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Abstract

Seinernema carpocapsae is an insect parasitic nematode widely used in pest control programs.
The efficacy of this nematode in controlling insects has been found to be related to the
pathogenicity of the infective stage. In order to study the parasitic mechanisms exhibited by this
parasite, a cDNA library of the induced S. carpocapsae parasitic phase was generated. A total of
2500 clones were sequenced and 2180 high-quality ESTs were obtained from this library. Cluster
analysis generated a total of 1592 unique sequences including 1393 singletons. About 63% of the
unique sequences had significant hits (e<1e-05) to the non-redundant protein database. The
remaining sequences most likely represent putative novel protein coding genes. Comparative
analysis identified 377 homologs in C. elegans, 431 in C. briggsae and 75 in other nematodes.
Classification of the predicted proteins revealed involvement in diverse cellular, metabolic and
extracellular functions. One hundred and nineteen clusters were predicted to encode putative
secreted proteins such as proteases, proteases inhibitors, lectins, saposin-like proteins, acetyl-
cholinesterase, anti-oxidants, and heat-shock proteins, which can possibly have host interactions.
This dataset provides a basis for genomic studies towards a better understanding of the events that
occur in the parasitic process of this entomopathogenic nematode, including invasion of the insect
haemocoelium, adaptations to insect innate immunity and stress responses, and production of
virulence factors. The identification of key genes in the parasitic process provides useful tools for
the improvement of S carpocapsae as a biological agent.

*Note: Nucleotide sequence data reported in this paper are available in GenBank under accession numbers GR977153-GR979332.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Seinernema carpocapsae (Nemata: Rhabditida) is an entomopathogenic nematode (EPN)
produced and commercialized worldwide to control a large number of insect pests with large
economical impact [1,2]. This nematode is an obligate parasite completing its entire life
cycle in an insect host. The infective juvenile (1J) is the resistant third juvenile which is
encased in a double external cuticle with the digestive tract closed carrying into a specific
part of the gut the symbiotic bacterium Xenorhabdus nematophila [3]. 1J moves freely in the
environment and is able to localize and contaminate the host in response to different insect
cues [4] entering through natural openings, principally anus and mouth. After 1J comes in
contact with the insect tissues, it develops a parasitic phase that is able to invade the insect
haemocoel and kill susceptible hosts [5].

Though S carpocapsae is believed to be pathogenic to a large number of insects its efficacy
is quite variable. Experimental assays showed that efficacy depends on the target insect and
moreover it depends on the specific nematode strain used against each insect [6,7]. These
findings support the assumption that the efficacy of S. carpocapsae is related to the
efficiency of the parasitic phase in promoting parasitism of the target insect, which includes
the ability to overcome insect defences, to invade and produce virulence factors.

Upon contact with the host, the nematode faces the insect defences that are suggested to be
highly potent and includes hummoral and cellular effectors like reactive oxygen species
[8,9]. It is generally accepted that the nematode has the ability to survive insect defences [5],
however, encapsulation have been reported in some species of four insect orders [10],
suggesting a host parasite dialog. Pseudalaetia unipuncta larvae exposed to S. carpocapsae
are able to develop cellular encapsulation of invasive nematodes, blocking their
development and probably the release of the symbiotic bacteria, thus preventing the success
of parasitism [11].

The ability of S carpocapsae to invade insect haemocoelium is demonstrated by the fact
that more than 50% of a susceptible insect like Galleria mellonella had nematodes inside 12
h post-exposure [12]. However, in resistant P. unipuncta larvae the number of nematodes in
the haemocoelium is reduced (unpublished data). These finds suggest that invasion ability
must contribute to the efficacy of these parasites.

In most of the infections caused by S. carpocapsae, susceptible insects died 48-72 h after
contamination. Experimentally it has been shown that either the associated bacteria or the
axenic nematode are able to kill insects despite the efficacy was reduced when each
pathogen was applied individually [12]. The associated bacteria are able to cause a
generalized septicaemia and express a large set of toxic factors including enzymes and
insecticidal toxins, thereby inducing insect mortality [13,14]. The nematode itself depletes
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host tissue by feeding also releases toxic factors of peptidic nature that cause insect
mortality [15-17]. So far the relevance of the toxic factors produced by the nematode is not
known, however, it was shown that a strain with low virulence was secreting and excreting
less protein with lower proteolytic activity than a high virulence strain [12].

