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Introduction
Several studies have classified humans who are suffering 
from hypertension as salt-sensitive or salt-resistant based 
upon blood pressure (BP) responses to differences in sodium 
balance[1, 2].  The increment in BP that is driven by a salt load 
is characteristic of salt-sensitive hypertension, a condition 
affecting more than two thirds of individuals with essential 
hypertension who are older than 60 years[3].  Salt-sensitive 
hypertension may exacerbate mortality rates and worsen the 
manifestations of target organ damage[1, 2].  The discovery of 
mutations in the β- and γ-subunits of epithelial sodium chan-
nel (ENaC) to understand Liddle’s syndrome[4, 5], a severe form 
of low-renin hypertension[6], was followed by a search for 
common genetic variants in ENaC subunits.  Several variants 
were identified[7].  Interestingly, these variants were almost 
universally more common in black individuals, which corre-
late nicely with higher prevalence of low-renin, salt-sensitive 
hypertension in black individuals.  The questions and issues 
addressed in the current review are whether ENaC that resides 

in the renal distal nephron plays a role in the development of 
hypertension, particularly in salt-sensitive hypertension, how 
ENaC variants segregate with high BP, and whether high-salt 
intake induces oxidative stress and whether oxidative stress 
could activate ENaC, resulting in over reabsorption of Na+.  
We also briefly discuss the role of ENaC expressed in vascular 
endothelia and the central nervous system in the development 
of hypertension.  

The topology and physiology of ENaC 
Since 1994, when ENaC was initially cloned from the rat 
colon[8], the biophysical properties and molecular structure of 
ENaC have been extensively studied.  ENaC consists of at least 
three subunits including α, β, and γ, each of which possesses 
two transmembrane domains, a large extracellular loop, a 
cytoplasmic C-terminal domain and a N-terminal domain.  All 
three subunits are required to form a functional α-, β-, γ-ENaC 
channel complex (Figure 1)[8–15].  ENaC belongs to a member 
of the ENaC/Deg superfamily of ion channels that are respon-
sible for sodium transport.  The channel is typically located at 
the apical membrane of epithelial tissues throughout the body, 
including the colon, the sweat glands, the salivary duct, the 
airway, and the cortical collecting duct (CCD) of the kidney, 
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and this channel regulates sodium transport in tissues[16–20].  
Recent studies have shown that ENaC subunits are also pres-
ent in the endothelial cells of the artery and may function as a 
vascular mechanosensor[21–23].  

ENaC α, β, and γ subunits share approximately 30% homol-
ogy at the amino acid level, and each subunit corresponds 
to a molecular mass of 70–85 kDa.  The three ENaC subunits 
are inserted into the plasma membrane with a proposed stoi-
chiometry of 2:1:1[24] or 3:3:3[25, 26].  The α-subunit is critical to 
the formation of the ion permeating pore, whereas the β and 
γ subunits are required for the maximal channel activity and 
may play regulatory role.  While α-ENaC is knocked out in 
mice, the mice would die within 40 h of birth because failure 
of pulmonary fluid clearance.  This result clearly demonstrates 
the pivotal role of α-ENaC in forming a functional Na+ chan-
nel complex in vivo[27].  Moreover, decreased α-ENaC expres-
sion in mice causes a respiratory distress syndrome, whereas 
the β and γ have only a modest effect on pulmonary fluid 
clearance[28].  The α-, β-, γ-ENaC channel complex is highly 
selective for Na+ and mediates Na+ entry through the apical 
membrane of distal renal epithelial cells with a slope single-
channel conductance of approximately 5 pS.  ENaC accounts 
for a small proportion of distal renal sodium reabsorption 
(<5%).  However, there appears to be no further downstream 
sodium transport system beyond CCD, which places ENaC 
in a very critical position for the regulation (or homeostasis) 
of the extracellular fluid volume, electrolyte balance and long 
term BP[7].  The factors such as high-salt intake that affect 
ENaC activity and the ENaC expression level at the apical 
membrane of CCD may constitute the critical role of ENaC in 
Na+ over reabsorption and water retention.

