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Linkage analysis in multivariate or longitudinal context presents both statistical and computational

challenges. The permutation test can be used to avoid some of the statistical challenges, but it

substantially adds to the computational burden. Utilizing the distributional dependencies between

π ̂(defined as the proportion of alleles at a locus that are identical by descent (IBD) for a pairs of

relatives, at a given locus) and the permutation test we report a new method of efficient

permutation. In summary, the distribution of π̂ for a sample of relatives at locus x is estimated as a

weighted mixture of π̂ drawn from a pool of ‘representative’ π̂ distributions observed at other

loci. This weighting scheme is then used to sample from the distribution of the permutation tests at

the representative loci to obtain an empirical P-value at locus x (which is asymptotically

distributed as the permutation test at loci x). This weighted mixture approach greatly reduces the

number of permutation tests required for genome-wide scanning, making it suitable for use in

multivariate and other computationally intensive linkage analyses. In addition, because the

distribution of π̂ is a property of the genotypic data for a given sample and is independent of the

phenotypic data, the weighting scheme can be applied to any phenotype (or combination of

phenotypes) collected from that sample. We demonstrate the validity of this approach through

simulation.
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Despite the recent development of association methods in general, and genome-wide

association in particular (Neale and Sham 2004), linkage analysis remains a useful technique

in the identification of genomic regions that may harbor quantitative or qualitative trait loci.

Linkage analysis is robust to population stratification, and is expected to yield signals when

multiple variants give rise to phenotypic variation (allelic heterogeneity). Multivariate

linkage analyses of correlated or longitudinal data can increase the power and

interpretability of results. At the same time, certain statistical problems and computational

limitations that are inherent in linkage analysis of complex traits hinder its application. The

vast majority of multivariate linkage analyses have been conducted using extensions of the

univariate variance components (MVC) model (Amos 1994; Wang and Elston 2007).

However, a major limitation of the MVC approach arises from parameters estimates at the

boundaries of the parameter space, which leads to asymptotic distributions characterized by

complex mixtures of χ2 distributions with different degrees of freedom which are influenced

by the covariance between variables and the specific hypotheses tested (Amos et al. 2001;

Visscher 2006).

The calculation of empirical P-values provides the most general solution to this problem.

Currently the two most popular methods for obtaining empirical P-values for linkage

analyses involve using ‘gene-dropping’ simulations or permutation to randomize the

relationship between genotypic and phenotypic data. Both methods produce asymptotically

unbiased estimates of significance (Churchill and Doerge 1994; Ott 1989). Gene-dropping

requires the simulation of unlinked genotypic data that preserve the information content,

allele frequency and patterns of missing data that are observed within the ‘true’ genotypic

data. Alternatively, permutation can be used to randomize either the coefficient of genotypic
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sharing π̂, or the phenotypes, across relative pairs. Essentially, the connection between the

genotypic and the phenotypic data is deliberately disrupted and the linkage analysis is

repeated over a large number of permutations in order to obtain an empirical distribution of

test statistics for which the null hypothesis is true. The test statistic obtained from the

original, un-permuted dataset is then compared with this empirical distribution to assess

significance. This approach has an attractive simplicity, but it does require that the

permutations are performed across pedigrees with the same family structure by first

permuting across families of the same size and then permuting within families. However,

while empirical P-values offer robustness against violation of the assumptions of statistical

methods (Churchill and Doerge 1994; Ott 1989), they remain computationally intensive for

multivariate analyses.

In a genome scan, linkage analysis is conducted at a large number of loci (typically 500–

3,500) across the autosomes. Ideally, simulation and permutation methods should be

employed at each locus in the genome scan. The computational time required to obtain

empirical significance based on k replicates is k times that required for the initial analyses.

For example, if we chose to examine evidence for linkage at 1 cM intervals, resulting in

~3,500 analyses that each take ~1 min, running 5,000 permutations or stimulations would

require to 291,667 h (or just over 33 years) of computation time to generate the null

distribution, with additional processing time required to extract the empirical P-values from

the distribution. Thus, the time required to obtain empirical P-values multivariate analyses

especially when using large samples and complex pedigree structures, can be prohibitive.

Several solutions have been proposed to overcome this computational burden. Sequential

stopping (or adaptive permutation) strategies, adjust the number of simulations or

permutations conducted at each locus so that fewer simulations are performed for less

significant loci (Besag and Clifford 1991). While in the replicate pool method a small

number of simulations or permutations are conducted at each loci, the per-family LOD score

contributions are saved and resampled (Song et al. 2004; Terwilliger and Ott 1992;

Wigginton and Abecasis 2006; Zou et al. 2004). These two methods have also been

combined (Song et al. 2004).