Taken together these findings suggest that nematode parasitic mechanisms are related to the
efficacy of these biological agents. Different aspects in host-parasite relationships have
benefited from genomic approaches in other parasitic nematodes including the
entomopathogenic nematode Heterorhabditis bacteriophora [18-20], however, very little is
known about the genomics of S carpocapsae. In this work we constructed a cDNA library
with transcripts from the parasitic phase of the nematode and we sequenced and analyzed
2500 ESTSs that resulted in the identification of a set of genes that are putatively involved in
parasitic mechanisms.

2. Materials and methods

2.1. Induction of nematode parasitic phase

S carpocapsae (Breton strain) used in this work was grown in an artificial medium
according to Bedding [21]. The infective juveniles (1J) were conserved in tap water for 1
month at 10 °C. To induce recovery of the parasitic phase, 1J were superficially disinfected
with 0.5% sodium hypochlorite, rinsed abundantly with sterilized water and transferred to a
Petri dish containing 7 ml of the Tyrode's solution with 10% haemolymph of the natural
host, G. mellonella larvae. To avoid contamination 1% penicillin-streptomycin-neomycin
(Sigma) was added. Nematodes were incubated under agitation at 25 °C for 6 h. These
nematodes were harvested in a filter paper, rinsed several times with sterilized water and
immediately used for RNA extraction.

2.2. cDNA library construction

Total RNA was extracted using Trizol reagent following the manufacturer's
recommendations (Invitrogen). The cDNA library was constructed from total RNA using
SMART approach (BD Biosciences, Clontech). Briefly, first-strand cDNA synthesis was
performed with total RNA in 10 pl of final volume and 100 units of PowerScript reverse
transcriptase. All other components as well as the conditions of reaction were in accordance
with the recommendations of the supplier. First-strand cDNA was amplified by PCR with
Advantage 2 polymerase mix (BD Biosciences, Clontech) using 5° PCR primer and CDS
111/3” PCR primer. Amplified cDNA was purified with YorBio PCR purification kit
(YYorkshire Bioscience Ltd., UK). cDNA library normalization was performed using the
Trimmer kit (Invitrogen) to correct for over abundance of highly expressed transcripts
according to supplier instructions. Fifty micrograms of ds-cDNA were treated with protease
K, digested with S restriction endonucleases and fractionised on CHROMA SPIN-400
columns. cDNA was ligated to pDNR-LIB (CmR) vector digested with Si. The product of
ligation was then transformed into 2 ml of XL10-Gold KanR (Stratagene) electrocompetent
cells prepared in YorBio. Titre was determined by plotting the pooled transformants on LB
agar plates supplemented with chloramphenicol (30 ug/ml), incubated at 37 °C over night
and colony forming units were counted.
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2.3. Plasmid isolation and DNA sequencing

Clones were transferred to LB medium with 50 pg/ml chloramphenicol and grown for 20 h
prior to plasmid isolation. Plasmid DNA was isolated from 2500 randomly selected clones
using JETQUICK Plasmid Purification Spin Kit (Genomed, Germany). Sequencing was
performed using M13 forward primer in STABVIDA facilities service.

2.4. EST processing, contig assembly and analysis

Vector sequences, adapter regions, and poly(A) tails were trimmed. High-quality ESTs (at
least 100bp) were then assembled into clusters of contiguous sequences and subsequently
into clusters as previously described [22]. The consensus sequences of contigs and
singletons comprised the unique sequences, which were compared against the National
Center for Biotechnology Information (NCBI) non-redundant protein database using
BLASTX [23] (E-value cut-off E< 1e—05) and summarized on cluster level.

2.5. Gene ontology annotation

Gene ontology annotation was performed using BLASTx through NCBI with the unique
sequences (consensus sequences of assembled contigs and the singletons). Sequences with
BLASTX hits were annotated according to gene ontology terms (GO) using Blast2GO
software [24]. Hits with E>1e-05 were discarded. The remaining hits were grouped by
organism. To assign putative functions to the unique sequences, the GO hierarchical terms
of homologous genes from the Interpro protein databases were extracted. In addition, the
unique sequences with homologs to enzymes participating in metabolic pathways were
mapped in accordance with the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Enzyme commission (EC) numbers were acquired for the unique sequences by WU-
BLASTX searching (E< 1e—05) the KEGG database (v43) [25]. The EC numbers were then
used to putatively map unique sequences to specific biochemical pathways.