The experiments assessed in animal models reveal the 
role of ENaC in developing salt-sensitive hypertension
The strains of rats were bred by Dr Lewis K Dahl for sensi-
tivity or resistance to the hypertensive effect of a high-salt 
diet in the 1960s and were named Dahl salt-sensitive (DS) 
or Dahl salt-resistance (DR)[29, 30].  When DS rats were placed 
on a high-salt (8% NaCl) diet at 21–23 d of age, they rapidly 
developed hypertension.  All of the DS rats died by the 16th 
week of salt feeding.  With similarly treated DR rats, the BP 

remained in the normotensive range, and 80% of animals sur-
vived to the 48th week on a high-salt diet[30].  Since then the 
kidney has been the focus of considerable attention in DS and 
DR rats because of the results obtained from the renal cross-
transplantation assays, which involve the transplantation of a 
kidney from a DS rat into a DR rat that had the original kid-
neys removed, the results suggest that the DR rats develop a 
higher BP than DR rats with transplanted DR kidneys or DR 
rats with a unilateral nephrectomy.  Conversely, a DR kidney 
that was transplanted into a DS rat ameliorated the increase in 
the BP that was seen in DR rats with transplanted DS kidneys 
or DS rats with a unilateral nephrectomy[31–33].  Later studies 
revealed that the plasma renin and aldosterone concentrations 
were normal or lower in DS rats compared with that in con-
trol rats[34, 35].  Aoi et al investigated the mechanisms by which 
quercetin, a plant extract, exerted an anti-hypertensive effect, 
and they found that quercetin diminished the αENaC mRNA 
expression in the kidney, which was associated with the reduc-
tion of the systolic BP that was elevated by a high-salt diet in 
DS rats.  These results suggest a role for ENaC in salt-sensitive 
hypertension[36].  The same group attempted to determine 
whether a high-salt diet in DR rats stimulated the expression 
level of ENaC.  These investigators divided the DS and DR 
rats into several salt diet groups as follows: DS and DR rats 
that were fed with a low-sodium diet (0.005% NaCl), a normal-
sodium diet (0.3% NaCl), or a high-sodium diet (8% NaCl).  
Four weeks after the high-salt diet in DS rats, an increase 
in the systolic BP was observed.  However, the BP was not 
altered in any of the other groups.  Subsequently, these inves-
tigators examined the expression level of α-ENaC mRNA and 
serum and glucocorticoid-regulated kinase 1 (SGK1) mRNA.  
They found that the expression level of α-, β-, γ-ENaC, and 
the SGK1 mRNAs was significantly enhanced by the high-
sodium diet in DS rats.  Interestingly, the expression of SGK1 
mRNA was down-regulated in DR rats that were fed a high 
sodium diet.  These observations suggest that the expression 
of ENaC and SGK1 mRNAs is abnormally regulated by the 
dietary sodium in salt-sensitively hypertensive rats and that 
this abnormal expression may be a factor that causes salt-
sensitive hypertension[37].  Convincing evidence indicates that 
the aldosterone activated mineralocorticoid receptor increases 
SGK1 gene transcription in the CCD, and consequently, SGK1 
strongly stimulates the activity and expression of the ENaC 
and renal Na+/H+ exchanger (NHE)[38-43].  High-salt intake 
may up-regulate both ENaC and SGK1 in DS rats.  However, 
functional studies that examine ENaC activity are required to 
evaluate the role of ENaC and SGK1 in salt-sensitive hyper-
tension in DS rats and the mechanisms by which the high-salt 
intake regulates ENaC and SGK1.  

