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Introduction
Two-pore-domain potassium (K2P) channels are a novel fam-
ily of potassium channels with four transmembrane segments 
and two pore-forming domains located in tandem[1, 2].  These 
channels control neuronal excitability through their influence 
on resting membrane potential (RMP).  Thus, they are clas-
sified as background potassium channels or leak potassium 
channels[3, 4].  To date, 17 human K2P channel subunits have 
been identified according to their amino acid sequence identity 
and regulatory mechanisms.  They can be divided into six sub-
families: TWIK, THIK, TASK, TALK, TREK, and TRESK[5, 6].  

TREK-1 is one of the most important members of the K2P 
channel family and is expressed throughout the central ner-
vous system (CNS)[4, 7].  In addition to its unusual gating prop-
erties, such as background channel activity and sensitivity to 
membrane stretch, the TREK-1 channel can be modulated by 
many different intracellular and extracellular chemical agents.  

For example, TREK-1 is activated by increased temperature, 
membrane stretch and internal acidosis and is also sensitive 
to the presence of some polyunsaturated fatty acids [such 
as arachidonic acid (AA)] and gaseous general anesthetics 
(such as halothane and nitrous oxide)[8–11].  It has been recently 
reported that the TREK-1 channel is also modulated by neuro-
protective agents such as riluzole and plays an important role 
in neuroprotection[12, 13].  In our previous studies, we showed 
that the expression of TREK-1 mRNA and protein significantly 
increased after acute and chronic cerebral ischemia, suggesting 
that the TREK-1 channel may be closely linked to pathological 
conditions such as cerebral ischemia[14, 15].  
3-n-Butylphthalide (NBP) is a potent neuroprotectant that was 
approved by the State Food and Drug Administration (SFDA) 
of China at the end of 2002 as a new drug for the treatment of 
ischemic stroke[16].  Pre-clinical and clinical studies have dem-
onstrated that racemic NBP (dl-NBP) is a promising drug for 
the treatment of ischemic stroke.  This neuroprotectant influ-
ences several pathophysiological processes such as improv-
ing rat brain microcirculation, inhibiting platelet aggregation, 
preventing oxidative damage from ischemia and reducing 
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neuronal apoptosis[17–21].  However, the molecular mechanisms 
underlying the actions of dl-NBP remain unclear.  Recently, 
we have found that the optical isomer l-NBP is more potent in 
terms of neuronal protection against ischemic stroke than dl-
NBP[16].  This study aimed to compare the effect of dl-NBP and 
its optical isomers on the TREK-1 channel and to further eluci-
date the mechanism of the protective effects of l-NBP against 
ischemia.

Materials and methods
Materials 
l-NBP, dl-NBP, and d-NBP (purity >99%) (Figure 1A) were 
provided by the Department of Medical Synthetic Chemistry, 
Institute of Materia Medica.  HEPES, EGTA, Na2ATP, AA, 
penicillin G, and streptomycin sulfate were purchased from 
Sigma Chemical Co (St Louis, MO, USA); Dulbecco’s modified 
Eagle’s medium (DMEM), trypsin and G418 were purchased 
from GibcoBRL (Gaithersburg, MD, USA).  Other reagents 
were provided by Beijing Chemical Company (Beijing, China).  

Cell culture
A stable cell line of wild-type Chinese hamster ovary (Wt/
CHO) cells expressing rat TREK-1 channels was maintained in 
culture medium (DMEM) supplemented with 10% (v/v) heat-
inactivated fetal bovine serum, 100 µg/mL penicillin G and 
100 µg/mL streptomycin sulfate in a humidified incubator 
with an atmosphere of 95% air and 5% CO2 at 37 °C.  G418 was 
added into the culture medium to select for transfected cells.  
When the cells were 80% confluent, they were split and plated 
onto 35-mm culture dishes.  The cells were assayed 24 h later.

Electrophysiology and drug application
Membrane currents were recorded using a whole-cell voltage-
clamp configuration.  Recording glass pipettes had a resistance 
of 3–5 MΩ.  The external solution contained the following (in 
mmol/L): NaCl, 150; KCl, 5.4; MgCl2, 2; CaCl2, 1.2; glucose, 
15; and HEPES, 5 (titrated to pH 7.4 with NaOH).  The patch-
pipette solution contained the following (in mmol/L): KCl, 
140; MgCl2, 0.5; EGTA, 10; and HEPES, 10 (titrated to pH 
7.2 with KOH).  Currents were evoked in response to volt-
age ramps, and voltage steps were generated using an EPC-
10 patch-clamp amplifier (HEKA Electronics, Lambrecht, 
Germany), filtered at 2.9 kHz, digitized at 10 kHz and stored 
on a computer.  Data were analyzed using Pulse 8.6 software 
(HEKA Electronics, Lambrecht, Germany).  Before seal forma-
tion, the voltage offset between the patch electrode and the 
bath solution was adjusted to produce zero current.  After seal 
formation (≥1 GΩ) and membrane rupturing, the cells were 
allowed to stabilize for approximately 5 min.  The holding 
potential during experiments was set at -80 mV.  All electro-
physiological measurements were carried out at room tem-
perature (23–25 °C).

