
Acta Pharmacologica Sinica  (2011) 32: 805–816 
© 2011 CPS and SIMM    All rights reserved 1671-4083/11  $32.00
www.nature.com/aps

npg

Introduction
Polycystic kidney disease (PKD), an inherited human renal 
disease, is characterized by massive enlargement of fluid-
filled renal tubular and/or collecting duct cysts[1].  Progres-
sively enlarging cysts compromise normal renal parenchyma, 
often leading to renal failure.  The occurrence of autosomal 
dominant polycystic kidney disease (ADPKD) is estimated to 
be between 1 in 1000 and 1 in 400 individuals by a study in 
Olmsted Country, MN[2].  ADPKD is caused by mutations in 
one of two genes (Pkd1 and Pkd2) expressing the interacting 
polycystic proteins polycystin-1 (PC1) and polycystin-2 (PC2) 
in renal tubular epithelia[3, 4].  Mutation of Pkd1 accounts for 
approximately 85% cases in clinically identified patients[5].  
PC1 is a membrane receptor capable of binding and interact-
ing with many proteins, including carbohydrates and lipids, 
and eliciting intracellular responses through phosphorylation 
pathways[6, 7].  PC2 is thought to act as a calcium permeable 
channel[8, 9].  PC1 and PC2 form a complex that localizes to pri-
mary cilia[10, 11].  The polycystin complex has a role in the regu-
lation of the proliferation, differentiation and morphogenesis 
of renal tubular cells through interactions with protein com-
plexes linked to the actin cytoskeleton, intracellular signaling 
cascades, and the regulation of gene transcription[12, 13] (Figure 
1).  In ADPKD, the thousands of large, spherical cysts of vari-
ous sizes throughout the cortex and medulla are derived from 

the segments of the nephron.  Autosomal recessive polycystic 
kidney disease (ARPKD) results primarily from the mutations 
in a single gene, Pkhd1[14].  Its frequency is estimated to be 
one per 20000 individuals.  The PKHD1 protein, fibrocystin, 
has been found to be localized to primary cilia and the basal 
bodies.  The exact function of fibrocystin has not been demon-
strated.  In ARPKD, smaller, elongated cysts arise as ecstatic 
expansions of collecting ducts.  Patients with PKD often 
require dialysis and kidney transplantation, which are exceed-
ingly costly.  There are currently no approved drug or preven-
tive strategies for PKD.

Mechanisms of renal cyst formation and enlargement in 
PKD
The development and growth of PKD cysts involve the abnor-
mal proliferation and apoptosis of immature epithelial cells, 
accumulation of fluid within the cyst cavity, abnormal cell-
cell/cell-matrix interactions and abnormal cilia function.

Role of epithelial cell proliferation and apoptosis in cyst develop­
ment in PKD 
Increased apoptosis and proliferative capacity in renal 
epithelial cells are essential processes in PKD.  While the pro-
liferation of renal tubular epithelial cells halts before birth in 
normal individuals, cystic epithelia proliferate throughout life 
in patients with ADPKD[15].  Several genetic manipulations 
that increase the proliferation of tubular epithelial cells in mice 
result in PKD[16–19].

Epidermal growth factor (EGF), transforming growth fac-
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tor alpha (TGF-α) and EGF receptor (EGFR) promote cystic 
epithelial proliferation and expand renal cysts.  EGFR is over-
expressed and mislocalized to the apical membranes of cystic 
epithelial cells, which leads to a sustained stimulation of cell 
proliferation in the cysts[20].  Increased intracellular cAMP 
level also plays a crucial role in cystogenesis.  The reduced cal-
cium caused by mutation of Pkd1 or Pkd2 can inhibit adenylyl 
cyclase 6 leading to increased cAMP.  Studies have demon-
strated that cAMP inhibits the proliferation of normal renal 
epithelial cells.  In contrast, cAMP promotes the proliferation 
of cells derived from PKD patients[21].  The switch is caused by 
decreased intracellular calcium levels in a polycystic kidney 
leading to cAMP-mediated stimulation of the B-Raf/MEK/
ERK pathway instead of inhibiting the Ras/Raf/MEK/ERK 
pathway like in the normal kidney[22].  B-Raf is inhibited by 
Akt in normal cells, while it is activated because of decreased 
activation of Akt in calcium-restricted cells.  Inhibitors of 
Akt and PI3K can reproduce the effects of calcium reduc-
tion.  However, activation of Akt has been found in animal 
models of PKD, such as Pkd–/– mice, Han:SPRD rats and jck 
mice.  Additional growth factors, cytokines, lipid factors, and 
adenosine triphosphate (ATP) also participate in regulating 
the proliferation of renal epithelial cells[23–25].  Cell apoptosis 
is also a key factor in the development of PKD.  Knocking out 
the anti-apoptotic Bcl-2 and AP-2 genes or overexpression of 
the pro-apoptotic gene c-myc in mice results in renal cystogen-
esis[26].