Fenton and co-authors found that none of the ENaC sub-
units was increased in abundance in the inner medullas of DS 
rats compared with that of DR rats[44].  In fact, the α-subunit 
was strongly down regulated, which may be a consequence 
of the marked increase in 11β-HSD2 expression in the cells 
of the inner medulla.  Consistent with this view, the protein 
abundance of α-ENaC was markedly elevated following the 

Figure 1.  The topology of ENaC.  ENaC consists of at least three subunits 
including α, β, and γ subunits, each of which possesses two trans
membrane domains, a large extracellular loop, a cytoplasmic C-terminal 
domain and an N-terminal domain.
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carbenoxolone-induced inhibition of the 11β-HSD2 activity.  
These investigators also examined whether the ENaC subunits 
may be upregulated by a high-salt diet in DS rats.  How-
ever, Husted and co-workers showed that the ENaC activity 
is doubled in the IMCD cells of DS rats versus in that of DR 
rats[40, 45].  The reasons for this variability in ENaC activity 
and/or expression level in DS versus DR rats are poorly under-
stood at the present time.  Shehata and co-workers examined 
the complete coding sequences of three ENaC subunits and 
showed that there were no genetic differences within the 5’ 
and 3’ flanking regions in DS vs DR rats[46].  The alternative 
splicing of α-ENaC may regulate α-ENaC by formation of cod-
ing RNA species (α-ENaC-a and -b) and non-coding RNA spe-
cies (α-ENaC-c and -d).  The α-ENaC-a and -b mRNA levels 
are significantly higher in DR versus DS rats.  After 4 weeks 
of the high-salt intake, the level of α-ENaC-b was dramati-
cally elevated compared to that in DR rats fed a normal-salt 
diet.  These results suggest that α-ENaC-b is a salt-sensitive 
transcript.  Furthermore, among the four α-ENaC transcripts 
(-a, -b, -c, and -d), α-ENaC-b is a predominant transcript that 
exceeds α-ENaC-wt abundance by approximately 32 fold.  
α-ENaC-b may potentially act as a dominant negative protein 
for ENaC activity and rescue DR rats from developing salt-
sensitive hypertension on a high-salt diet[47].  

The molecular variations in ENaC and the risk for 
developing hypertension in humans
The search for common genetic variants in ENaC subunits 
that affect the susceptibility in less rare forms of hyperten-
sion took place soon after the discovery of mutations in α-, β-, 
and γ-ENaC that cause Liddle’s syndrome (Table 1).  The first 
variant that was associated with hypertension was T594M in 
the C-terminus of β-ENaC in black individuals.  This variant 
was found in approximately 8% of hypertensive individuals, 
whereas the variant was detected in only approximately 2% of 
normotensive individuals[48].  In another study, seven variants 
in β-ENaC, including G589S, T594M, R597H, R624C, E632G 
(last exon), G442V, and V434M (exon 8) were identified and 
almost found in black individuals[49].  The functional proper-
ties of the variants were evaluated in Xenopus oocytes express-
ing these mutants.  Interestingly, small but not significant 
differences were detected between the variants and wild-type 
ENaC.  The clinical evaluation of the family bearing the G589S 
variant, which provided the highest relative ENaC activity, 
did not show any cosegregation between the mutation and 
hypertension[49].  However, the lack of a significant increase 
in the Na+ current that was observed in Xenopus oocytes that 
overexpressed these variants cannot completely rule out 
any functional impact of the ENaC mutants in developing 
hypertension[49].  One possibility to explain why the associa-
tion studies of ENaC variants are often inconclusive is that 
many factors influence the ENaC activity.  Therefore, a variant 
that affects ENaC function in vitro may not necessarily cause 
Na+ retention, unless at the same time, the regulatory factors 
do not adjust accordingly.  The variants identified in the β- 
and γ-subunits of ENaC were almost exclusively identified 

in individuals of African origin.  However, the physiological 
significance of the β- and γ-subunit polymorphisms may par-
tially explain the high incidence of salt-sensitive hypertension 
in African Americans.  Among the black hypertensive popula-
tion, approximately 75% is salt-sensitive, characterized by a 
BP increase after dietary salt intake[2].  

