 

Real-time quantitative PCR
Total RNA (1 μg) was extracted from livers or primary 
cells using TRIzol reagent (Invitrogen, Carlsbad, CA, 
United States) and reversely transcribed using a ReverTra 
Ace quantitative PCR (qPCR) RT kit (Toyobo, Osaka, 
Japan) according to the manufacturer’s instructions. 
Target mRNA expression was quantified using qPCR 
as described previously[19]. The primers and probe for 
naofen (forward primer 5’-CGATTTCTGCATTTT-
GGCCACAA-3’, reverse primer 5’-TCCAAGGGT-
GTGCCAATAGAATT-3 and TaqMan MGB probe 
5’-CAAACTGAGGGTGATTTT-3’) and TaqMan Gene 
Expression Assays for naofen (ID: Rn01769571_m1), 
TNF-α  ( ID:  Rn99999017_m1) ,  GAPDH (ID: 
Rn99999916_s1) and β-actin (ID: Rn00667869_m1) were 
purchased from Applied Biosystems (Foster City, CA, 
United States). 

Immunoblotting assay 
Protein samples (30-50 μg) were prepared from livers and 
cells and separated by SDS-PAGE, followed by transfer 

to PVDF membranes (Millipore, Billerica, MA, United 
States) as reported previously[19]. Blots were incubated 
with an anti-naofen antibody (anti-NF, 1:500), which was 
designed and produced by Medical & Biological Labora-
tories (Nagoya, Japan) or antibodies (1:1000, respectively) 
against TNF-α and GAPDH (Cell Signaling Technology, 
Danvers, MA, United States), followed by incubation 
with a peroxidase-conjugated goat IgG (1:5000; Sigma). 
Proteins were visualized using ECL Plus Western blot-
ting Reagent (GE Healthcare, Chalfont St Giles, Bucks, 
United Kingdom). Changes in target protein levels were 
measured quantitatively using Image J (free software 
made by NIH initiative).

Assessment of caspase-3 activation
Caspase-3 activation was determined using a Caspase Flu-
orometric assay kit (Medical and Biological Laboratories) 
as previously reported[19]. Free AFC cleaved by caspase-3 
from the substrate, DEVD (Asp-Glu-Val-Asp)-AFC 
(7-amino-4-trifluoromethyl coumarin), was quantified by 
Fluoroskan Ascent FL (Labsystems, Helsinki, Finland) 
with excitation/emission (Ex/Em) = 400/505 nm. 

Terminal deoxynucleotidyl transferase-mediated dUTP 
nick end labeling assay
Livers were fixed with 4% paraformaldehyde in PBS and 
embedded in paraffin. Serial 5-μm sections were made 
for terminal deoxynucleotidyl transferase-mediated dUTP 
nick end labeling (TUNEL) assay, a method for detect-
ing DNA fragmentation in apoptosis, using an ApopTag 
Plus peroxidase in situ apoptosis detection kit (Millipore) 
according to the manufacturer’s instructions[22]. For each 
sample, five high-power fields (× 200) were randomly 
selected, each containing an average of  400 cells, and the 
number of  apoptotic cells was counted for each field. 
Apoptosis index (AI) (%) was calculated as number of  
positive cells/number of  total cells × 100%.

Statistical analysis
Results are expressed as mean ± SE (n = 10), unless oth-
erwise indicated. Statistical analyses were performed us-
ing Kruskal-Wallis one-way analysis of  variance. P < 0.05 
was considered significant.

