
Genome-Wide Association Study for Circulating Tissue
Plasminogen Activator (tPA) Levels and Functional Follow-up
Implicates Endothelial STXBP5 and STX2

A full list of authors and affiliations appears at the end of the article.

Abstract

Objective—Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of

plasminogen to plasmin, the major enzyme responsible for endogenous fibrinolysis. In some

populations, elevated plasma levels of tPA have been associated with myocardial infarction and

other cardiovascular diseases (CVD). We conducted a meta-analysis of genome-wide association

studies (GWAS) to identify novel correlates of circulating levels of tPA.

Approach and Results—Fourteen cohort studies with tPA measures (N=26,929) contributed to

the meta-analysis. Three loci were significantly associated with circulating tPA levels (P

<5.0×10−8). The first locus is on 6q24.3, with the lead SNP (rs9399599, P=2.9×10−14) within

STXBP5. The second locus is on 8p11.21. The lead SNP (rs3136739, P=1.3×10−9) is intronic to

POLB and less than 200kb away from the tPA encoding gene PLAT. We identified a non-

synonymous SNP (rs2020921) in modest LD with rs3136739 (r2 = 0.50) within exon 5 of PLAT

(P=2.0×10−8). The third locus is on 12q24.33, with the lead SNP (rs7301826, P=1.0×10−9) within

intron 7 of STX2. We further found evidence for association of lead SNPs in STXBP5 and STX2

with expression levels of the respective transcripts. In in vitro cell studies, silencing STXBP5

decreased release of tPA from vascular endothelial cells, while silencing of STX2 increased tPA

release. Through an in-silico lookup, we found no associations of the three lead SNPs with

coronary artery disease or stroke.

Conclusions—We identified three loci associated with circulating tPA levels, the PLAT region,

STXBP5 and STX2. Our functional studies implicate a novel role for STXBP5 and STX2 in

regulating tPA release.
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INTRODUCTION

Tissue plasminogen activator (tPA) is a glycoprotein produced mainly by vascular

endothelial cells that catalyzes the conversion of plasminogen to plasmin, the major enzyme

responsible for endogenous fibrinolysis and an important regulatory element in thrombosis.

Circulating tPA is implicated in the progression and incidence of clinically apparent

atherothrombotic cardiovascular diseases (CVD), such as myocardial infarction and stroke,

and is associated, in some studies, with advanced atherosclerosis.1–11 Recombinant tPA is

approved for use in patients with acute myocardial infarction and is the only drug approved

by the U.S. Food and Drug Administration for treatment of acute ischemic stroke.5, 7

The estimated heritability for circulating tPA level is as high as 0.67, based on family and

twin studies, providing substantial evidence of genetic influences on circulating levels.12–14

Little is known about the genetic predictors of circulating tPA. Several genetic

polymorphisms within the PLAT gene locus have been identified, including the well-studied

311bp Alu-repeat insertion/deletion polymorphism (rs4646972).15 In some cohorts, this

Alu-repeat polymorphism has been associated with levels of circulating tPA and with CVD

risk, although this finding was not seen in all cohorts studied.4, 16, 17 Circulating levels of

tPA are also associated with common polymorphisms in genes contained in the renin-

angiotensin and bradykinin systems.18, 19

To date, there has not been a genome-wide association study (GWAS) on this circulating

biomarker. We conducted a meta-analysis of 14 studies that had both tPA measurement and

genome-wide genotype data in order to identify common variants that are associated with

the variation in circulating levels of tPA antigen. Our study included a total of 26,929

participants who were enrolled in 14 cohorts of European ancestry with genome-wide

markers. For replication, we evaluated the lead SNPs in an independent sample. We sought

evidence for biological function for the lead SNPs within each locus, using human gene

expression databases and RNA silencing studies in endothelial cells. We further sought to

identify evidence for a role, if any, of the associated genetic variants with thrombosis-related

clinical end points including apparent coronary artery disease (CAD) and stroke.