To determine whether SCNN1B or SCNN1G, which encode 
β and γ subunits, respectively, were present in a patient who 
was clinically suspected to have Liddle’s syndrome with no 
familial history of hypertension, Wang and coworkers identi-
fied a mutation causing Liddle’s syndrome.  They demon-
strated that a frameshift mutation of the γ subunit resulted 
in a new termination site at the 585 codon of the γ subunit 
and the deletion of its PY motif.  Moreover, the parents of the 
patient, the other 50 randomly selected hypertensive patients, 
and 50 controls did not have the mutation that causes Liddle’s 
syndrome.  These results suggest that this frameshift mutation 
is a de novo mutation and not a common genetic variant[50].

Several α-ENaC variants at the residues 334, 618 and 663 
are possibly associated with the abnormal Na+ handling by 
the kidney and the salt-sensitive hypertension that is preva-
lent in black populations[51-54].  Several groups have studied 
whether these variants segregate with BP, and the outcomes 
are controversial[51, 53].  Ambrosius and coworkers reported 
that the allele of T663A was twice as common in whites and 
that T663A was associated with being normotensive in black 
and white populations[51].  The expression of T663A did not 
alter the basal Na+ current[51].  Kleyman’s group used Xeno-
pus oocytes expressing a mouse/human chimera (m(1-678)/
h(650-669)/T663A), which was generated by the replacement 
of the distal C terminus of the mouse α-subunit with the dis-
tal C terminus of the human α-subunit, and determined that 
the human αT663βγ ENaC has increased activity in Xenopus 
oocytes when compared with human αT663Aβγ ENaC.  The 
increase in the channel activity in human αT663βγ reflected 
an increase in surface expression[55].  Stockand’s group has 
reported that the polymorphic C618F and A663T ENaCs had 
greater activity compared with the wild-type channels in the 
excised patches with activity of channels increased 3.8- and 
2.6-fold, respectively[56].  This increase in the channel activ-
ity is associated with an increase in the surface expression of 
the polymorphisms.  The results obtained by these studies 
are consistent with the C618F and A663T polymorphisms 
leading to an elevated ENaC activity with the possibility that 
these polymorphisms facilitate the altered Na+ handling by 
the kidney[55, 56].  Iwai et al reported that a polymorphism in 
the promoter region of the α-ENaC gene G2139A is associated 
with BP status and that the G2139 allele significantly increased 
the risk of hypertension in the general Japanese population[57].   

Does oxidative stress induced by high-salt intake 
activate ENaC?
ENaC activity depends upon the number of channels in the 
apical membrane, the permeation properties, and the open 
probability of the channel (Po).  One of the best examples is 
the salt-sensitive hypertension of Liddle’s syndrome, in which 
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Table 1.  Genetic variants of ENaC and risk for hypertension.  

                                                                                                                                                                                     Mutant gene  
 
Genetic

               Genetic variant location                                Genetic variant frequency                                    function/ENaC            
Risk for

                 Ref variation
                                                                                                                                                                           activity               

hypertension
 

 
G589S	 Exon 12 of β-ENaC	 1/475 W hypertension	 ↑	 NS	 [49]
		  8/347 hypertension, 2/175 normotension	 NS 	 OR=2.4	 [106]	

i12-17CT	 Intron 12 of β-ENaC	 16/347 hypertension, 2/175 normotension	 –	 OR=4.6	 [106]

T594M	 Exon 12 of β-ENaC	 3/50 B hypertension	 NS	 NS	 [49]
		  17/206 hypertension, 3/142 normotension	 –	 OR=4.17	 [48]
		  7/126 B hypertension, 7/105 B normotension; 	 NS	 NS	 [107]
		  0/192 W hypertension

R597H	 Exon 12 of β-ENaC	 1/475 W hypertension	 NS	 NS	 [49]

R624C	 Exon 12 of β-ENaC	 1/50 B hypertension	 NS	 NS	 [49]

E632G	 Exon 12 of β-ENaC	 1/475 W hyptertension	 NS	 NS	 [49]