Duffy has implemented the sequential stopping rule for a range of univariate analyses in

SIBPAIR (http://www.qimr.edu.au/davidD/#sib-pair), and Wigginton and Abecasis (2006)

have implemented the replicate pool in PSEUDO for use with the Kong and Cox NPL test

(Kong and Cox 1997) conducted by MERLIN (Abecasis et al. 2002). However, while

PSEUDO can examine convergent linkage peaks from univariate analyses of correlated

traits there are currently no applications that implement either method for use with

multivariate linkage analyses.

Here we propose a new efficient permutation method for calculating point-wise empirical P-

values designed for use with uni- or multivariate variance components linkage analyses,

which uses weighted mixtures to reduce the number of loci at which permutation must be

conducted.
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Methods

Background

Using permutation to obtain empirical P-values in the context of linkage analysis has been

described previously (Iturria et al. 1999; Wan et al. 1997). In brief, consider a variance

components linkage analysis of in a sample of full sibling pairs. Note that while we use the

likelihood ratio χ2 test to illustrate the method, in principle other test statistics may be

employed. For each family at a given locus the data under analysis will consist of the

phenotypes, any covariates and the coefficient of genotypic sharing at the loci (π̂).

Assuming an alternate hypothesis of linkage (i.e., ), and a null hypothesis of no

linkage ( ), the significance of linkage can be assessed using a permutation test

which randomizes the relationship between the phenotypes and π̂ while preserving the

covariation among the phenotypes and the relationship between the phenotypes and the

covariates. The linkage analysis is then conducted using the randomized data, yielding a new

χ2 statistic, and the process is repeated m times to obtain a set of , i = 1…m. Finally,

χ̂2, the statistic computed with the observed data, is compared to the empirical distribution

of χ̂2 (P) under the null hypothesis. It is important to note that an empirical P-value derived

in this way is point-wise in nature, that is it does not control the experiment- or family-wise

type one error associated with testing many hundreds or thousands of loci across the

genome. A false discovery rate procedure could be used after point-wise empirical P-values

have been obtained.

As the phenotype and covariate information remain constant for all loci across the genome it

follows that for any given locus from a genome-wide linkage scan, the results of a series of

m permutation tests will depend on the distribution of the probabilities that a pair of relatives

share zero, one or two alleles identical by descent (IBD) at that locus. In effect, any two loci

at which the distributions of π̂ (which is computed as P(IBD = 2) + 0.5P(IBD = 1)) are

identical will yield identical empirical P-values (if m is sufficiently large).

Consider a linkage analysis conducted at i regular intervals across the autosomes using a

multipoint algorithm to compute IBD. In the absence of genotype based selection, and

assuming that the sample remains constant across loci, the distribution of π̂ at each locus

under analysis does not vary markedly (Visscher et al. 2006). For example, given a sample

of full sib-pairs the distribution of π̂ will be polymodal with the primary mode approached

0.5 and secondary modes at 0 and 1.

Given the relatively low variation in the distribution of π̂, we hypothesized that it would be

possible to approximate the distribution of π̂ at a given locus x by creating a weighted

mixture of l loci. If this were so, then a weighted bootstrap of permutation results from each

of the l loci would closely approximate the actual empirical significance that would have

been obtained by permutation at loci x. In this article, we use simulation to explore the

feasibility and applicability of obtaining empirical P-values with this weighted permutation

method.

Medland et al. Page 4

Behav Genet. Author manuscript; available in PMC 2014 May 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Thus, we illustrate the use of this technique for both univariate and multivariate variance

components analyses. In addition we examined the robustness of the method to non-

normality, selection, and ordinal phenotypes. To this end, approximate P-values obtained

from the proposed weighted permutation approach were compared to empirical P-values

derived from the standard permutation approach (described above). The proposed weighted

permutation method, simulation and analysis of data are described below.

Weighted permutation method for obtaining approximate P-values

A five part process was used to estimate empirical P-values via the weighted permutation

approach. R and Mx scripts that implement the method are available from http://

www.vipbg.vcu.edu/~sarahme/permute.html.

Distribution binning—At each of the i loci under analysis, π̂ is first binned into a number

of equidistant bins by multiplying π̂ by 50 and rounding to the nearest integer. Bin

frequency is then tabulated yielding i vectors, each containing the bin frequencies at a

particular locus.