MATERIALS AND METHODS

Detailed Materials and Methods are available in the online-only Supplement.

RESULTS

Cohort Characteristics

The characteristics of a total of 26,929 participants in the 14 discovery cohorts are

summarized in Supplemental Table I. The average age ranged from 45.2 years to 76.7 years.

The percentage of males ranged from 38.5% to 75.3%, except for the largely female Twins

UK, in which males comprised 4.8%. The BMI was similar across the cohorts, with a range

of 26.1 kg/m2 to 27.9 kg/m2. The mean tPA level ranged from 5.06 ng/ml to 11.01 ng/ml.
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Results of Primary GWAS

The P value results of our discovery meta-analysis for the 2,455,857 meta-analyzed SNPs

are presented in Figure 1. A total of three loci reached genome-wide significance threshold

of 5×10−8 (Table 1). For the first locus, we identified multiple SNPs (n=61) of genome-wide

significance in the 6q24.3 region that harbors the STXBP5 gene.20 The SNP rs9399599

(within intron 26 of STXBP5) has the smallest P value of 2.9×10−14. Allele T (frequency

=0.54) is the risk allele, with an effect size (se) of 0.032 (0.004). As the trait was natural-

logarithm transformed, this translates to an increase of 1.033 ng/ml of tPA per copy of the

risk allele. The regional plot demonstrates that all significant SNPs in the region are in high

LD with the lead SNP (Supplemental Figure I, Plot A). The second locus includes 7 SNPs

reaching the genome-wide significance threshold; six of these SNPs lie within POLB while

another one lies within PLAT, the gene that encodes tPA. The lead SNP (rs3136739,

P=1.3×10−9) resides within intron 3 of POLB. The SNP within PLAT is a non-synonymous

SNP (rs2020921, P = 2.0×10−8) within exon 5 of PLAT with the minor allele causing a

tryptophan to be substituted for an arginine. Based on the 1000 Genomes project European

data, these two SNPs are in LD (r2 = 0.5). After re-analysis of Chromosome 8 conditioning

on rs3136739, rs2020921 had a P-value of 2.1×10−4 and was the only SNP with a P-value <

1×10−3 within the 1.6 Mb region containing these two SNPs, suggesting there are two

separate signals.

The third genome-wide locus includes a total of 33 SNPs lying within STX2 in the 12q24.33

region. The lead SNP (rs7301826, P=1.0×10−9) resides within intron 7 of STX2. Regional

plots for these three loci are shown in Supplemental Figure I. Summary statistics of the three

lead SNPs and the cis-acting SNP within PLAT in each individual GWAS are shown in

Supplemental Table III. For all four SNPs in these three loci, there was no evidence for

heterogeneity across studies (P>0.05) (Table 1). The individual and combined effect of the

three top SNPs in explaining phenotypic variance was assessed in the largest contributing

study (B58C). The proportion of variance in log-transformed tPA explained by the top three

loci combined was 0.75%. This comprised 0.29% variance explained by rs9399599 alone,

0.16% variance explained by rs7301826 alone, and 0.28% variance explained by rs3136739

alone.

To test for replication, genotyping was conducted in 4,487 participants from PREVEND. In

the PREVEND replication cohort, none of the 3 SNPs was associated with tPA (P<0.05).

The effect sizes were smaller: −0.001, 0.017, 0.002 compared with 0.032, 0.063, 0.027,

respectively, for the 3 lead SNPs within STXBP5, POLB-PLAT, and STX2. After combined

meta-analysis of these results with the data from the fourteen discovery cohorts, the

combined meta-analysis P values for association for the four genome-wide associated SNPs

(rs9399599, rs2020921, rs3136739, and rs7301826) each remained genome-wide significant

(P < 5.0× ×10−8).