Role of fluid secretion in cyst development in PKD 
Fluid secretion is a critical pathogenic mechanism associated 
with cyst formation and growth in PKD.  Fluid secretion, 
coupled with epithelial hyperplasia, is necessary and sufficient 
to account for the dynamics of cyst growth.  In PKD, a large 
number of cystic lesions lack afferent and efferent tubule con-
nections, suggesting that cysts, which arise from tubular seg-
ments, become disconnected from the glomerular filtrate.  The 
development and expansion of cystic lesions therefore requires 
net transepithelial fluid secretion.  An extensive body of in 
vitro data implicates epithelial chloride secretion in the genera-
tion and maintenance of fluid-filled cysts[27].  The fluid secre-
tion is driven by mechanisms that are similar to those found in 
other secretory epithelia.  Chloride movement drives fluid into 
the cyst lumen.  Fluid accumulation causes cyst enlargement 
directly by swelling cysts and indirectly by stretching cells to 
promote cell division[28].  

Cystic fibrosis transmembrane conductance regulator 
(CFTR), a cAMP-regulated chloride channel, is present on the 
apical membranes of many secretory epithelia.  Chloride secre-
tion through the CFTR has been implicated in the pathway of 
fluid secretion in PKD.  In vitro experiments have suggested 
that increased cAMP-mediated chloride secretion provides 
the electrochemical driving force for fluid secretion in cystic 
epithelia[29].  CFTR is expressed in the apical membrane of 
intact cysts dissected from PKD kidneys[30].  An important 
role of CFTR in PKD fluid secretion is also supported by the 
observation that interference with CFTR protein production 

Figure 1.  A diagram depicting the 
effects that PC1 and PC2 exert on 
signaling pathways.  Multiple direct 
and indirect interactions allow the 
polycystin proteins to be inhibited or 
stimulated. Pathways was invoved in 
cell proliferation and liquid secretion.  
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(by treatment of ADPKD monolayers with antisense oligo-
nucleotide against human CFTR) dramatically reduced fluid 
secretion by these cells[27].  Additional evidence supporting a 
role of CFTR in chloride secretion was obtained from immor-
talized cystic murine collecting duct cell lines isolated from 
CFTR mutant and CFTR wild-type mice.  The wild-type cell 
lines formed numerous fluid-filled cysts in response to EGF 
and forskolin when cultured in three-dimensional collagen 
gels, whereas the CFTR mutant cell lines failed to form cysts 
under identical conditions[31].  These results demonstrate that 
CFTR is required for in vitro cyst formation.  In a single family 
affected with both ADPKD and cystic fibrosis (CF), individual 
members with both ADPKD and CF had less severe renal 
disease than those family members with only ADPKD[32, 33].  
These studies suggest that in vivo, defective CFTR function 
provides partial protection against renal cyst development and 
enlargement and suggests that modulation of epithelial chlo-
ride secretion may have therapeutic benefit in PKD.  Using 
type I MDCK cells as a cell culture model of cyst development 
and growth, Sheppard’s group found that the CFTR inhibi-
tor CFTRinh-172 (see below) retarded cyst growth.  In contrast, 
blockers of other types of apical membrane Cl- channels, which 
do not inhibit CFTR, failed to inhibit cyst growth[28].  Inhibition 
of cyst growth by CFTR inhibitors correlated with inhibition 
of cAMP-stimulated Cl- current, but not cell proliferation[28].  
Their studies strongly suggest that CFTR inhibitors might 
retard cyst growth predominantly by inhibiting fluid accumu-
lation within the cyst lumen.  In two ARPKD animal models, 
PCK rats and the pcy mice, renal cAMP levels were signifi-
cantly higher compared to that in wild-type animals.  Expres-
sion of the water channel AQP2 and vasopressin V2 receptor 
(VPV2R) was also increased.  Administration of the VPV2R 
antagonist OPC-31260 lowered renal cAMP levels and halted 
progression or caused regression of established cysts[33, 34].

Aquaporin (AQP)-mediated water permeability in cyst 
epithelia may also be involved in fluid secretion in cyst for-
mation and progression, as fluid consists of salts and water.  
Normally, several AQPs are expressed in kidney: AQP1 in 
the proximal tubule, thin descending limb of Henle, and vasa 
recta; AQP2 in the apical membranes of collecting duct; AQP3 
and AQP4 in the basolateral membranes of collecting duct.  It 
has been reported that AQP1 and AQP2 are expressed in cyst 
epithelia from patients with PKD[35].  Gattone et al[36] found 
AQP2 and AQP3 expression in cysts in C57BL/6J-cpk/cpk 
mice with autosomal recessive-infantile polycystic kidney dis-
ease.  High aquaporin-dependent water permeability in cyst 
epithelium may be important to facilitate near-isosmolar fluid 
secretion, particularly in growing cysts that have low surface-
to-volume ratios.

Role of cell-cell/cell-matrix interactions in cyst development in 
PKD 
PC1 has been detected in tight junctions, adhesions junctions, 
desmosomes, focal adhesions, apical vesicles, and primary 
cilia[37, 38].  A study has shown that PC1 mediates cell-cell adhe-
sion through the formation of strong homophilic interaction of 

its Ig-like domains[39].  A significant downregulation of Pkd1 
mRNA is detected in MDCK cysts compared to tubules, which 
leads to a striking reduction of membrane PC1 and mislocal-
ization to the cytoplasmic pools[40].  It has been demonstrated 
that a controlled level of PC1 expressed at cell-cell junction 
is critical for normal tubular differentiation.  In normal renal 
cells, PC1 forms a complex with the protein E-cadherin and its 
catenins.  However, in primary cells from ADPKD patients, 
the PC1/E-cadherin/β-catenin complex was disrupted 
and was accompanied by increased PC1 phosphorylation, 
reduced E-cadherin and upregulated normal mesenchymal 
N-cadherin[41].