Identification of representative loci—Many methods might be used to identify a pool

of l loci that could be weighted to derive empirical P-values and the ideal value of l to

maximize specificity and sensitivity of estimate P-values. We have experimented with both

random selection (not shown) and a ‘representative loci’ approach, which we will describe

here, and with l values of 50, 20, and 10. Based on the assumption that among the

distributions of π̂ observed there may be groups of loci that more closely reflect each other

(perhaps due to phenotypic selection or sampling biases) we attempted to identify a series of

‘typical’ or ‘representative’ loci from which weighted mixtures might be obtained that

would accurately capture the distribution of π̂ at other loci. To obtain these representative

loci we utilized an existing R: Bioconductor package Genefinder, which is designed to

identify similar patterns of gene expression in microarray data (Gentry and Kagen 2006,

http://rss.acs.unt.edu/Rdoc/library/genefilter/html/genefinder.html). We entered bin

frequencies into Genefinder analyses, to obtain for each of the i loci, the five loci with the

closest (Euclidean distance) bin frequencies. The loci were then ranked by the frequency

with which they had been identified in the Genefinder analysis, and the top l loci were

selected to form a pool of representative loci.

Obtaining mixture weights—Mixture weights were obtained in a simplified multivariate

regression procedure. For each locus in turn, a vector of linear weights was estimated,

producing the linear combination of the representative π̂ distributions that best

approximated the locus under analysis. Thus, at each locus in turn the approximate

probability densities in each bin were estimated by multiple regression using the L

representative loci as predictors. Formally, the regression model may be written as, fi = β1f1
+ β2f2 … βLfL, where fi is the vector of π̂ bin frequencies at locus i, subject to the constraints

that 0 ≤ βl ≤ 1for all l = 1…L, and . This constrained regression analysis was

implemented in Mx (Neale et al. 2006b) using a script available from http://

www.vipbg.vcu.edu/~sarahme/permute.html.
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Figure 1 shows the observed and estimated distributions for an example locus with the

representative loci that were used to obtain this estimate.

Permutation of the representative loci—Following the identification of the l

representative loci permutation is used to obtain a χ̂2(P) distribution at each l locus. As the

permutation test requires that the randomized data be analyzed using the same analytic

method as the observed data the implementation of the permutations depend in part on the

program used to conduct the initial linkage analysis.

The simulated examples used Mx to conduct the linkage analysis. In Mx linkage analysis the

data is supplied in a flat file, with each family’s data entered on a separate record. Each

record contains the phenotypes and π̂ which is pre-computed using IBD estimates from

MERLIN. Given this format permutation can be conducted with a simple awk command

which separates the column(s) containing the π̂ data from the phenotypes, randomizes these

columns and then merges the randomized data with the phenotypes. In the simulated

examples we used permutation to create 5,000 null replicates for each of the l representative

loci.

However, if the analysis were conducted using a program which used a pedigree file format

such as SOLAR the IBD estimates could be saved at each of the representative loci, these

could than be separated from the identifiers, randomized, and read back in to obtain a χ̂2(P)

distribution.

Bootstrapping of the representative distributions—Once the χ̂2(P)distributions had

been obtained we compiled composite test statistic distributions for each of the i loci under

analysis. For each loci under analysis we multiplied the vector of weights by the number of

permutations or length L which was used to perform a weighted draw from the l χ̂2(P). For

example given the situation shown in Fig. 1 where Locus 273 was imputed from Loci 181,

211, 372, 437, 696, 705, 491, 215, 152, and 504 using the weights 0.28, 0.01, 0.10, 0.06,

0.37, 0.18, 0, 0, 0, and 0 we would draw at random 1,400 χ̂2 statistics from the χ̂2(P)

distribution of Locus 181, 50 from the distribution of Locus 211, and so on. A point-wise P-

value would then be calculated for each locus by comparing the observed test score to the

composite test distribution. In the simulated examples this bootstrapping step was repeated

100 times for each locus and the resultant point-wise P-values were averaged to yield an

approximate weighted permutation P-value.