G442V	 Exon 8 of β-ENaC	 1/475 W hyptertension, 18/50 B hypertension	 NS	 NS	 [49]
		  0.002 W, 0.083 B normotension	 NS	 NS	 [51]

V434M	 Exon 8 of β-ENaC	 1/475 W hyptertension	 NS	 NS	 [49]

V546I	 Exon 13 of γ-ENaC	 8/347 hypertension, 1/175 normotension	 NS	 OR=2.4	 [106]

T387C	 Exon 3 of γ-ENaC	 Similar frequencies in hypertension and normotension, 	 –	 NS	 [108]
		  similar frequencies in B and W 

T474C	 Exon 3 of γ-ENaC	 Similar frequencies in hypertension and normotension, 	 –	 NS	 [108]
		  similar frequencies in B and W

C549C	 Exon 3 of γ-ENaC	 Similar frequencies in hypertension and normotension, 	 –	 NS	 [108]
		  similar frequencies in B and W 
C1990G	 Last Exon of γ-ENaC	 Similar frequencies in hypertension and normotension, 	 –	 NS	 [108]
		  similar frequencies in B and W 

594insP	 Rare mutant located outside	 One case of mild hypertension	 NS	 –	 [108]
	  the PY motif of γ-ENaC 

R631H	 Rare mutant located 39 to	 Two severe cases of severe hypertension	 NS	 –	 [108]
	 the PY motif of γ-ENaC 

A334T	 Exon 6 of α-ENaC	 0.031 W, 0.442 B normotension	 –	 NS	 [51]

C618F	 Exon 13 of α-ENaC	 0.002 W, 0.080 B normotension	 –	 NS	 [51]
			   ↑ 3.8-fold	 –	 [56]

T663A	 Exon 13 of α-ENaC	 0.293 W, 0.146 B normotension	 NS 	 Aassociates with 	 [51]
				    normotension	
			   ↑	 –	 [55]
			   ↑ 2.6-fold	 –	 [56]

G2139A	 Promoter region of α-ENaC	 1719/3989 J hypertension	 Promoter 	 ORtotal=1.31	 [57]
			   activity↑	 OR<60 y=1.77

Abbreviations and symbols: B, black; W, white; J, Japanese; NS, not significant; OR, odd ratio; ↑, increase; –, not determined.



793

www.chinaphar.com
Sun Y et al

Acta Pharmacologica Sinica

npg

a gain of function ENaC mutant enhances its trafficking to 
the plasma membrane and thereby increases its cell surface 
expression[4–6, 58–61], which leads to over reabsorption of Na+ 
and water.  

Evidence obtained in rats and humans suggest that high-salt 
diets also cause oxidative stress.  This high-salt intake induced 
increase in oxidative stress is more obvious in salt-sensitive 
hypertension[62, 63].  Furthermore, high-salt intake may also 
target the tissues and organs independent of hypertension via 
a mechanism of elevating reactive oxygen species (ROS)[64].  
In the absence of the prominent elevations of BP after salt-
loading, salt sensitivity may be revealed by the structural and 
functional injuries of the targeting organs such as the heart 
and kidney[65].  Recent studies have shown that hydrogen per-
oxide (H2O2), an isoform of ROS, stimulates ENaC and that 
high NaCl elevates ROS in CCD cells[66].  However, the mecha-
nism by which a high-salt diet induces an increase in ROS to 
stimulate ENaC is not known.  A high-salt intake is known 
to induce the compensatory natriuresis to maintain sodium 
homeostasis.  Reduced plasma aldosterone causes a decrease 
in α-ENaC mRNA level, which suggests an important role in 
the compensatory natriuresis[40].  Previous electrophysiological 
experiments assessed in renal CCD have indicated that dietary 
sodium intake and variations in aldosterone plasma levels 
regulates the abundance of functional ENaC in the apical 
plasma membrane[39].  A high or low Na+ diet for three weeks 
also influenced the distribution pattern of ENaC in the mouse 
kidney.  The regulation of ENaC function in vivo involves  
shifting the β- and γ-subunits from the cytoplasm to the apical 
plasma membrane and vice versa, respectively[12].  The inser-
tion of these subunits into the apical plasma membrane coin-
cides with the upregulation of the α-subunit and its insertion 
into the apical plasma membrane[67].  These studies together 
suggest that dietary salt modulates the expression pattern of 
ENaC subunits in the kidney and may stimulate its activity via 
enhanced ROS level, which in turn leading to an increase in 
Na+ reabsorption.  