Association with Gene Expression

All three lead SNPs and their proxies were searched against three large eQTL sources as

described in the online detailed materials and methods. eQTL results provided expression

association evidence for STXBP5 and STX2, but not for the chromosome 8 locus (Table 2).
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SNP rs7739314 (P < 3.1×10−12), located ~500 bp 3’ of STXBP5, was modestly associated

with STXBP5 expression in lymphocytes (P < 1.6×10−3), CD4+ lymphocytes (P <

1.7×10−4), and liver (P < 0.03), though this was not the strongest eSNP for STXBP5 in these

respective tissues. Three perfect proxy SNPs (r2=1.0) for the lead STX2 SNP (rs7301826)

were strongly associated with expression of STX2 in a wide range of blood cells and other

tissues. In every case, the strongest eSNP for STX2 was the same or a perfect proxy for the

strongest SNP associated with circulating tPA level, indicating a high degree of concordance

between the eQTL and association signals. tPA SNPs at the STX2 and STXBP5 loci were not

significantly associated with expression of any other genes at those loci.

Results of Gene Silencing for STXBP5 and STX2 in Human Endothelial Cells

The proteins encoded by STX2 and STXBP5 are expressed in three types of vascular

endothelial cells (HAEC, HUVEC, and HDMVEC) (Figure 2B–D). Silencing of STX2 and

STXBP5 decreased expression of STX2 and STXBP5 proteins, respectively, in each of the

three endothelial cell types (Figure 2B–D). Silencing STXBP5 significantly decreased

release of tPA, while silencing STX2 significantly increased tPA release, in both resting and

histamine-stimulated vascular endothelial cells (Figure 2A). SNP specific effects were not

evaluated in the current experiments.

Association with CAD and Stroke

In a recently updated meta-analysis (based on 13 observational cohort studies and 5494

cases of CAD), a 1SD increase in tPA-antigen, adjusted for conventional cardiovascular risk

factors, was associated with an odds ratio of incident CAD of 1.13 (95%CI 1.06, 1.21).11

Since the genetic influences that we detected on tPA levels together accounted for less than

1% of phenotypic variance, and individual SNPs were associated with differences in

untransformed tPA levels of less than 0.2SD, comparing homozygotes to heterozygotes, it is

inherently unlikely that any of these variants would impact greatly on CAD risk, and an in

silico look-up in previously published GWAS meta-analyses confirms this (Supplemental

Table IV). The upper confidence limits in this table exclude clinically or epidemiologically

important associations of the three top SNPs with cardiovascular disease, defined as either

CAD or stroke.

Findings for Previously Implicated Genes

We examined for evidence of association of SNPs within a 20kb region of the cis-locus,

PLAT, as well as SNPs within ACE, AGT, AGTR1, BDKRB2, and SERPINE1.21, 22 For a

total of 204 SNPs, 32 SNPs within ACE, AGT, BGKRB2, PLAT, SERPINE1 have a P value

<0.05 (Supplemental Table V). However, only three SNPs in PLAT (lead rs2020921,

P=5.1×10−8) and five SNPs in SERPINE1 (lead SNP rs2227667, P=2.2×10−5) remained

significant after adjusting for the multiple testing (multiple testing threshold P<2.5×10−4).

Given the correlation of SNPs within these two loci due to residual LD, the associations for

each of the eight SNPs within these two loci are robust, extending evidence from the prior

literature for the existence of a genetic association with plasma levels of tPA.
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DISCUSSION

In a large GWAS study of over 27,000 research participants of European ancestry, we

discovered a total of three loci that have not been previously reported to be associated with

circulating tPA level at a genome-wide significant threshold. This is the first GWAS study

that identifies a non-synonymous SNP within PLAT that reaches genome-wide significant

threshold. eQTL examination provided strong functional evidence for associated SNPs in

STXBP5 and STX2, and further studies in human endothelial cells directly implicate these

two genes in expression, production and release of tPA protein.