Data analysis and statistics
All data were analyzed using Pulsefit 8.6 (HEKA Electronics, 
Lambrecht, Germany) and MicroCal Origin software and are 

expressed as means±SEM.  For dose-response experiments, 
current amplitudes at +60 mV in the presence and absence 
of NBP were measured by evoking the currents with a ramp 
pulse protocol from -80 mV to +60 mV over 400 ms.  To obtain 
concentration-response curves, the percent inhibition of the 
current by NBP was quantified at various test concentrations 
according to the following equation: percent inhibition=100(1–
Idrug/Icontrol).  The current density of TREK-1 was calculated by 
dividing the current by the whole-cell capacitance (expressed 
in pA/pF).  Significant differences between groups were 
assessed by unpaired Student’s t-test and one-way analysis of 
variance (ANOVA).  The criterion for significance was P<0.05 
in all analyses.  n values indicate the number of experiments 
performed.

Results
Electrophysiological properties of TREK-1 channels
Under the current-clamp configuration, the RMPs of Wt/CHO 
and TREK-1/CHO cells were -17.6±4.0 mV (n=7) and -55.3±2.4 
mV (n=25), respectively (Figure 1B).  A large, depolarizing 
voltage step from -80 mV to +80 mV evoked a dramatic, out-
ward, non-inactivating current in TREK-1/CHO cells but not 
in Wt/CHO cells (Figure 1C).  We also found that 10 μmol/L 
AA increased TREK-1 current by 60.0%±3.6% (n=6) (Figure 
1Cc).  These results are consistent with previous reports 
regarding the properties of TREK-1 channels[22].  

Effect of NBP isomers on TREK-1 channel currents
To investigate whether dl-NBP isoforms modulate transfected 
TREK-1 channels, we exposed TREK-1/CHO cells to dl-NBP 
and its optical isomers after a 5-min control period and then 
washed out the drugs with the control solution.  TREK-1 
currents were evoked by a ramp protocol from a holding 
potential of -80 mV to +60 mV over 400 ms.  A typical control 
current is shown in Figure 2A, and a comparison of the inhibi-
tory effects of NBP isoforms at +60 mV is shown in Figure 2B 
(P<0.05).  We found that 10 μmol/L of l-NBP, dl-NBP, and 
d-NBP inhibited the current by 70.0%±2.0% (n=8), 50.9%±4.8% 
(n=9) and 55.8%±3.4% (n=9), respectively.  Current inhibition 
was not caused by rundown, which was less than 10% over a 
20-min period.  This result indicates that l-NBP is much more 
potent than dl- and d-NBP in the inhibition of TREK-1 cur-
rents.  Therefore, we focused on l-NBP alone for the remainder 
of the study.  The inhibitory effects of NBP isomers on TREK-1 
currents were partially reversed upon washout.

l-NBP inhibited TREK-1 channel currents in a dose-dependent 
manner
We elicited TREK-1 currents with depolarizing voltage steps 
from a holding potential of -80 mV (Figure 3A).  l-NBP-
mediated inhibition of TREK-1 currents was partially reversed 
upon washout.  This inhibition was concentration dependent 
over the range of 0.01 to 10 μmol/L.  The maximum inhibition 
of TREK-1 current by l-NBP (70.0%±2.0%, n=8) was observed 
at a concentration of 10 μmol/L (Figure 3B).  This dose-depen-
dent response was well fitted to the Hill equation, with an IC50 
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of 0.06±0.03 μmol/L and a Hill coefficient of 0.54±0.13.  Figure 
3C shows the current-voltage relationship (I–V) curve for the 
inhibition of TREK-1 channels by 0.3 μmol/L l-NBP.  The inhi-

bition was gradual and usually reached a peak 3–5 min after 
l-NBP exposure.  Whole-cell current density was normalized 
to control currents, and the voltage dependence of the block-

Figure 1.  Chemical structures of NBP and basic properties of the TREK-1 channel.  (A) Chemical structures of racemic dl-NBP and its optical isomers.  (B) 
The transfection of CHO cells with TREK-1 channels hyperpolarized the membrane potential, from -17.6±4.0 mV (Wt/CHO, n=7) to -55.3±2.4 mV (TREK-1/
CHO, n=25).  Values are expressed as the mean±SEM; eP<0.05 vs Wt/CHO cells.  (C) Electrophysiological verification of the presence of TREK-1 chan-
nels in transfected CHO cells.  a: Current elicited from Wt/CHO cells after being depolarized to +80 mV from a holding potential of -80 mV.  b: Current 
elicited from TREK-1/CHO cells.  c: Activation of TREK-1 currents by AA.