Several studies have demonstrated that there is increased 
oxidative stress in animals with high-salt intake[68–71].  In 
experimental models of salt-sensitive hypertension, high-salt 
intake increased the markers of vascular and systemic oxida-
tive stress[1].  Studies in essential hypertensive patients have 
suggested that high-salt intake and/or salt sensitivity is asso-
ciated with impaired endothelial function[72–75].  Miyoshi et al[76] 
reported a decrease in acetylcholine-induced forearm vasodi-
lation in salt-sensitive hypertensive subjects regardless of the 
level of salt intake.  Increased ROS have a critical role in the 
initiation of hypertension and may be generated by the hyper-
tension itself, suggesting a positive-feedback mechanism.  In 
addition to the systemic effects of ROS, recent evidence dem-
onstrated that oxidative stress within the kidney plays a cen-
tral role in the pathophysiology of sodium retention by induc-
ing the tubulointerstitial accumulation of Ang II-positive cells.  
The prohypertensive role of intrarenal ROS is suggested by 
the strong correlation between the renal superoxide-positive 
cells and the severity of hypertension in the spontaneously 

hypertensive rats (SHR)[77].  However, there is a lack of infor-
mation at the present time regarding whether oxidative stress 
induced by high-salt intake affects the BP via influencing 
ENaC activity.  In our preliminary studies, we found that the 
high-salt intake decreased the expression level of α-ENaC in 
the CCD cells of DR rats, but not that in DS rats (unpublished 
observations).  When cultured CCD cells are treated with high 
NaCl, ROS accumulated within these cells.  Using patch-clamp 
experiments, we found that H2O2 stimulates ENaC activity.  
These results suggest that high-salt intake may activate ENaC 
through an elevation of ROS [unpublished observations].

Does altered activity of ENaC affect the function of the 
vascular endothelium and sympathetic nervous system 
to influence BP?
Although ENaC was known as the typical sodium channel 
in the kidney, the colon and the lung, vascular endothelial 
cells were also shown to express ENaC and mineralocorticoid 
receptors[21, 78, 79].  Endothelial cells are targets for aldosterone, 
which activates the apically located ENaC, and its activity 
modifies the biomechanical properties of the endothelium.  
Therefore, ENaC is proposed as the key mediator of aldoster-
one-dependent BP control in the endothelium[80].  Several stud-
ies, in different cell types including CCD and endothelial cells, 
have suggested that ENaC may function as a mechanosen-
sor and that mechanical stimuli may activate ENaC[22, 81, 82].  
Because endothelial ENaC inhibition may activate nitric oxide 
(NO) synthase[83], it is completely possible that altered blood 
flow (shear stress), which is caused by over reabsorption of 
Na+ via ENaC located at distal nephron, may affect the NO 
production in endothelia.  High-salt intake may cause an 
increase in plasma [Na+], which may or may not be detectable 
depending upon the extent of water intake and the timing of 
blood sampling relative to high-salt intake.  Fang and cowork-
ers showed that four days after 8% high-salt diet exposure, 
plasma [Na+] increased by 3–4 mmol/L in SHR and Wistar 
Kyoto rats[84].  In normotensive rats, when salt intake increased 
from 10 to 250 mmol/d over 5 d, the plasma [Na+] increased 
by 3 mmol/L.  In addition, reducing the salt intake from 350 to 
12–20 mmol/d lowered the plasma [Na+] to a similar extent by 
3–4 mmol/L[85].  Huang and coworkers showed that high-salt 
intake increased [Na+] in the cerebrospinal fluid (CSF) up to 5 
mmol/L in DS rats and SHR rats but not in DR rats[86].  Simi-
lar to the results obtained from the animal models, [Na+] in 
CSF was increased by 2–3 mmol/L in patients with both salt-
sensitive and non-salt-sensitive hypertension after a 7-d high-
salt diet (16–18 g/d) compared to those given a low-salt diet 
(1–3 g/d)[87].  Nevertheless, high-salt diets elevated the arterial 
pressure in salt-sensitive individuals.  These results suggest 
that increases in plasma [Na+] may trigger this effect[84] via a 
mechanism that has not been elucidated.