RESULTS
Changes of TNF-α and naofen expression in livers of 
LPS-injected rats
Changes in the time course of  TNF-α expression were 
investigated in the livers of  rats injected with 500 μg/kg 
LPS + 2 mg/kg IgG for 1-12 h. TNF-α mRNA rapidly 
increased by the greatest amount within 1 h after injection, 
and then gradually decreased (Figure 1A). In the immu-
noblotting assay with anti-TNF-α (Figure 1C), compared 
to the control saline + IgG in which TNF-α was almost 
undetectable, LPS resulted in the strongest signal intensity 
for TNF-α protein after 1 h injection, then diminished, 
and recovered to an undetectable level within 12 h. 
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ing caspase-3 activation and TUNEL assay. Caspase-3 
activation in LPS-treated rat livers increased 9 h after LPS 
+ IgG injection, while the increased caspase-3 activity 
was significantly decreased by pretreatment with anti-
TNF-α (Figure 2A). Typical TUNEL results are shown 
in Figure 2B and C. In the livers of  LPS + IgG-treated 
rats, approximately 25% of  hepatocytes nuclei were 
clearly stained 9 h after injection, whereas 2% positive 
changes were observed in control saline + IgG rat liv-
ers. Although IgG did not suppress an increase in the 
number of  apoptotic hepatocytes, the addition of  anti-
TNF-α significantly inhibited the appearance of  hepato-
cyte apoptosis (Figure 2B and C).

LPS-induced TNF-α production in KCs
In unstimulated KCs (control saline + IgG), TNF-α was 
hardly detected; however, KCs treated with LPS (100 ng/
mL) + IgG (500 ng/mL) showed marked production of  

As previously reported[19], the expression of  naofen 
was increased from 5 μg/kg LPS and peaked at 500 
μg/kg. In addition, naofen mRNA increased from 3 h, 
peaked at 9 h, and then diminished. Thus, changes in 
naofen expression were investigated using 500 μg/kg LPS 
+ 2 mg/kg IgG. In contrast to the control saline + IgG, 
naofen expression was obviously increased at 9 h (Figure 
1B). Immunoreactivity for naofen also appeared to have a 
similar pattern with its mRNA expression (Figure 1D). 

Gene expression and protein level for naofen were 
found to be significantly reduced in rats treated with 2 
mg/kg anti-TNF-α + LPS compared to LPS + IgG (Fig-
ure 1B and D). The expression of  TNF-α and naofen 
were not significantly different between saline and saline 
+ IgG (data not shown).

Liver apoptosis in LPS-injected rats
Liver apoptosis induced by LPS was confirmed by study-
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TNF-α at 1 h after addition, and then a gradual decrease 
in mRNA and protein level (Figure 3A and B). Although 
the expression of  TNF-α mRNA in LPS-treated KCs 
was similar to that obtained in LPS-treated rat livers, 
there was even stronger signal intensity for TNF-α pro-
tein in the former, appearing as a clearly detectable band 
6 h after LPS administration (Figure 3B).

Effect of TNF-α on expression of naofen and caspase-3 
activity in hepatocytes
When LPS alone was added to hepatocytes (Figure 4A) 
or KCs, no change in naofen was observed (data not 
shown). As previously reported[19], KC-CM treated with 
LPS (100 ng/mL) for 3 h significantly increased naofen 
expression in hepatocytes, and extension of  the LPS 

treatment time to 6 h had a stronger effect. In the follow-
ing experiments, KC-CM treated with LPS for 6 h was 
used.

However, it was surprising that TNF-α alone did 
not enhance naofen expression in hepatocytes (Figure 
4A). We have showed that anti-TNF-α antibody inhibits 
liver apoptosis induced by LPS (Figure 2), therefore, we 
studied the effect of  anti-TNF-α antibody on KC-CM-
induced naofen expression. As expected, pretreatment 
with 500 ng/mL anti-TNF-α antibody almost completely 
inhibited the increase of  naofen induced by KC-CM 
(Figure 4A and B). An irrelevant antibody conferred no 
effect, suggesting the possible participation of  TNF-α in 
the induction of  naofen. 

LPS alone did not affect caspase-3 activity, but in 
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hepatocytes incubated with KC-CM for 6 h, caspase-3 
activity significantly increased, which was clearly inhibited 
by pretreatment with 500 ng/mL anti-TNF-α (Figure 
4C). These findings suggested that liver injury caused by 
LPS depended on TNF-α released from activated KC.