Prior candidate gene studies have not consistently noted the presence of associations

between SNPs in the PLAT gene and circulating levels of tPA, and several studies have

found no such association.17, 23 The current study substantially extends and strengthens the

prior hypothesis of a cis-association between SNPs in PLAT and circulating levels of tPA by

providing evidence for a strong and genome-wide significant association of SNPs within the

PLAT locus. We identify an association with a non-synonymous SNP rs2020921 within

PLAT, suggesting a functional variant, and separately with SNPs in POLB, raising the

hypothesis of an independent genetic determination of tPA in this locus. These findings

suggest that the cis-associations are complex and may have been missed because previous

mapping studies focused on mapping a narrow genomic region and were conducted in

relatively smaller samples. There is little known about the functional consequences of the

non-synonymous PLAT mutation and prediction software provides conflicting predictions of

its effect (PolyPhen-2: neutral, SIFT: deleterious) therefore future functional experiments

are warranted.

The associations of variants within STXBP5 and STX2 with circulating levels of tPA are

novel findings. Syntaxins are members of a family of membrane integrated SNARE (Soluble

NSF Attachment Protein Receptor) proteins that participate in exocytosis.24 Syntaxin 4

plays a role in exocytosis of Weibel-Palade bodies in endothelial cells.25 Our functional

studies reveal that STXBP5 and STX2 play a role in endothelial release of tPA. Our cell

culture studies strongly support a role for these two genes in regulating endothelial cell tPA

expression, production and release. While these studies provide novel evidence derived from

an unbiased GWAS for the role of STXBP5 and STX2 in regulation of tPA at the endothelial

cell level, further studies are clearly warranted to examine how manipulation of the specific

SNPs rather than silencing the whole gene affects the dynamics of circulating tPA level at

the cellular and model organism level.

SNPs in the STXBP5 and STX2 loci were also reported to be associated with circulating

levels of vWF in a recent study by the CHARGE Consortium.26 Based on the 1000

Genomes data, there is moderate to strong correlation of the lead SNP associated with

vWF26 and the lead SNP we report to be associated with tPA for STXBP5 (rs9390459,

r2=0.97, D'=1.0) and for STX2 (rs79789987, r2=0.63, D'=1.0). Although tPA and vWF share

associations with common variants at the STXBP5 and STX2 loci, these relatively weak

genetic associations are not a major explanation for the phenotypic correlation between

these haemostatic risk factors. Both plasma components were measured in the British 1958

birth cohort (B58C), and a highly significant (p<10−22) correlation (r=0.13) remained
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between log-transformed tPA and log-transformed vWF levels, after adjustment for the top

SNPs at STXBP5 (rs9399599) and STX2 (rs7301826). The association of identical syntaxin-

coding genes with various circulating hemostatic factor levels may provide an opportunity

for further investigations on these newly identified mechanisms by which these circulating

hemostatic factors are implicated in thrombotic cardiovascular and metabolic diseases.

Our study was motivated in part in order to better understand the mechanism by which

endogenous tPA may be implicated in clinically apparent cardiovascular disease outcomes.

Our lead SNP rs9399599 in the STXBP5 locus is associated with circulating levels of vWF26

and with risk of venous thrombosis.27 While elevated plasma level of vWF is a predictor of

venous thrombosis, the available evidence suggests that the level of tPA is not associated

with venous thrombosis.28 Another non-synonymous SNP rs1039084 within STXBP5 has a

less significant association with vWF (P =1.0×10−9) than the lead SNP in our study, but

rs1039084 has a stronger association than rs9399599 with vWF in a subgroup of CHD

patients.29 For the STX2 locus, the SNP rs7978987 has been previously reported to be

associated with vWF levels26 and with an increased risk of arterial thrombosis.29 The P

value for association of this SNP with tPA is 4.5×10−9, similar to that of the lead SNP

rs7301826 (P = 4.1×10−9). Two other SNPs within STX2 (rs1236 and rs11061158) were also

previously reported to be associated with CHD.29 The former is genome-wide significant

and the latter is marginally significant in our study (P = 1.9×10−9 and 0.048 respectively).