2.6. Secreted protein identification

All ESTs were conceptually translated into peptides. Secreted proteins were predicted using
a combination of programs, to minimize the number of false positive predictions. Firstly, a
WoLF PSORT analysis (http://wolfpsort.org/) [26] was performed to predict the sub-cellular
localization. Blast analysis was then conducted on the NR database at NCBI to identify
similarity and to evaluate the probability for secretion. Only ESTSs that contained the N-
terminal sequence were analyzed using SignalP prediction (http://www.cbs.dtu.dk/services/
SignalP/) [27]. A signal sequence was considered present when it was predicted both by the
artificial neural network and the hidden Markov model prediction approaches (SignalP-NN
and SignalP-HMM, available as options within SignalP).

3. Results and discussion

3.1. Overview of ESTs sequence analysis

The cDNA library was constructed with the transcripts of the parasitic phase of S
carpocapsae induced for 6 h with insect haemolymph in vitro. After normalization of this
library a total of 2500 ESTs were sequenced producing 2354 readable sequences
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representing 94.6% success rate. After removal of clones with poor quality or short inserts
(100 bp cut-off) 2180 high-quality ESTs were produced with an average length of 563+246
bp. The cumulative length of all high-quality EST sequences was 1,227,707 bases.
Assembling the 2180 ESTs resulted in 1592 unique transcripts consisting in 199 contigs
(787 ESTs) and 1393 singletons. The average length of each unique transcript was 575+259
bp, a total length of 915,881 bases that represents about 0.4% of the entire S. carpocapsae
genomic DNA [28]. One hundred and twenty-four of the 199 contigs contained 2 ESTs
(62.3%), 29 contained 3 ESTs (14.6%), 19 contained 4 ESTs, 10 contained 5 ESTs and the
remaining 17 contained 6-18 ESTs. Clearly most of the contigs were formed by a reduced
number of ESTs, thus reflecting efficiency in normalization and subtraction.

BLASTX analysis against the non-redundant (NR) protein sequences in GenBank indicated
that 999 (62.8%) of the unique transcripts had significant match to known proteins, whereas
the remaining 593 had no significant matches (E>1e—-05) in publicly available databases,
probably representing new genes. 6.4% of the hits had an E-value of 1e-100, 66.1%
between 1e-20 and 1e-99, and 27.5% between 1e-19 and 1e—05. Comparative analysis
with other complete and partial nematoda genomes revealed that 37.7% clusters have
identities in C. elegans (Additional file 1), which is the most well-characterized nematode in
many respects, particularly in its genome, genetics, biology, physiology, and biochemistry.
Moreover 51.5% of these homologs correspond to C. elegans genes that have been silenced
by RNAI (Additional file 3), thus providing useful information on function of the
orthologous genes in S carpocapsae [29-31]. 43.1% clusters had identities in C. briggsae
and 7.5% in other nematodes (Additional files 2 and 3).

3.2. Annotation and functional classification

Transcripts were categorized by functions based on the gene ontology (GO) classification
(www.geneontology.org). Inter-ProScan (ftp:/ftp.ebi.ac.uk/pub/software/unix/iprscan) was
used to match S. carpocapsae clusters to protein domains and subsequently to the three
organizing principles of the GO hierarchy(Fig. 1 and Additional file 4). Of the 999 NR hits,
842 (84.3%) clusters matched InterPro domains, and 995 (99.6%) mapped to GO. Complete
listing of S. carpocapsae assignments can be viewed through the AmiGo browser at http://
www.nematode.net [32].

Unique sequences with best matches to EC numbers were also assigned to a specific KEGG
pathway, as an alternative functional classification. These sequences were classed into 11
functional categories (Table 1 and Additional file 5). Carbohydrate metabolism (14.4%),
amino acid metabolism (9.6%), and cofactors and vitamins metabolism (9.6%) are the best-
represented pathways. Complete listing of all KEGG mappings including graphical
representation is available at http://www.nematode.net [32].

3.3. Transcripts analysis

Table 2 summarizes the most representative clusters found in the analyzed transcripts,
comprising genes encoding ribosomal proteins, elongation factor 1-gamma, cytochrome c
oxidase subunit I and 111, to list a few, which have been also identified as the most abundant
transcripts in other nematode EST projects [22,33]. Ribosomal proteins have been shown to
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play roles in stress tolerance in yeasts, plants and nematodes [34-36]. Cluster SC00194.cl
with 10 ESTs had significant identity to lysine-rich arabinogalactan protein 18 precursor in
Arabidopsisthaliana [37,38]. So far, arabinogalactan protein in nematodes has only been
reported in the plant nematode Heterodera schachtii [39]. Genes encoding anti-oxidant
factors such as glutathione S-transferase (cluster SC00184.cl) and an oxidation resistance
protein (cluster SC00193.cl) were identified. Anti-oxidant factors had been reported in
several parasitic nematodes playing important roles by counteracting ROS produced by host
[18,40,41].