Renal epithelial cells in ADPKD show increased PC1 
adhesion to type I collagen compared with normal human 
epithelia[42].  The defects reduce the cell migratory capacity 
required for kidney morphogenesis[43].  The PC1 protein has 
been proven to regulate the relationships between the cell and 
matrix through interacting with α1β2 integrin, vinculin, paxil-
lin, p130-cas, talin and focal adhesion kinase (FAK)[42].  The 
basement-membrane composition and expression of matrix 
metalloproteases and their inhibitors are abnormal in PKD 
kidneys.  It has been demonstrated that inactivation of several 
matrix adhesion receptors and focal adhesion complex-associ-
ated proteins result in cystogenesis[44–46].

Role of cilia in cyst development in PKD 
Renal cilia are microtubule-based, membrane-bound projec-
tions on the epithelia of the renal tubule and duct.  Renal cilia 
have been reported to be mechanosensors and respond to flow 
by increasing intracellular calcium[47].  Several studies sup-
port that PC1 and PC2 localize to primary cilia[10, 38] and form 
a subfamily of transient receptor potential channels that are 
responsible for sensing flow and regulating levels of intracel-
lular calcium[48].  The bending of cilia causes calcium influx 
into the cell through the PC2 channel[42].  The mechanosensory 
response is lost in cells with mutated PC1[48].  Many cellular 
functions that are related to PKD, such as gene expression, cell 
cycle, differentiation and apoptosis, are regulated by intracel-
lular calcium concentration.  

The dysfunction of cilia has a close relationship with cell 
cycle progression[49, 50].  PC1 upregulates p21 (waf1) through 
activating the JAK-STAT pathway and results in cell cycle 
arrest in G0/G1

[23].  The IFT88/Polaris protein, which is local-
ized to cilia, has been demonstrated to be tightly associated 
with the centrosome during cell cycle transition[51].  Over-
expression of IFT88/Polaris prevents G1/S transition and 
induces cell death.  In contrast, deletion of IFT88/Polaris 
promotes cell cycle progression[51].  PC2 also can regulate the 
cell cycle through direct interaction with Id2, a member of the 
helix-loop-helix (HLH) protein family, which has been proven 
to regulate cell proliferation and differentiation[52].

Experimental models for screening and evaluating new 
drugs for PKD
Several common experimental models that have been used to 
screen and evaluate the new PKD drugs at the cell, organ and 



808

www.nature.com/aps
Sun Y et al

Acta Pharmacologica Sinica

npg

whole animal levels are described in subsequent sections.

Madin-Darby canine kidney (MDCK) cyst model 
MDCK type I cells provide a useful in vitro model of cystogen-
esis for screening candidate inhibitors of cyst formation and 
growth (Figure 2).  MDCK cells cultured in three-dimensional 
collagen gels with forskolin produce a polarized, single-layer, 
thinned epithelium surrounding a fluid-filled space similar to 
the cysts in PKD[53].  MDCK cells in cysts undergo prolifera-
tion, fluid transport and matrix remodeling, as seen in tubular 
epithelial cells cultured from PKD kidneys.  Cyst forma-
tion and growth are cAMP-dependent, which is thought to 
independently increase cell proliferation and activate CFTR-
facilitated transepithelial fluid secretion[28].  Recognizing its 
limitations, such as differences between MDCK cells versus 
renal epithelial cells and cell cultures versus intact kidneys, the 
MDCK cyst model may be used to identify cyst inhibitors that 
reduce cyst formation and enlargement without demonstrable 
cell toxicity or inhibition of cell proliferation.  

Embryonic kidney cyst model 
The embryonic kidney culture model permits organotypic 
growth and differentiation of renal tissue in defined medium 
without the confounding effects of circulating hormones and 
glomerular filtration[54].  In the absence of 8-Br-cAMP, kidneys 
cultured on porous cell culture inserts increase in size over 4 d, 
whereas numerous cystic structures were seen in the presence 
of 8-Br-cAMP (Figure 3).  Although embryonic kidney cultures 
probably represent a better PKD model than MDCK cells, they 
are avascular and non-perfused and therefore are not exposed 
to the same environment as the in vivo kidney.

PKD mouse models 
Pkd1flox/–;Ksp-Cre mice, are kidney-selective Pkd1 knockout 
mice that manifest a fulminant course with the development 
of large cysts (Figure 4), renal failure in the first 2 weeks of 
life and death by 20 d.  This model is suitable to evaluate the 
efficacy of cyst inhibitors on retarding the growth of cysts in 
the distal segments of the nephron, including the medullary 
thick ascending limbs of the loops of Henle, distal convoluted 
tubule and collecting ducts.  In humans, ADPKD develops 
slowly and causes renal failure at an average age of over 50 
years.  For experimental studies, this relatively severe model 
of ADPKD has been used, rather than mouse models in which 
disease develops more slowly because of the shorter time 
required for compound administration and the greater likeli-
hood of observing an immediate benefit.  Testing cyst inhibi-
tors in the ADPKD mouse model should be of further utility 
in predicting efficacy in human ADPKD.  The CFTR inhibitors 
significantly reduced cyst formation and clinical signs of PKD, 
as assessed by lower kidney weights and serum creatinine and 
urea concentrations in this mouse model[55].  