None of the three lead SNPs in PLAT/POLB, STXBP5 or STX2 was found to be associated

with CAD or stroke based on an in-silico examination of results from a large sample for CD

and a moderate sized sample for stroke. However, the key function of tPA in the coagulation

system and the importance of coagulation to the cardiovascular system have been well

established, and the novel genes identified in our study merit further study of their potential

role as intermediaries in the pathophysiology of atherothrombotic CVD.

The replication of previously reported findings for associations between genetic variation in

SERPINE1 and PLAT with circulating tPA levels was able to act as a “positive control” for

this study and extends the evidence for the existence of a genetic association in these genes

with plasma levels of tPA.

We note several potential study limitations. First, samples in our study are of European

ancestry; therefore, our findings may not be generalizable to populations of different

ethnicity. Second, the replication sample size is quite small, with an 80% power to detect an

association at the 5% significance level. Although not particularly weak, there was still

inadequate power to provide strong evidence for replication of small effects detected in the

discovery study. We therefore included biological validation that includes in vitro cell

studies. Third, due to the low frequency of the lead SNPs within the POLB-PLAT locus, we

are not able to use a traditional LD mapping approach to refine the association signals. The

lead SNP within POLB (rs3136739) is in perfect LD (r2=1) with the non-synonymous SNP

(rs2020921) within exon 5 of PLAT, based on the HapMap2 genotype data. However,

rs3136739 has a missing rate of 10% in the HapMap2 data. Even with the most recent

available 1000 genomes genotype data, however, it remains difficult to fully characterize the

haplotype structure for SNPs with low minor allele frequency (~5%) based on pair-wise LD.

Forth, although it is impossible to rule out that the association of the non-synonymous
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mutation with circulating tPA levels is simply a confounder introduced by altered antibody

binding during the tPA measurement procedure, it is unlikely after investigating all

information available to us at this time. Finally, there may be distinct roles for genetic

variation in regulating circulating levels in healthy individuals compared with elevated

levels in individuals in whom thrombolytic activity is induced. While there is no evidence of

heterogeneity of effect by cohort, our results cannot exclude the possibility of meaningful

differences in effects of genetic variation on circulating levels in the overall population

versus subgroups of individuals with increased thrombolytic activity.

In conclusion, by analyzing a total of 26,929 participants from 14 discovery cohorts across

the United States and Europe, we provide genome-wide evidence of association of SNPs in

the STXBP5, PLAT and STX2 loci with circulating levels of tPA antigen. While our analyses

do not provide evidence for association of these SNPs with clinically apparent CAD or

stroke, we do provide functional evidence in endothelial cells for a novel regulatory role of

STXBP5 and STX2 on tPA availability. The strong eQTL result for STX2 in a wide range of

tissues supports the hypothesis that associated alleles may modulate tPA levels via a

functional effect on gene expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

CAD Coronary artery disease

CVD Cardiovascular disease

eQTL Expression quantitative trait locus

eSNP Expression single nucleotide polymorphism

GWAS Genome-wide association study

LD Linkage disequilibrium

MI Myocardial infarction

SNP Single nucleotide polymorphism

tPA Tissue plasminogen activator

vWF Von Willebrand factor
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SIGNIFICANCE

Tissue plasminogen activator (tPA) catalyzes the conversion of plasminogen to plasmin,

the major enzyme responsible for endogenous fibrinolysis. In some but not all studies,

elevated plasma levels of tPA have been associated with coronary artery disease (CAD)

and other cardiovascular diseases. Through a genome-wide association study approach

we provide evidence of association of genetic variants in the STXBP5, PLAT and STX2

loci with circulating levels of tPA antigen. While our analyses do not provide supportive

evidence for association of these SNPs with clinical CAD or stroke, we do provide

additional functional evidence for a novel regulatory role of STXBP5 and STX2 on tPA

availability in endothelial cells. Results from gene expression studies in various tissues

support the hypothesis that associated alleles may modulate circulating tPA levels via a