Cluster SC00179.cl encodes for transthyretin-like protein (ttl), which is one of the abundant
nematode-specific domains [34]. Nematode ttl protein was described in the free-living
nematodes C. elegans [42], in the plant parasitic nematode Radopholus similisand in the
animal parasitic nematode B. malayi [43,44]. However, the number of ttI-ESTs available in
public databases is higher in parasitic nematodes, particularly in libraries constructed from
the parasitic phase, than in free-living nematodes, thus suggesting its involvement in
parasitism.

Cluster SC00139.cl is another abundant cluster and matches trypsin-like serine protease
from S. carpocapse. Serine proteases are the major proteolytic enzymes expressed by
parasitic nematodes and are frequently suggested to be involved in host—parasite interactions
[45].

Finally, 3 clusters with no significant similarity with any sequence in the non-redundant
protein database were identified. These last clusters have a GC content of 31.2% which is
different from that of 50.6% found in sequences that have homology, thus indicating they
are probably part of new genes specific to S. carpocapsae.

3.4. Secretome analysis

Based on a combination of different programs, 119 unique sequences were predicted
encoding putative secreted proteins in the present dataset (Additional file 6). Seventy-four
putative secreted proteins had similarity to known proteins in the NCBI database, 35 had
similarity in C. elegans, 23 in C. briggsae, 14 in B. malayi, 10 in S. carpocapsae and 10 in
other plant and/or animal parasitic nematodes. Twenty-eight of putative secreted proteins
matched hypothetical proteins and 18 had no similarity to any sequences available in current
databases.

Proteases are the most represented among the predicted secreted proteins identified in S
carpocapsae ESTs (Table 3). Nine clusters were identified with homology to diverse serine
proteases including trypsine-like and elastases. At present two serine proteases were purified
from the secreted—excreted products of the parasitic phase of S. carpocapsae that were
shown to be interacting with insect host defences and with insect mid-gut cells, thus
probably helping in the parasitic process [46,47]. Also an elastase-like serine protease was
up-regulated in the parasitic phase of this nematode [48]. Five clusters had similarity with
members of the metalloprotease family. This protease family has been suggested to be
involved in the hydrolysis of extracellular matrix components like type | collagen [49]. The
cluster SC00878.cl has a particularly interesting match to metridin-like ShK toxin domain
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(SMART accession number: SM0254). This toxin domain was first identified in a family of
sea anemone potassium channel toxins [50] although a search on GenBank reveals the
presence of this toxin domain in a wide variety of organisms including C. elegansand C.
briggsae. Five aspartic proteases and 3 putative cysteine proteases belonging to family C1
papain-like with homologs in C. elegans were also identified. Aspartic proteases have been
identified in other parasitic nematodes and suggested to be participating in tissue invasion
and in extracellular protein digestion [51-53], whereas cysteine proteinases have been
implicated in invasion, tissue destruction, anticoagulation, nutrition, and immune evasion in
many helminths [54].

Ten clusters were identified encoding proteins with similarity to serine protease inhibitors
and 3 clusters were identified as homologs to cystatins, one of which (SC00822.cl) had very
high homology to S. carpocapsae. Cystatin has been reported to be up-regulated in the
parasitic phase of this nematode [55]. Parasite-derived protease inhibitors are recognized to
play a variety of roles in the survival of the parasite by modulating exogenous host proteases
[56-59].

Other clusters found related to parasitism were lectins (5 clusters) and acetylcholinesterase
(4 clusters). Lectins and AchE are speculated to play important roles in immunomodulation,
namely in nematodes inhabiting alimentary tract [60-63].

Cluster SC00264.cl had 49% similarity to a fatty acid retinoid binding protein (FAR)
inthenematode O. ostertagi. FARSs are thought to be involved in host—parasite interactions
and were also described in the animal parasitic nematodes A. caninumand B. malayi and in
the plant parasitic nematode Globodera pallida [64-66].