Simulation and data analysis

To assess performance of the proposed method, genotypic and phenotypic data were

simulated under six conditions:

1. Normally distributed quantitative trait

2. Highly skewed non-normal quantitative trait (described further below)

3. Normally distributed quantitative trait where an extremely discordant and

concordant (EDAC) sampling strategy had been applied

4. Binary trait with 20% prevalence
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5. Bivariate normally distributed quantitative trait

6. Bivariate skewed quantitative trait

For all simulations genotypic data were produced using TWINSIM (http://

www2.qimr.edu.au/davidD/twinsim.html). Inter-marker distances and marker coverage were

based on the genotypic data of the Irish Affected Sib-Pair Study of Alcohol Dependence

study (Kuo et al. 2007, 2006; Prescott et al. 2006) with six alleles present at each marker

(allele frequencies 0.1, 0.5, 0.2, 0.1, 0.05, 0.05) yielding data for 1,020 autosomal markers at

an average inter-marker distance of 4 cM. Data were simulated for 500 nuclear families each

composed of a pair of parents with two offspring. For simulations 1–4, phenotypes with unit

variance were simulated such that: 20%, 10% and 5% of the variation was due to additive

QTLs on chromosomes 10, 4, and 12; 40% was due to a residual additive genetic effects;

and the remaining 25% due to non-shared environmental sources. A Fisher-Cornish

expansion (1938) was applied to the data in simulation 2 to yield a data set in which was

both skewed (S = 2) and kurtotic (K = 6). In simulation 3, a post hoc selection strategy was

applied so that families were ascertained only if the phenotypes of both offspring fell in the

top or bottom 20% of the distribution (the 500 ascertained families were drawn from an

initial pool of 30,000 simulated families). The phenotypes in simulation 4 were recoded as

affected when they fell in the top 20% of the distribution, and as unaffected otherwise. The

simulation of the bivariate data sets is summarized in Table 1 below. A Fisher-Cornish

expansion was applied to one set of simulations to yield a skewed bivariate data set, with

skewed cross-trait and cross-sibling distributions.

Application

Multipoint identity by decent was estimated using MERLIN at 5 cM intervals across the

genome, yielding 735 locations for analysis. IBD estimates were transformed to π̂, and

standard sib-pair variance components linkage analyses were conducted in Mx

( ; ). For the

bivariate case, a fully pleiotropic QTL was modeled (the path coefficients were specified as

a 2 × 1 vector). While there are many linkage tests that may be employed for the analysis of

univariate data, VC linkage analysis is suitable for a wide range of analytic situations,

including univariate and multivariate analyses, qualitative and quantitative data, and selected

samples (with the incorporation of ascertainment corrections for non-symmetric

ascertainment schemes). Although univariate VC linkage analyses with skewed phenotypes

show an increase type one error when the asymptotic null distribution of  is assumed,

this can be corrected through the calculation of empirical P-values through gene-dropping or

permutation (Li et al. 2006) or the use of an corrected test statistic (Li et al. 2006; Peng and

Siegmund 2006). Thus, as the primary aim of the current simulations was not to assess the

efficiency or accuracy of the QLT statistics per-se but rather to examine the convergence

between P-values obtained using the weighted permutation approach and P-values using a

standard permutation approach (in which a set number of permutations are performed at

each and every loci) we used VC linkage analyses for all simulations.

To summarize, to generate a ‘true’ empirical P-value to which the approximate weighted

permutation P-value could be compared, π̂ as randomized across the 500 sib-pairs and the
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analysis was rerun recording the observed minus twice log-likelihood. This process was

repeated 5,000 times. The observed test statistic was then compared to this series of

permutation results to obtain a ‘true’ point-wise empirical P-value. The empirical P-values

from the mixture distribution approach were then compared against this ‘true’ point-wise

empirical P-value. Preliminary analyses revealed no difference in the performance of the

method as the size of the representative pool was decreased from 50 to 20 then to 10 loci.

Thus, the results from a representative pool size of 10 loci are described here.

Graphical summaries of analyses of the univariate normally distributed data are given in Fig.

2. The bivariate distribution of the sibling phenotypes is shown in the first column. The

second column shows the relationship between the asymptotic P-values (calculated as , a

50:50 mixture of a point mass of zero and ) and the empirical P-values obtained using the

standard permutation method, and has been truncated to show only those loci with an

empirical P-value of 0.1 or less. As these figures show when the assumptions of multivariate

normality are met (as in simulations 1 and 4) there is close agreement between the

asymptotic and empirical P-values, however, in the face of obvious violation (simulations 2

and 3) the use of asymptotic P-values would result in an increase in type one errors as has

previously been demonstrated. The third column shows the relationship between the

empirical P-values obtained using the standard permutation method, and those derived from

the weighted permutation method. In all cases, the approximate weighted permutation P-

values agree closely with the empirical P-values. However, while there is little discrepancy

between the P-values obtained from the standard and weighted permutation approaches

there is a large difference in the efficiency of these two methods; 3,675,000 linkage analyses

using null replicated were conducted to obtain the empirical P-values (735 loci each

permuted 5,000 times), in contrast the approximate P-values were obtained from only

50,000 analyses of null replicates (10 loci each permuted 5,000 times). At an average time

of 1 s per analysis for simulation 4 the weighted permutation method could produce point-

wise P-values on a single processor for all loci in 14 h, as compared to the 1,021 h (43 days)

required for the standard permutation method.