DISCUSSION
The results obtained in the present study demonstrated 
that LPS induced both naofen and TNF-α expression in 
rat liver. Naofen promotes TNF-α-mediated apoptosis 
of  hepatocytes by activating caspase-3 in LPS-treated 
rats. In vitro, hepatocyte apoptosis caused by LPS was 

mediated by TNF-α, which was released from KCs in the 
presence of  LPS, induced naofen expression and activat-
ed caspase-3. Our data suggested that hepatocyte apopto-
sis induced by KC-CM was associated with an increase in 
naofen expression (Figure 4), which was consistent with 
the results obtained in LPS-treated rats (Figure 1). Fur-
thermore, naofen siRNA inhibited the increase in naofen 
protein induced by 6 h KC-CM, and naofen-siRNA also 
prevented KC-CM-induced caspase-3 activation in a pre-
vious study[19]. These results coincided with our recent 
data that naofen overexpression enhanced apoptosis by 
activating caspase-3 in HEK293 cells and, in contrast, 
naofen-siRNA inhibited TNF-α-induced caspase-3 acti-
vation and apoptosis[18]. Such results suggest that naofen 
is also involved in hepatocyte apoptosis induced by LPS-
activated TNF-α. Previously, Morikawa et al[23] demon-
strated that the injection of  LPS and D-galactosamine 
into mice caused apoptosis in the kidneys, thymus, spleen, 
and lymph nodes besides the liver, whereas our findings 
verified that the increase in naofen induced by LPS was 
limited to the liver, and was not found in the kidneys, 
thymus or spleen (data not shown). This indicates that 
naofen, in LPS treated rats, may only make a limited con-
tribution to liver injury.

Neither LPS nor TNF-α alone affected the expres-
sion of  naofen in KCs or hepatocytes, whereas KC-CM 
significantly increased naofen expression in hepatocytes 
(Figure 4), indicating that the increase in naofen in the 
liver caused by LPS may be closely associated with KCs. 
As previously reported, the liver injury caused by LPS 
was dependent on KC activation, as demonstrated both 
in vitro and in vivo[8,9,24]. Intercellular signal transduction 
between KCs and hepatocytes has now been proposed, 
possibly mediated by cytokines such as TNF-α and IL, 
and inflammatory mediators such as eicosanoids, NO, 
and/or reactive oxygen species[6-9,25]. In particular, TNF-α 
has been shown to be an important mediator of  LPS-
induced apoptosis of  hepatocytes[10,23,24]. The present 
study showed that LPS markedly enhanced TNF-α pro-
duction in KCs in a time-dependent manner (Figure 4). 
It was noted that the time course of  TNF-α expression 
in LPS-activated KCs accorded with that in LPS-treated 
rat livers (Figures 1 and 4), suggesting that LPS-induced 
TNF-α production in the liver may be ascribed to KCs, 
but not to hepatocytes. Furthermore, the increased 
naofen expression in LPS-treated rats, as well as the ef-
fects of  KC-CM on naofen expression in hepatocytes, 
was clearly blocked by pretreatment with anti-TNF-α 
antibody (Figures 1 and 4), suggesting that TNF-α may 
play an important role in naofen expression. Regarding 
the little effect of  TNF-α alone on naofen expression in 
hepatocytes, other unknown mediators may be associated 
with TNF-α, such as IL-1β, IL-6, IL-8, platelet-activating 
factor or NO[6-8,26]. Inhibitors of  nuclear factor (NF)-κB 
may also be involved because blocking TNF-α-induced 
NF-κB activation in primary hepatocytes[27] or the liver in 
vivo[28] converts the hepatocellular TNF-α response from 
proliferation to apoptosis. In order to identify the nature 
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Figure 3  Effects of exposure period of Kupffer cells to lipopolysaccharide 
on tumor necrosis factor-α production. Primary Kupffer cells (KCs) were 
separated from rat livers using collagenase perfusion. After 24 h of incubation, 
KCs were incubated with lipopolysaccharide (LPS) (100 ng/mL). A: Tumor ne-
crosis factor (TNF)-α mRNA was quantified using qPCR (n = 6); B: Immunob-
lotting assay for TNF-α. KC lysates were analyzed with TNF-α antibody (n = 6). 
GAPDH was used as an internal control. aP < 0.05, bP < 0.01 and dP < 0.001 vs 
controls (without LPS treatment).
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of  these unknown mediators, the effects on naofen ex-
pression of  combination of  TNF-α with IL-1, IL-6 and 
interferon-γ (10 ng/mL each) or inhibitors of  NF-κB, 
such as BAY 11-7082 and DHMEQ, have been exam-
ined. However, combination with TNF-α or metabolites 
of  TNF-α treated with trypsin failed to enhance naofen 
expression in primary hepatocytes (data not shown). It 
has been reported that the trend from TNF-α produc-
tion to subsequent hepatocyte apoptosis may contrib-
ute to the development of  several inflammatory liver 
diseases, including viral hepatitis, alcoholic liver disease, 
Wilson’s disease, drug-induced liver failure, and ischemia/
reperfusion liver damage[7-10,24]. Identification of  the rela-
tionship between TNF-α and naofen in liver injury may 
contribute to understanding the pathophysiological roles 