Pkd1flox mice and Ksp-Cre transgenic mice have been gen-
erated as described[56, 57].  Ksp-Cre mice express Cre recom-
binase in the kidney under the control of the Ksp-cadherin 
promoter[58].  Pkd1flox/–; Ksp-Cre mice were generated by cross-

breeding Pkd1flox/flox mice with Pkd1+/–:Ksp-Cre mice[56].  Neo-
natal mice (age 1 d) were genotyped by genomic PCR.  Test 
compound or saline DMSO vehicle control were administered 
by subcutaneous injection on the backs of neonatal mice four 
times a day for 3 or 7 d using a 1 mL insulin syringe beginning 
at age 2 d.  Pkd1flox/+; Ksp-Cre or Pkd1flox/+ mice from the same 
litter were used as controls.  Body weight was measured at 
d 5.  Blood and urine samples were collected to measure the 
test compound concentration and renal function.  The kidneys 
were removed, weighed, and fixed for histological examina-
tion or homogenized to determine the test compound content.  

Many other mouse models of PKD have been described in 
which the mutant phenotypes result from spontaneous muta-
tions or gene-specific targeting in mouse orthologs of human 
PKD genes.  These murine phenotypes closely resemble 
human PKD with common abnormalities observed in the 
tubular epithelia, interstitial compartment, and extracellular 
matrix of cystic kidneys[59].

Pkd1 and Pkd2 knockout mouse models, which are 
homologs of human genes, have been generated by targeted 
mutagenesis[59, 60].  In most of these models, heterozygous 
mice develop renal, biliary, and pancreatic cysts at age 4-19 
months.  Disease progression is rapid, with embryonic lethal-
ity occurring in most homozygous mutants.  

In the mouse models arising from spontaneous mutations, 
PKD is generally transmitted as an autosomal recessive trait.  
Several of these models with cysts distributed along the entire 
nephron and slower disease progression closely recapitulate 
human ADPKD[59].  One of them is the murine autosomal 
recessive juvenile cystic kidney (jck)[61].  The jck locus maps to 
chromosome 11.  The mutant allele has a missense change in 
Nek8, which encodes NIMA (for ‘never in mitosis’ A)-related 
kinase 8[62].  In homozygous mutant mice, focal renal cysts are 
evident as early as 3 d of life, and the renal cystic disease is 
slowly progressive but not evident by kidney palpation until 
age 4 to 5 weeks.  Histological analysis of jck mutant kidney 
tubules showed the defects were specific to the connecting 
segment and collecting duct cells.  The proximal tubule cells 
appeared morphologically normal.  Cell membrane and cyto-
plasmic disruption could be observed in collecting ducts from 
mutant mice at 2–3 weeks of age.  No histological abnormali-
ties in other organs have been described.  The mutant mice are 
fertile and generally survive for 4 months or more.

Another PKD mouse model arose spontaneously by muta-
tion of the “congenital polycystic kidney” (cpk) gene with 
locus mapping to mouse chromosome 12[63].  Cys1, the cpk 
gene, encodes cystin, which localizes to the primary apical 
cilia on collecting duct cells.  Mutant mice develop massive 
renal cystic disease and progressive renal insufficiency in a 
pattern that resembles human ARPKD.  Initial cystic changes 
are evident at approximately embryonic d 16 and localize pri-
marily to the proximal tubule.  With progressive postnatal age, 
the cystic changes predominantly involve the collecting duct.  
Death occurs by 3–4 weeks of age due to uremia[64].

PKD in the kat mouse model is caused by a spontaneous 
mutation occurring in the Nek1 gene, which encodes NIMA-
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Figure 2.  MDCK cyst growth in collagen gels.  Light micrographs were taken at indicated days after cell seeding of MDCK cells exposed continuously to 
10 μmol/L forskolin without (top) or with cyst inhibitor (bottom).  Each series of photographs shows the same cyst on successive days in culture.

Figure 3.  Embryonic kidney cyst model.  Embryonic kidneys at d E13.5 were cultured for 4 d.  (A) Kidney appearance by transmitted light microscopy 
for cultures in the absence (top) or continued presence (bottom) of 100 μmol/L 8-Br-cAMP.  Each series of photographs shows the same kidney on 
successive days in culture.  (B) Histology (hematoxylin and eosin staining) of embryonic kidneys.  

Figure 4.  Pkd1flox/–; Ksp-Cre PKD mouse model.  (A) Kidney from wildtype (left) and Pkd1flox/–; Ksp-Cre PKD mouse (right) at age 5 d.  (B) Histology 
(hematoxylin and eosin staining) of kidneys from Pkd1flox/–; Ksp-Cre PKD mice at ages 1 to 5 d. 
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related kinase 1.  In Nek1kat-2J homozygotes, fluid-filled cysts 
and dilated proximal tubules and Bowman spaces are found 
as early as 1 month of age.  The bilateral renal cystic disease 
involves all levels of the nephron by 3 months of age.  Disease 
progression, including growth of cysts and an increase in the 
number of cysts, is similar to that in ADPKD.