Given that the distribution of π̂ and the calculation of weights is not influenced by the

number or phenotypes under analysis the results from the bivariate simulations shown in

Fig. 3 are very similar. Here the left column summarizes the multivariate distribution of the

phenotypes while the comparison of the weighted permutation and empirical P-values is

shown in the right hand columns. Thus, neither the number nor the distribution of traits

influences the ability of the proposed method to recover the empirical P-values derived from

permutation. The mean and variance of the absolute deviation between the empirical P-

values derived from traditional permutation methods and the weighted mixture P-value for

both the univariate and bivariate simulations are given in Table 2.

Discussion

Using the distributional dependencies between π̂ and the permutation test, we have reported

a new method, which can be used to obtain empirical P-values efficiently. Because the

method depends on the distribution of π̂, its performance is a function of the sample’s
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genotype data rather than its phenotypic distribution. The method is theoretically robust to

sample selection and distributional properties of the phenotype. Additional simulations (not

described here) suggest that the method is also robust to the dimensionality that arises from

larger sibships. This robustness is in part due to the analysis of bin frequency data rather

than the continuous distribution, and also the stability of the average amount of genetic

sharing across loci. Thus, although more work is needed, the results presented here suggest

that the method is robust to phenotypic distributions and could be used with larger pedigrees

and potentially with other linkage statistics.

Ordinarily, obtaining empirical P-values for a genome-wide scan is computationally

intensive, requiring tens or hundreds of thousands of permutation runs at each of thousands

of locations across the human genome. The new weighted permutation approach described

here offers a highly efficient alternative which greatly reduces the number of permutation

analyses performed. Our results suggest that accurate approximations may be obtained with

as few as 10 representative loci. In the case of a genome-wide scan performed at 1 cM

intervals, it would require only 10 sets of permutation tests as opposed to approximately

3,500 or to provide a more concrete example, if each analysis took approximately 10 s and

we ran 5,000 permutations at each locus, the new method would require 139 h of

computation as compared to 48,611 h. Given that complex multivariate analyses can take

many minutes per analysis the proposed method could potentially save weeks or months of

computation time. The current method also requires fewer analyses than current efficient

techniques. The proposed technique would require 50,000 analyses to derive empirical

significance estimates for a 1 cM linkage scan. In contrast, the replicate pool method would

require approximately 350,000 analyses (assuming 100 replicates at each locus). While the

number of analyses required using the sequential stopping rules are situation specific and

can not be calculated a priori, it is likely to be more than would be required by the replicate

pool method.

A particularly valuable aspect of this development is that it makes multivariate analyses

practical. Such analyses are frequently computationally intensive, requiring optimization

across a large number of parameters. Evaluation of the likelihood function in such analyses

may involve inversion of large covariance matrices in the case of continuous measures, or

the numerical estimation of multidimensional integrals when the data are ordinal or binary.

This latter case is of particular relevance in the study of complex phenotypes, particularly

those that involve behavioral or psychological measures (e.g., psychiatric disorders,

substance abuse), because the assessments rarely involve truly quantitative measures made

on an interval scale (Neale et al. 2006a; Neale et al. 2005). In such situations, data analysis

should ideally proceed using the symptoms, signs or questionnaire responses at the item

level of measurement, rather than by their aggregation into a scale score which may possess

undesirable properties such as different measurement error at different points on the

distribution. Multivariate analyses often generate statistics that do not conform to simple

distributional assumptions (Self and Liang 1987) and are therefore excellent candidates for

permutation tests.

Although the five-step process we describe may seem complex, it can be simplified when it

is to be applied multiple times to the same dataset. The distribution of π̂ is a property of the
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genotypic data for a given sample and is independent of the phenotypic data. Therefore, the

weighting scheme to construct the distribution of π̂ at the target loci need only be obtained

once. While a new set of permutations will be needed at the representative loci, their mixing

proportions remain invariant and can be applied to any phenotype (or combination of

phenotypes) collected from that sample. Application of this reduced step procedure assumes

that only small amounts of data are missing and that they are missing completely at random.