Previous studies have suggested that DS rats have abnor-
malities in the sympathetic nervous system (SNS)[88, 89] and 
endothelial function[90, 91], which causes significant vascular 
resistance.  In addition, there is evidence that supports the 
hypothesis that abnormal modulation of SNS is involved in 
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salt-inducd hypertension.  Salt loading has been shown to 
augment the sympathetic activity in DS rats but not in DR 
rats[92–94].  The intracerebroventricular (ICV) infusion of sodium 
caused sympathoexcitatory and pressor responses to a greater 
degree in DS rats than in DR rats[85, 95].  The strict regulation of 
[Na+] in the CSF is crucial for the normal function of neurons.  
An increase in CSF [Na+] by as little as 2 mmol/L can increase 
the firing rate of neurons.  A chronic 5 mmol/L increase in CSF 
[Na+] causes sympathetic hyperactivity and hypertension[96–98].  
Increases in CSF [Cl–] or the osmolarity of CSF did not cause 
such sympathoexcitation and hypertension[99].  Because the 
role of ENaC in regulating sodium transport across the epithe-
lia is important, investigators started to study whether ENaC 
in neural components also plays a role in salt-sensitive hyper-
tension.  Stoichiometrically different populations of ENaC 
may be present in both epithelial and neural components in 
the brain, which may contribute to the regulation of CSF and 
interstitial Na+ concentrations and neuronal excitation[90, 97].  
ENaC subunits are also expressed in sensory nerve endings 
in the rat foot pad[100] and in the trigeminal mechanosensory 
neurons[101].  However, the function of the ENaC subunits in 
these tissues has not yet been elucidated.  Functional studies 
have suggested the presence of specific Na+ channels, pre-
sumably ENaC, in the brain that are activated by aldosterone 
or a high-salt diet and blocked by amiloride or benzamil.  In 
Wistar rats, ICV infusion of aldosterone or Na+-rich artificial 
CSF increased BP and renal sympathetic nerve activity.  In DS 
rats but not DR rats, a high-salt diet or ICV infusion of aldos-
terone caused sympathoexcitation and hypertension.  The 
blood-brain barrier in DS rats is five to eight times more per-
meable to Na+ than that in DR rats[102].  Increases in CSF [Na+] 
are observed in DS rats but not DR rats on a high-salt diet and 
precede changes in BP by 1–2 d[86].  Importantly, the responses 
to aldosterone or Na+-rich artificial CSF in Wistar rats and to 
aldosterone or a high-salt diet in DS rats can be prevented by 
ICV infusion of benzamil or spironolactone[103–105].  These find-
ings suggest that the mineralocorticoid receptor (MR)-medi-
ated activation of sodium channels in the brain is responsible 
for the mechanisms leading to increased sympathetic outflow 
and hypertension.

Conclusion
We present evidence that places ENaC in a central position 
for Na+ retention, which is necessary to achieve a state of high 
BP in the salt-sensitive population.  The Na+ reabsorptive site 
(ENaC) does not act alone in the mechanisms for developing 
hypertension.  The emerging evidence is compelling for the 
consideration of ENaC as the additional requisite participant 
in endothelia and SNS (Figure 2).  However, the mechanisms 
by which the activation of ENaC to induce Na+ retention 
and the consequences in the vascular compartment and SNS 
require further investigation.  
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