As a model of ADPKD, the Han:SPRD-cy rat has been used 
for research extensively[65–67].  The gene locus maps to chromo-
some 5[68].  The spontaneous mutation occurs in the Sprague-
Dawley strain.  In male Cy/+ rats, the kidneys enlarged more 
rapidly, and interstitial fibrosis is more pronounced[69].  The 
Han:SPRD Cy/+ rat can be studied for the efficacy of long-
term medical therapy.  In this model, the renal cyst exclusively 
develops in the proximal tubules instead of the whole renal 
segment.  Other mouse models, bpk, jcpk, orpk, inv and pcy, 
also resemble human PKD with respect to renal cyst pathology 
and disease progression[60].  Because the murine models share 
common pathogenic features with human PKD, it is assumed 
that there are common molecular pathways involved in PKD 
progression in humans and mice.  The jck, cpk, and kat mouse 
models are commercially available from the Jackson Laborato-
ries.

The dynamics of cyst growth differ in the various models.  
These differences provide a unique opportunity to study the 
mechanism of cyst formation.  The Nek8jck mouse model 
can be used mainly to test the preventive role of cyst inhibi-
tors in the formation of cysts in collecting ducts of young 
mice.  The Cys1cpk mouse model is suitable to test the role 
of cyst inhibitors on the progression of cysts and to compare 
the effects of treatments on cysts derived from different cell 
types in all levels of the nephron.  The Nek1kat mouse model 
has been proposed to study the roles of cyst inhibitors on 
cysts derived from proximal tubules.  Heterozygous Pkd2WS25 
mice, an ADPKD model generated by targeted mutagenesis, 
can be used to test the prevention and the treatment with cyst 
inhibitors on the development of cysts in the kidney and other 
organs.  

Cyst progression can be evaluated by measuring the size 
and number of cysts in the kidney.  At first, the ratio of kid-
ney weight to body weight can be measured.  Development 
of cysts should increase kidney weight.  For light microscopic 
analysis, transverse tissue sections, including cortex, medulla 
and papilla, can be stained with H&E to measure cyst size and 
number.  The analysis can be performed by a reviewer who is 
blinded to the identity of the treatment modality.  To quanti-
tatively evaluate cyst growth, cyst size can be recorded on the 
following scale: 0, <0.05 mm (It is difficult to distinguish the 
cysts from normal renal tubules); 1, 0.05–0.3 mm; 2, 0.3–0.6 
mm; 3, 0.6–0.9 mm; 4, 0.9 mm–1.2 mm; and 5, >1.2 mm.  The 
number of cysts can be counted in the cortex, medulla and 
papilla.  In some experiments, the origin of renal tubule cysts 
can be determined by segment–specific lectin binding using 
Dolichos biflorus agglutinin (DBA) as a marker for collect-
ing ducts and Lotus tetragonolobus (LTA) as a marker for 
proximal tubules as described previously[70].  The numbers of 
LTA-positive and DBA-positive cysts can be counted in serial 

sections of bisected whole-mount kidneys from each animal.  
Proximal tubule cysts can be identified by LTA binding, and 
collecting duct cysts can be identified by DBA binding.  A 
minimum of 10 sets of serial sections evenly spaced through 
the kidney from the cortex to the inner medulla can be used to 
determine the ratio of proximal tubule to collecting duct cysts.  

Candidate drugs under research and development
Based on the mechanism of renal cyst development and the 
pathogenesis of PKD, some chemical and natural compounds 
have been discovered to have inhibitory activity on renal cysts 
and to slow PKD progression.  Some classes of candidate PKD 
drugs have been described according to the drug targets in 
PKD as follows.

Vasopressin 2 receptor (V2R) antagonist 
Studies were conducted to target cAMP pathways and take a 
step further by demonstrating the upregulation of vasopres-
sin and the inhibition of cytogenesis by V2R antagonists OPC-
31260 in cpk mice, ARPKD (PCK rat), ADPKD (Pkd2WS25 
mice) and adolescent nephronophthisis (pcy mouse)[34, 35, 37].  As 
OPC-31260 is a weak antagonist for human V2R, clinical trials 
with tolvaptan, which has a higher affinity for human V2R, 
are underway.  Tolvaptan was also effective in animal models 
of ARPKD, ADPKD, and nephronophthisis[71–73].  The Tolvap-
tan Efficacy and Safety in Management of PKD and Outcomes 
(TEMPO) program is currently active[74, 75].  Phase 2a studies to 
determine the response to increasing doses of tolvaptan (15, 
30, 60, and 120 mg) in patients with ADPKD and normal renal 
function have been completed[75, 76].  A 3-year phase 3, placebo-
controlled, double-blind study in 18-to 50-year-old patients 
with ADPKD to determine long-term safety and efficacy has 
been initiated and will be completed in 2011.