functional effect on gene expression. Our findings provide new insights into tPA biology

and avenues for future research for the prevention and treatment of thrombosis.
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Figure 1. Manhattan plot showing the association P-values for the meta-analyzed SNPs in the
discovery cohorts
X-axis organized by chromosome and base pair positions. Y-axis shows the -log10 of the

association P-values. The horizontal dotted line marks the threshold for genome-wide

significance (P =5.0×10−8).
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Figure 2. Effect of gene silencing on tPA release
Endothelial cells were transfected with oligonucleotides to silence STXBP5 or STX2, and

then treated with histamine to induce tPA release. Levels of tPA in the media were measured

by ELISA. (A) Silencing STXBP5 decreases tPA release, whereas silencing STX2 increases

tPA release. (B–D) Silencing of STX2 or STXBP5 decreases target protein expression in

human umbilical vein endothelial cells (HUVEC) (B), human aortic endothelial cells

(HAEC) (C), and human dermal microvascular endothelial cells (HDMVEC) (D). Each

panel includes a 3 by 3 matrix of western blot images for the 3 proteins (STX2, STXBP5,

beta-actin) after 3 gene silencing approaches (siControl for control scrambled

oligonucleotide, siSTX2 for siRNA directed against STX2, and siSTXBP5 for siRNA

directed against STXBP5).

Huang et al. Page 17

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Huang et al. Page 18

T
ab

le
 1

A
ss

oc
ia

tio
n 

re
su

lts
 f

or
 f

ou
r 

SN
Ps

 w
ith

in
 th

e 
th

re
e 

si
gn

if
ic

an
t l

oc
i w

ith
 c

ir
cu

la
tin

g 
le

ve
ls

 o
f 

tP
A

 a
nt

ig
en

SN
P

C
hr

P
os

it
io

n
G

en
e

E
ff

ec
t

A
lle

le
(f

re
q)

β,
 s

e
(l

n-
tr

an
s)

G
M

 r
at

io
*

(9
5%

C
I)

P
-v

al
ue

P
H

et
**

rs
93

99
59

9 
(l

ea
d 

SN
P)

6
14

77
44

99
2

ST
X

B
P

5 
in

tr
on

 2
6

T
 -

>
 A

 (
0.

54
)

0.
03

2,
 0

.0
04

1.
03

2 
(1

.0
24

–1
.0

41
)

2.
9×

10
−

14
0.

61

rs
20

20
92

1 
(n

sS
N

P)
8

42
16

41
22

P
L

A
T

 e
xo

n 
5

G
 -

>
 A

 (
0.

95
)

0.
06

7,
 0

.0
12

1.
06

9(
1.

04
5–

1.
09

5)
2.

0×
10

-8
0.

15

rs
31

36
73

9 
(l

ea
d 

SN
P)

8
42

32
42

37
P

O
L

B
 in

tr
on

 3
A

 -
>

 G
 (

0.
95

)
0.

06
3,

 0
.0

10
1.

06
5 

(1
.0

43
–1

.0
87

)
1.

3×
10

-9
0.

33

rs
73

01
82

6 
(l

ea
d 

SN
P)

12
12

98
57

05
4

ST
X

2 
in

tr
on

 7
C

 -
>

 T
 (

0.
43

)
0.

02
7,

 0
.0

04
1.

02
7 

(1
.0

18
–1

.0
36

)
1.

0×
10

-9
0.

49

* pe
r-

al
le

le
 p

ro
po

rt
io

na
te

 in
cr

ea
se

 in
 g

eo
m

et
ri

c 
m

ea
n 

tP
A

**
P

 v
al

ue
 f

or
 h

et
er

og
en

ei
ty

 te
st

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2015 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Huang et al. Page 19

T
ab

le
 2

eQ
T

L
 f

or
 tw

o 
lo

ci
 w

ith
 p

ro
xi

m
al

 g
en

e 
ex

pr
es

si
on

 in
 h

um
an

 c
el

ls
 a

nd
 ti

ss
ue

s.