Two clusters (SC00346.cl and SC00926.cl) sharing homology to saposin-like protein in
Entamoeba invadens and B. malayi, were interesting. The saposin-like protein family
comprises pore-forming peptides, which have been identified in a variety of organisms
including the secreted products of blood-feeding nematodes H. contortusand A. caninum
[67,68]. In C. elegans, a family comprising 29 genes of saposin-like protein and saposin-like
domain containing protein has been identified. The gene spp-1 in this family (Gene ID:
TO7C4.4) was expressed as a recombinant in E. coli and proved to have antibacterial activity
[69]. The genes spp-1 and spp-7 in the same family were reported to belong to the innate
defence system of C. elegans [70]. In S. carpocapsae saposin-like proteins could potentially
be involved in the modulation of monoxenic relation with the symbiotic bacteria.

3.5. Stress-related proteins

Twenty-six clusters encoding different families of heat-shock proteins (HSPs) were
identified in the present transcripts analysis, including transcripts of 90, 70, 60, 40 and
20kDa, alpha-crystallin-type heat-shock proteins, heat-shock factor DnaJ and TCP, and
binding proteins (Table 4). HSPs are known to be expressed in response to stress conditions
including those caused by hosts in parasites [71]. In Steinernema species Hsp40 expression
was reported to be related to desiccation tolerance of infective juveniles [72].

Mol Biochem Parasitol. Author manuscript; available in PMC 2014 May 05.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Hao et al.

Page 8

In S carpocapsae parasitic transcripts, thioredoxin oxidase, glutathione S-transferase and
peroxiredoxin were also predicted. Anti-oxidant proteins of parasitic nematodes have been
suggested to be involved in protection against reactive oxygen and nitrogen species
generated by the host immune responses [73-76].

4. Conclusions

This study presents the first analysis of cDNA transcripts expressed in the parasitic phase of
the entomopathogenic nematode S. carpocapsae. Though most of the genes identified were
predicted to encode products involved in metabolic activities, a significant number of genes
are putatively related to pathogen-host interactions. Putative secreted proteins that could act
as virulence factors against insects are part of these parasitism-related genes. Among these
are proteases belonging to serine, cysteine, aspartic and metalloproteases families are
hypothesised to be participating in invasion of the host and evasion from the host defences.
Protease inhibitors were also identified and are suggested to be interacting with host
defences. Other identified proteins such as lectins and AchE have a role in
immunomodulation and saposin-like proteins are suggested to have antimicrobial activity.
Moreover, a large number of expressed genes were related to stress survival revealing the
high investment of this specific phase of the nematode to adapt to the conditions imposed by
the host.

About 32% of transcripts analyzed had no homology with any known gene in publicly
databases. These genes probably are unique to this nematode and likely related to its
particular way of life characterized by the alternation of a symbiotic with a parasitic phase.
This EST collection opens new avenues in improving the efficacy of entomopathogenic
nematodes for pest control by the use of recombinant DNA. It also represents a significant
addition to the existing EST resources of nematode species, and serves as a valuable tool for
functional genomic analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Gene ontology (GO) mapping for Steinernema carpocapsae clusters by biological process (A), cellular component (B), and
molecular function (C). There were 444, 295 and 576 unique clusters that mapped to the three categories, respectively. (For
details see Additional file 1. Notice that individual categories can have multiple mappings resulting in a sum greater than 100%.)
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Table 1

KEGG biochemical pathway mapping for S. carpocapsae clusters.

Page 14

KEGG categories Unigue No. of UniqueNo. of  No.of ESTS  Representative level (%)2
clusters enzymes

1.1 Carbohydrate metabolism 229 126 488 14.38
1.2 Energy metabolism 77 50 113 4.84
1.3 Lipid metabolism 115 89 274 7.22
1.4 Nucleotide metabolism 126 45 190 7.91
1.5 Amino acid metabolism 153 149 367 9.61
1.6 Metabolism of other amino acids 56 41 73 3.52
1.7 Glycan biosynthesis and metabolism 91 28 146 5.72
1.8 Biosynthesis of polyketides and nonribosomal 48 8 64 3.02
peptides

1.9 Metabolism of cofactors and vitamins 152 66 196 9.55
1.10 Biosynthesis of secondary metabolites 80 49 147 5.03
1.11 Xenobiotics biodegradation and metabolism 97 48 257 6.09

aThe representative level (%) was calculated from [(number of clusters/total number of clusters)x100%].
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