Renin angiotensin aldosterone system (RAAS) antagonist 
Angiotensin-II (AT-II) has been demonstrated to promote cel-
lular proliferation, apoptosis, and the production of TNF-α 
and other pro-inflammatory cytokines[77].  RAAS also plays 
an important role in hypertension.  So, RAAS antagonism 
can prevent cellular proliferation and inflammation and treat 
hypertension in PKD.  Angiotensin-converting enzyme (ACE) 
inhibitors, which are RAAS antagonists, have been proven 
to reduce cyst enlargement and blood pressure and improve 
renal function in Han:SPRD rats[78, 79].  A randomized 7-year 
study showed that ACE inhibitors prevented left ventricular 
hypertrophy better than calcium channel blockers in 75 hyper-
tensive ADPKD patients[80].  An earlier longitudinal study has 
shown slower renal progression in those treated only with 
ACE inhibitor compared to only diuretics.  Two HALT PKD 
trials that are randomized, double-blind, and placebo-con-
trolled are underway to test the impact of intensive blockade 
of RAAS in ADPKD patients with ACE inhibitor or angio-
tensin receptor blocker (ARB)[81].  

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor 
EGF is an important factor in cyst epithelial cell proliferation 
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and cystogenesis.  EKI-785, an EGFR tyrosine kinase inhibi-
tor, has been shown to be effective in reducing cyst formation 
and decreasing mortality in murine ARPKD[82].  EKI-785 and 
another EGFR tyrosine kinase inhibitor EKB-569 attenuate the 
development of PKD in Han:SPRD rats[66].  Contrary to other 
murine models of ARPKD, overexpression and mislocalization 
of EGFR are not found at the apical membrane of cystic cells in 
PCK rats[64].  This may be the reason that EKI-758 and EKI-569 
have no efficacy in PCK rats[64].

Peroxisome proliferator-activated receptor-γ (PPARγ) agonist 
Proliferation is recognized as an important factor for cysts 
development in PKD.  PPARγ, a member of the superfamily 
of nuclear hormone receptor transcription factors, has been 
demonstrated to suppress cell growth and promote differen-
tiation and apoptosis in various cancer cells[83].  Thus, it may 
be effective in treating PKD.  A recent study showed that the 
expression of PPARγ was greater in ADPKD kidneys and 
cyst-lining epithelial cells compared to normal kidneys and 
human kidney cortex cells[84].  Rosiglitazone, a PPARγ agonist, 
significantly inhibits the proliferation of ADPKD cystic epithe-
lial cells by causing a G0/G1 arrest.  Short-term treatment in 
Han:SPRD rats with rosiglitazone has been shown to attenuate 
the development of kidney cysts and improve renal function, 
while long-term administration with rosiglitazone can prolong 
survival in Han:SPRD rats[67].

Somatostatin
Octreotide, a kind of somatostatin, has been shown to inhibit 
hepatic and renal cystogenesis in PCK rats by decreasing 
cAMP accumulation[85].  A clinical trial has shown that oct-
reotide safely slows renal volume expansion in 6-month 
therapy for 13 ADPKD patients[86].  Recently, octreotide has 
been tested as long-term treatment for polycystic kidney and 
polycystic liver disease in a clinical trial.

Phosphodiesterase (PDE) activator 
In PKD, cAMP has been proven to be a critical intracellular 
second messenger involved in cytogenesis.  The level of cAMP 
is largely regulated by the PDE superfamily through hydroxy-
lation.  In mixed cortical tubules and microdissected tubular 
segments, 50%–70% of PDE activity is inhibited by an inhibitor 
of the calcium-calmodulin-sensitive PDE1[87].  PDE1 is respon-
sible for cAMP and cGMP activity.  The reduction of intracel-
lular calcium in PKD may increase cAMP by dysregulating 
PDE1.  PDE3 inhibited by increased cGMP are cAMP-specific 
PDEs.  PDE3 may also be involved in cAMP accumulation in 
renal cells of PKD kidneys.  In mesangial cells, PDE3 inhibitors 
increase cAMP levels and activate PKA, block phosphoryla-
tion of Raf-1 on serine 338 and suppress Raf-1 kinase activ-
ity[88].  PDE inhibitors stimulate MDCK cell proliferation.  A 
recent study showed that the protein levels of PDE1, PDE3, 
and PDE4 are significantly reduced in the cysts of PCK and 
Pkd2–/WS25 kidneys compared with wild-type kidneys[89], which 
indicates that a PDE activator may inhibit cystogenesis.
Src inhibitor 

Src has been confirmed to be an important intermediary in 
cAMP pathways that promote epithelial proliferation in PKD 
and also a critical mediator in the activation of the EGFR axis.  
Src activity has a relationship with PKD progression in BPK 
mice and PCK rats[90].  SKI-606 can inhibit Src activity in a 
highly specific manner.  SKI-606, which is also in clinical trials 
for breast cancer and malignant tumors, significantly improves 
renal and biliary lesions in BPK and PCK rodent models of 
ARPKD[90].  Thus, Src can be a prospective therapeutic target 
in PKD.

Raf inhibitor 
Sorafenib, a small molecule Raf inhibitor, has been demon-
strated to inhibit the proliferation of cells derived from the 
cysts of human ADPKD kidneys[91].  Sorafenib has also been 
proven to treat renal cell carcinomas and prolong survival 
time[92].  Cyst growth in human ADPKD cystic cells cultured 
within three dimensional collagen is completely inhibited by 
sorafenib[91].  This study suggests that the inhibition of the Raf 
kinases may be an effective therapy for PKD.