In
de

x 
SN

P
P

ro
xy

 e
SN

P
† (

tP
A

 P
, r

2 )
eQ

T
L

 T
is

su
e

eQ
T

L
 P

St
ro

ng
es

t
eS

N
P

††
St

ro
ng

es
t 

eS
N

P
(e

Q
T

L
 P

, t
P

A
 P

, r
2†

)

rs
93

99
59

9 
in

 S
T

X
B

P
5

rs
77

39
31

4 
(3

.1
×

10
−

12
, 0

.9
7)

C
D

4+
 ly

m
ph

oc
yt

es
N

A
rs

69
46

25
1.

4×
10

−
4 ,

 0
.0

2,
 0

.1
7

L
ym

ph
oc

yt
es

1.
6×

10
−

3
rs

62
07

15
3.

5×
10

−
4 ,

 2
.4

×
10

−
8 ,

 0
.9

0

L
iv

er
0.

03
rs

17
65

02
8

7.
8×

10
−

6 ,
4.

4×
10

−
6 ,

0.
44

rs
73

01
82

6 
in

 S
T

X
2

rs
10

84
82

05
 (

1.
5×

10
−

6 ,
 1

.0
)

M
on

oc
yt

es
3.

8×
10

−
27

4
Sa

m
e 

as
 p

ro
xy

rs
10

77
38

19
 (

1.
4×

10
−

6  
,1

.0
)

L
ym

ph
oc

yt
es

7.
5×

10
−

92
Sa

m
e 

as
 p

ro
xy

M
on

oc
yt

es
1.

5×
10

−
80

rs
11

06
36

9
7.

1×
10

−
91

,1
.5

×
10

−
6 ,

1.
0

P
B

M
C

1.
4×

10
−

25

M
ac

ro
ph

ag
e

1.
8×

10
−

24
rs

11
06

36
9

2.
3×

10
−

28
, 1

.5
×

10
−

6 ,
1.

0

C
D

4+
 ly

m
ph

oc
yt

es
2.

9×
10

−
20

Sa
m

e 
as

 p
ro

xy

L
eu

ko
cy

te
s

2.
7×

10
−

10
Sa

m
e 

as
 p

ro
xy

L
iv

er
9.

0×
10

−
6

Sa
m

e 
as

 p
ro

xy

M
am

m
ar

y 
ar

te
ry

4.
9×

10
−

3
Sa

m
e 

as
 p

ro
xy

rs
20

01
48

3 
(1

.8
×

10
−

6 ,
 1

.0
)

L
iv

er
2.

7×
10

−
5

Sa
m

e 
as

 p
ro

xy

A
ll 

se
nt

in
el

 S
N

Ps
 a

nd
 th

ei
r 

pr
ox

ie
s 

w
er

e 
se

ar
ch

ed
 a

ga
in

st
 e

Q
T

L
 s

ou
rc

es
 a

s 
de

sc
ri

be
d 

in
 th

e 
on

lin
e 

de
ta

ile
d 

m
at

er
ia

ls
 a

nd
 m

et
ho

ds
.

† Pr
ox

y 
SN

P 
is

 th
e 

m
ea

su
re

d 
SN

P 
in

 h
ig

he
st

 L
D

 w
ith

 th
e 

in
de

x 
SN

PL
D

 m
ea

su
re

d 
in

 c
or

re
la

tio
n 

R
-s

qu
ar

e,
 b

as
ed

 o
n 

H
ap

M
ap

2 
C

E
U

 d
at

a.

††
St

ro
ng

es
t e

SN
P 

is
 th

e 
on

e 
w

ith
 th

e 
be

st
 e

Q
T

L
 P

-v
al

ue
, f

or
 th

e 
sa

m
e 

tis
su

e 
an

d 
tr

an
sc

ri
pt

 a
s 

fo
r 

th
e 

le
ad

 p
ro

xy
 e

SN
P.

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2015 May 01.