of  apoptosis in liver diseases. 
As previously reported, naofen is overexpressed in 

hepatocytes and markedly downregulates the expression 
of  Bcl-2 and Bcl-xL, which is accompanied by the release 
of  cytochrome c from mitochondria, resulting in cas-
pase-3 activation[19]. Bcl-2 and Bcl-xL have critical roles in 
mitochondrial apoptotic signaling, through the controlled 
release of  cytochrome c in hepatocytes[8,15]. This suggests 
that naofen is an upstream signal of  Bcl-2 and Bcl-xL, 
consequently inducing the mitochondrial apoptotic path-
way. Translocation of  cytochrome c from mitochondria 
to cytosol has already been reported by many investiga-
tors, which forms a complex of  Apaf-1 and procas-
pase-9, leading to the activation of  caspase-9, followed by 
activation of  downstream caspase-3 and development of  
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Figure 4  Effect of Kupffer cell-conditioned medium on naofen mRNA expression and caspase-3 activation. Primary Kupffer cell (KCs) and hepatocytes were 
separated as described above, and KC-CM was obtained by incubating KCs with LPS (100 ng/mL) for 6 h. Anti-TNF-α antibody (500 ng/mL) was added to KC-CM 
treated with LPS for 6 h and incubated at 37 ℃ for 1 h (anti-TNF-α + 6 h KC-CM). Hepatocytes were incubated with LPS (100 ng/mL), TNF-α (10 ng/mL), IgG (500 
ng/mL), 6 h KC-CM and anti-TNF-α + 6 h KC-CM for 12 h, respectively. A: Naofen mRNA in hepatocytes was measured with qPCR and GAPDH was used as an inter-
nal control (n = 6); B: Immunoblotting assay for naofen. Hepatocyte lysates were analyzed with naofen antibody (n = 6); C: Caspase-3 activation was also measured 
(n = 6). bP < 0.01 vs controls; cP < 0.05 and dP < 0.01 vs 6 h KC-CM. TNF-α: Tumor necrosis factor-α; LPS: Lipopolysaccharide; KC-CM: Kupffer cell-conditioned 
medium.
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hepatocyte apoptosis[13-15]. Likewise, previous studies have 
demonstrated that LPS-activated KCs also stimulate the 
apoptosis of  hepatic stellate cells by activating caspases-9, 
-3 and -8[26,29]. Most importantly, naofen siRNA reverses 
KC-CM-induced responses, resulting in prevention of  
the decrease in Bcl-2 and Bcl-xL expression and increase 
in capase-3 activity[19]. Overall, naofen may act on the 
mitochondrial pathway in the KC-CM-induced apoptosis 
of  hepatocytes. Therefore, it is possible that naofen is an 
intracellular mediator involved in TNF-α-mediated apop-
tosis of  hepatocytes, and may be relevant to the investi-
gation on LPS-induced hepatic injury. 

In conclusion, naofen may be involved in part in 
LPS-induced hepatocyte apoptosis, which is mediated by 
mediators including TNF-α released from KCs. Naofen 
elicits inhibition of  the expression of  Bcl-2 and Bcl-xL, 
releasing cytochrome c from mitochondria, and activat-
ing caspase-3, finally leading to apoptosis of  hepato-
cytes. Although the precise molecular mechanisms of  
LPS-mediated hepatocyte apoptosis are still incompletely 
defined, LPS-induced apoptotic mechanisms in rela-
tion to naofen may be relevant to understanding clinical 
endotoxin or septic shock, and offer a new approach to 
therapeutic applications.
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