Mitogen extracellular kinase (MEK) inhibitor 
MEK is an important mediator in EGFR and cAMP signaling.  
PD98059, an inhibitor of MEK, has been shown to completely 
prevent ADPKD cellular proliferation in response to cAMP 
agonists[21].  Another MEK inhibitor, PD184352, improved 
renal function and reduced the expression of P-ERK and ERK 
in pcy mice[93].  However, U0126, an inhibitor of MEK1/2 that 
blocks phosphorylation of ERK, did not change the rate of cyst 
growth in Pkd1flox/–:ksp-Cre mice[94].  More studies on MEK 
inhibitor efficiency in PKD are needed.

Mammalian target of rapamycin (mTOR) inhibitor 
In human ADPKD patients and mouse models, the mTOR 
pathway is abnormally activated in cyst-lining epithelial cells.  
It has been shown that the cytoplasmic tail of PC1 interacts 
with tuberin[95].  Recently, another experiment[96] directly 
showed that PC1 was able to inhibit the mTORC1(mTOR com-
plex-1) cascade that regulates cell growth and proliferation, 
ribosome biogenesis and translation of a subset of mRNAs, 
cellular energy responses and autophagy[97, 98].  Mutations in 
PC1 therefore lead to persistent activation of mTOR, which 
promotes cell growth and proliferation and cyst expansion in 
PKD.  Also, mTOR is activated by increased ERKs through 
inhibiting tuberin in the renal cells of ADPKD.  Rapamycin, 
an inhibitor of mTOR, was shown to be highly effective in 
reducing renal cystogenesis in the bpk and orpk-rescue mouse 
models[95].  In another study, long-term rapamycin treat-
ment in Han:SPRD rats resulted in a normalization of kidney 
volume, renal function, blood pressure and heart weight[65].  
Treatment of human ADPKD transplant recipient patients 
with rapamycin showed a significant reduction in polycystic 
kidney volumes[95].  A two-year, placebo-controlled trial of 
another mTOR inhibitor, everolimus, involving 433 patients 
with ADPKD has been finished.  Everolimus slowed the 
increase in total kidney volume, but the estimated GFR was 
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not improved[99].

Cystic fibrosis transmembrane conductance regulator (CFTR) 
inhibitor 
CFTRinh-172[59], a thiazolidinone, has been shown to slow 
cyst growth in a MDCK cell culture model of PKD[28] and in 
metanephric kidney organ cultures[55].  CFTRinh-172 maintains 
the channel closed state, probably by binding to a cytoplas-
mic domain of CFTR according to patch-clamp analysis[100].  
The other kind of CFTR inhibitors is the glycine hydrazides, 
which directly bind to the CFTR pore at a site near its external 
entrance[101].  In an experiment screening CFTR inhibitors for 
PKD[56], tetrazolo-CFTRinh-172, a tetrazolo-derived thiazolidi-
none, and Ph-GlyH-101, a phenyl-derived glycine hydrazide, 
were found to almost completely suppress cyst growth with-
out affecting cell proliferation.  These compounds also showed 
a remarkable inhibition of cyst number and growth in an 
embryonic kidney cyst model.  Subcutaneous delivery of tetra-
zolo-CFTRinh-172 and Ph-GlyH-101 to neonatal kidney-specific 
Pkd1 knockout mice for 7 d prominently slowed kidney 
enlargement, cyst expansion and renal function impairment.

Cyclin-dependent kinase (CDK) inhibitor 
As we discussed previously, cilia has a close link with the 
cell cycle progression.  The CDK inhibitor roscovitine effec-
tively inhibited cyst formation through cell cycle arrest in jck 
and cpk mouse models of PKD[102].  Roscovitine has also been  
detected to be active against cysts originating from different 
parts of the nephron[102].  Roscovitine significantly downregu-
lates cAMP and aquaporin 2[103] and increases p21[104], leading 
to decreased renal tubular epithelial cell proliferation.  

TNF-α interventions 
A recent study has demonstrated that TNF-α promotes the 
progression of PKD[105].  Treating inner medullary collecting 
duct (IMCD) cells with TNF-α increases the expression of 
FIP-2 and shows a striking loss of PC2 from its normal loca-
tion.  FIP-2 plays a role in transporting protein from the api-
cal membrane and regulating epithelial cell polarity.  TNF-α 
causes cystogenesis in the wild-type murine embryonic kid-
ney, which is exacerbated in the Pkd2+/– embryonic kidney.  
Pkd2+/– mice injected with TNF-α have increased cyst develop-
ment (the frequency was 6/14), while 50 Pkd2+/– mice treated 
with the TNF-α inhibitor ethanercept did not develop cysts.  
Another study has found that TNF-α can activate the mTOR 
pathway[106], which plays an important role in PKD develop-
ment.  These studies suggest that inhibition of TNF-α can slow 
cyst formation in PKD.