An inherent limitation of the proposed method is that the standard error of the approximate

P-values will vary across loci as function of the number and weighting of representative loci

contributing to the composite distribution of test statistics at each locus. However, this is

also a limitation of the sequential stopping rule technique and further investigation is

required to determine the extent and impact that this may have on the accuracy of

approximate P-values. While the standard error is expected to fluctuate across loci (due to

varying information content of the markers), obtaining the approximate P-value from the

mean of a series of bootstraps will yield approximate P-values that are asymptotically

distributed as empirical P-values. The second potential disadvantage is that permutation

testing in arbitrary pedigrees is inherently complex when the sample size of any particular

pedigree structure is small. Thus the method may be difficult to implement in samples in

which permutation testing is inherently complex. In addition, this method is unsuitable for

use in any situation where obtaining an empirical P-value via permutation is untenable such

as an analysis of affection status in a sample of affected sib-pairs.

In conclusion, we have implemented a new computationally efficient method for obtaining

approximate empirical P-values for genome scans. Further work is planned to examine the

robustness of the method, the optimum number of permutations, representative loci and

bootstraps to maximize selectively and specificity.
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Fig. 1.
The observed (top left) and imputed (top right) distributions for an example locus with the representative loci (lower six graphs)

that were used to obtain this estimate. The following regression equation was used to impute the data Locus 273 imputed = 0.28

* Locus181 + 0.01 * Locus211 + 0.10 * Locus372 + 0.06 * Locus437 + 0.37 * Locus696 + 0.18 * Lo-cus705 + 0 * Locus491 +

0 * Locus215 + 0 * Locus152 + 0 * Locus504. The four representative loci with zero weights are not shown here
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Fig. 2.
Graphical summary of the analyses of the univariate data sets. Rows: 1st results from a normally distributed continuous variable,

2nd a highly skewed continuous variable resulting from threshold based ascertainment, 3rd a normally distributed continuous

variable with EDAC sampling, 4th a binary variable with a 20% prevalence. Columns (left to right): The bivariate distribution of

the phenotypic values (the trait value of sibling 1 is shown on the y axis while sibling 2 is shown on the x axis, a pair-wise

prevalence graph is given for the binary data); for P-values <0.1 asymptotic P-values graphed against empirical P-values from

5,000 permutations/locus (with x = y reference line); for P-values <0.1 mixture distribution P-values graphed against empirical

P-values from 5,000 permutations/locus (with x = y reference line)
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Fig. 3.
Graphical summary of the analyses of the bivariate data sets. Rows: (graphs a and b) 1st results from two normally distributed

continuous variables, (graphs c and d) 2nd two highly skewed continuous variables. Columns: left (graphs a and c) The bivariate

distribution of the phenotypic values, univariate distributions of each of the phenotypes are summarized using histograms on the

diagonal while scatterplots give the bivariate distributions for each pair of traits; (graphs b and d) for P-values <0.1 mixture

distribution P-values graphed against empirical P-values from 5,000 permutations/locus (with x = y reference line)
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Table 1

Simulation parameters for the bivariate data sets

Normally distributed bivariate data Skewed bivariate data

Trait 1 Trait 2 Trait 1 Trait 2

QTL effects (proportions of variance)

 Ch 4 5 0 25 0

 Ch 10 30 20 15 20

 Ch 12 0 15 15 15

Additive genetic effects (proportions of variance)

 A1 5 15 5 15

 A2 20 0 0 0

Non-shared environmental effects (proportions of variance)

 E1 40 0 40 0

 E2 0 50 0 50

Skew following transformation −1 −2

Kurtosis following transformation 1 4.5
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Table 2

Mean and variance of the absolute deviation, and correlations between the P-values. The absolute deviation is

calculated as the absolute difference between empirical P-values derived from traditional permutation methods

and the weighted mixture P-values. Spearman’ rank correlations of the empirical P-values derived from

traditional permutation methods and the weighted mixture P-values are given

Mean absolute deviation Variance Spearman’s correlation

Univariates

 Normal 0.0112 1.119E-04 0.986

 Skew 0.0075 3.586E-05 0.984

 EDAC 0.0079 3.863E-05 0.991

 Binary 0.0081 4.182E-05 0.983

Bivariates

 Normal 0.0059 2.217E-05 0.988

 Skew 0.0065 8.317E-05 0.992
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