Figure 2.  Effect of NBP isomers on TREK-1 channel currents.  (A) Whole-cell ramp currents as a function of membrane potential before, during and after 
application of (a) 10 μmol/L l-NBP (n=8), (b) 10 μmol/L dl-NBP (n=9) and (c) 10 μmol/L d-NBP (n=9).  (d) Whole-cell ramp current recording protocol.  
The currents were evoked from a holding potential of -80 mV by ramping the membrane potential from -80 mV to +60 mV over 400 ms.  (B) Comparison 
of the inhibition rates of TREK-1 currents by NBP isoforms (l-NBP n=8, dl-NBP n=9 and d-NBP n=9) measured at +60 mV using TREK-1/CHO cells.  The 
currents were evoked from a holding potential of -80 mV, and the membrane was ramped from -80 mV to +60 mV over 400 ms.  Values are expressed 
as percentages of the control (means±SEM); eP<0.05 vs dl-NBP group.
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ade by 10 μmol/L l-NBP was calculated (Figure 3D).  The inhi-
bition did not change substantially between -80 mV and +80 
mV, indicating a lack of voltage dependence for the effect of 
l-NBP.  This effect was partially reversed upon washout.  

Effects of l-NBP on the membrane potential of TREK-1/CHO cells
Inhibition of TREK-1 channels has been reported to depolar-
ize the cell membrane[7, 12].  Therefore, we compared the effects 
of l-NBP on the RMPs of Wt/CHO and TREK-1/CHO cells in 
current-clamp mode.  The results show that 10 μmol/L l-NBP 
shifted the RMP from -55.3±2.4 mV to -42.9±2.1 mV (n=25, Fig-
ure 4, P<0.05) in TREK-1/CHO cells but not in Wt/CHO cells 
(n=7), confirming the role of this channel in the maintenance 
of the RMP.  

Discussion
Two-pore-domain potassium channels form a novel class of K+ 

channels identified in various types of neurons[23, 24].  They are 
open when membrane potentials are in the physiological range 
and are therefore likely to contribute to background or leak 
currents.  They are also crucial in shaping neuronal excitability 
by regulating the RMP.  The TREK-1 channel is an important 
member of the K2P family and is expressed throughout the 
CNS.  The TREK-1 channel is voltage independent and is not 
inactivated[25].

TREK-1 has been previously reported to play an impor-
tant role in neuroprotection against acid pathological 
conditions[4, 7, 12, 26].  In electrophysiological studies, some lipids 
substantially increase the probability of these K2P channels 
being open, thus hyperpolarizing the membrane potential and 
reducing neuronal excitability[12, 27–30].  This action on the part of 
lipids would be predicted to counteract the neuronal damage 
that arises from the increased membrane excitability that often 
accompanies CNS insults such as ischemia.  A link between 

Figure 3.  l-NBP inhibited TREK-1 channel currents in 
a concentration-dependent manner.  (A) The inhibition 
of TREK-1 currents by l-NBP.  Representative current 
evoked by 300-ms voltage pulses from -80 mV to +80 
mV in 40 mV increments.  (a) Currents in TREK-1/CHO 
cells.  (b) Inhibition of TREK-1 currents by 10 μmol/L 
l-NBP.  (c) The TREK-1 currents returned to near the 
control level after washout.  (B) Concentration-response 
curve for the inhibition of TREK-1 channels by l-NBP 
measured at +80 mV from the holding potential -80 
mV at the end of a 300-ms pulse.  Data are expressed 
as means±SEM from at least six cells.  The IC50 was 
calculated as 0.06±0.03 μmol/L.  (C) The I–V curve for 
the inhibition of TREK-1 channels by 0.3 μmol/L l-NBP 
was measured at +80 mV from the holding potential 
of -80 mV at the end of a 300-ms pulse.  Data are 
expressed as means±SEM.  (D) Voltage-independent 
inhibition of TREK-1 currents by l-NBP (10 μmol/L).  
Whole-cell current densities were normalized to control 
currents (lcontrol).  The normalized current density for 
l-NBP-treated cells did not change significantly.