Glucosylceramide synthase inhibitor 
Glucosphingolipids have been proven to play an important 
role in regulating cell proliferation and apoptosis[107].  Recently, 
a study demonstrated that the glucosylceramide (GlcCer) syn-
thase inhibitor Genz-123346 effectively inhibited cystogenesis 
in Pkd1–/–, jck and pcy mice[108].  GlcCer and ganglioside GM3 
levels are higher in human and mouse PKD kidneys compared 

to normal kidneys.  Molecular analysis of jck mice and jck cells 
shows that Genz-123346 prevents cyst growth by dysregulat-
ing Akt-mTOR signaling[108].

Matrix metalloproteinases (MMPs) inhibitor 
MMPs are a large family of proteinases that play an important 
role in remodeling extracellular matrix components and cleav-
ing a number of cell surface proteins.  Kidney tubules derived 
from the C57BL/6J-cpk mouse contain higher levels of MMP-2 
and -9 than normal mice[109].  Serum MMP-1, -9, and tissue 
inhibitor of metalloproteinases-1 concentrations in patients 
with PKD were significantly higher compared to healthy 
controls [110].  MMP-14 mRNA has a higher expression in cyst-
lining epithelia and distal tubules in Han:SPRD rats[111].  Treat-
ing Han:SPRD-cy/+ rats with the MMP inhibitor, batimastat, 
for 8 weeks caused a prominent reduction in cyst number and 
kidney weight[111], which suggests that MMP inhibitor could 
be potential therapy for PKD.

HMG-CoA reductase inhibitor 
Statins, which are HMF-CoA reductase inhibitors, are widely 
applied to decrease cholesterol in clinical settings.  They can be 
used for improving renal function in PKD.  Lovastatin signifi-
cantly decreased cystic kidney size and improved function in 
heterozygous male Han:SPRD rats[112].  It may be related with 
lovastatin reducing farnesyl pyrophosphate, which is impor-
tant in cell proliferation[112], and lovastatin can also cause actin 
filament disruption, which can induce apoptosis[113].  In a dou-
ble-blind cross-over study, 10 normocholesterolemic ADPKD 
patients treated with 40 mg/d simvastatin or placebo for 4 
weeks showed that simvastatin significantly improved both 
glomerular filtration rate (GFR) and effective renal plasma 
flow[47].  Another study of 16 ADPKD patients with well-
preserved renal function treated with 40 mg/d simvastatin for 
six months proved that simvastatin ameliorated endothelial 
dysfunction in ADPKD patients using high resolution vascu-
lar ultrasound[114].  A randomized open-label clinical trial was 
performed with 49 ADPKD patients who were treated with 20 
mg/d pravastatin or no treatment for 2 years[115].  There were 
no significant changes in the markers of kidney function or 
urinary protein excretion between the two groups.

Triptolide 
Triptolide is a natural product isolated from the “Thunder 
God Vine”.  It has been demonstrated to promote an increase 
in PC2-mediated calcium release and cytosolic calcium in 
the murine kidney epithelial Pkd2–/– cells and to inhibit cyst 
formation in Pkd1–/– embryonic mice[116].  Triptolide is an 
inhibitor of NF-κB- and NF-AT-mediated transcription, which 
results in reduced gene products and cell growth arrest[117, 118].  
It has been proven to inhibit cell growth and increase p21 
expression in Pkd1–/– kidney cells.  In another study, triptolide 
significantly inhibited the early phases of cyst expansion and 
improved renal function at postnatal d 8 in a kidney-specific 
Pkd1flox–/–; Ksp-cre mouse model of ADPKD[119].  Recently, a 
study showed triptolide has a pronounced effect in reduc-
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ing cyst formation in a Pkd1flox/flox; Mx1Cre mouse model of 
ADPKD[120].  

Curcumin 
Curcumin is a natural polyphenol derived from the plant Cur-
cuma longa.  Numerous studies have indicated that curcumin 
is a highly pleiotropic molecule capable of treating various 
cancers.  Our studies have proven that curcumin also has a 
significant inhibitory effect on renal cyst development[121].  
Curcumin slowed cyst formation in both a MDCK cyst model 
and an embryonic kidney cyst model with a dose-dependent 
response.  Curcumin inhibited forskolin-induced cell prolif-
eration and promoted tubule formation in MDCK cells, which 
indicates that curcumin promotes MDCK cell differentiation.  
Curcumin affected intracellular signaling in the MDCK cells 
exposed to forskolin.  Curcumin reduced signaling proteins 
Ras, B-raf, p-MEK, p-ERK, and c-fos and increased Raf-1 and 
NAB2 in MDCK cells.
 
Summary
PKD is a progressive disease with a decline in renal function.  
The cost of treatment, dialysis, and kidney transplantation 
related to PKD exceeds $1 billion in USA each year according 
to the Polycystic Kidney Research Foundation.  Up to now, the 
treatment options for PKD have been limited to renal replace-
ment therapy by dialysis or transplantation.  Based on the 
understanding of the pathogenesis of PKD, the inhibition of 
cyst epithelia and cyst fluid secretion may provide a new ther-
apeutic option in PKD.  Dual or triple therapies may be highly 
effective in slowing PKD progression.  In addition to advanc-
ing the understanding of the mechanism in which PKD devel-
ops, the functional and morphological improvement in PKD, 
as seen with chemical compounds, could provide a proof-of-
concept for the application of new drugs in treating PKD.
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