Figure 4.  l-NBP depolarized the membrane potential of TREK-1/CHO cells 
but not Wt/CHO cells.  (A) Effects of 10 μmol/L l-NBP on the RMPs of Wt/
CHO cells and TREK-1/CHO cells.  Under a current clamp, the RMPs of the 
two cell lines were measured similarly every 20 s for 30 min.  The RMPs 
for control cells and cells treated with 10 μmol/L l-NBP were monitored at 
10 and 20 min, respectively.  (B) Summary the RMP changes in Wt/CHO 
and TREK-1/CHO cells before and after exposure to 10 μmol/L l-NBP.  Bar 
a shows the control RMPs of Wt/CHO cells and TREK-1/CHO cells.  The 
effects of 10 μmol/L l-NBP on the RMP of the two cell lines are shown in 
bar b.  The results are presented in pA/pF as means±SEM (Wt/CHO, n=7; 
TREK-1/CHO, n=25); eP<0.05 vs control.
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TREK-1 and neuroprotection, although a highly attractive 
hypothesis, has not been unequivocally demonstrated, mainly 
due to the lack of selective K2P antagonists[13, 31].

In this study, we demonstrated that NBP, a neuroprotective 
agent, potently inhibited the TREK-1 channel expressed in 
CHO cells in a concentration-dependent manner.  This study 
is the first description of the inhibition of TREK-1 by NBP, and 
this property may underlie its beneficial neuroprotective activ-
ity[31].  Moreover, the inhibition of TREK-1 currents by l-NBP 
was more significant than that by d- and dl-NBP.  Therefore, 
the optical activity of NBP may have a close relationship with 
its biological activities.

Our data stand somewhat in contrast to the neuroprotec-
tion reported for TREK-1 facilitators, such as unsaturated 
fatty acids, riluzole and volatile anesthetics.  Thus, although 
TREK-1 potentiation may be neuroprotective, our data also 
suggest that the inhibition of these channels may yield signifi-
cant cell protection, similar to the effects of the neuroprotec-
tive agent sipatrigine on TREK-1 channels[31].  

It is well known that K2P channels can modulate the RMP 
and that their activity may regulate cell excitability.  K2P 
antagonism would produce depolarization and increased 
membrane excitability, which may induce or enhance neu-
ronal damage.  However, recent studies have shown that the 
regulation of K2P channels may be complex under pathologi-
cal conditions[12, 32].  As reported by Meadows et al[31], TREK-1 
antagonism produced greater changes in the excitability of 
inhibitory neurons than their excitatory counterparts.  An 
increase in inhibitory tone could represent a neuroprotective 
mechanism.  Furthermore, some immunohistochemical studies 
indicate that TREK-1 is predominantly expressed in GABAer-
gic interneurons of the hippocampus, isocortex, thalamus and 
cerebellum[7, 28, 33, 34].  

Decreasing glutamate release is a widely accepted neuro-
protective strategy and is also a previously well-demonstrated 
activity of NBP[18, 31].  Thus, one potential mechanism of K2P 
inhibition-related neuroprotection would occur through an 
increase in glutamate uptake by astrocytes.  It has been dem-
onstrated that TREK-1 is expressed in astrocytes, and the acti-
vators of TREK-1, including arachidonic acid and chloroform, 
significantly attenuate glutamate uptake by astrocytes[35–37].  
Therefore, l-NBP-mediated inhibition of TREK-1 channels 
may help to maintain or increase the function of glutamate 
uptake by astrocytes during brain ischemia.  Furthermore, the 
TREK-1 channel is known to be an O2-sensitive K+ channel, 
and acute hypoxia can occlude its activation by AA and other 
activators[38, 39].  This finding suggests that TREK-1 may not 
be activated during systemic hypoxia (as occurs during cere-
bral ischemia).  Therefore, it is difficult to explain the role of 
TREK-1 in neuroprotection.  One possibility is that this prop-
erty may depend on the expression pattern of TREK-1[31, 38, 40, 41].  
Further investigation into the role of TREK-1 in neuronal dam-
age/protection is needed. 

In summary, this study demonstrated that NBP (and espe-
cially l-NBP), a novel neuroprotective agent, potently inhibits 
TREK-1 channels.  The inhibition of TREK-1 channels results 

in the depolarization of the cell membrane.  We suggest that 
the effects of NBP on TREK-1 channels are closely related to its 
neuroprotective role.  TREK-1 channels may represent a target 
for NBP in treatment of cerebral ischemia and neurodegenera-
tive diseases.  However, the mechanism of protection of neu-
rons via TREK-1 inhibition by NBP requires further study.
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