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Abstract

A common experimental technique for viewing in vivo angiogenesis utilises tumours implanted

into a test animal cornea. The cornea is avascular but the tumour promotes vascularisation from

the limbus and the new blood vessels can be readily observed through the transparent cornea.

Many of the early mathematical models for tumour angiogenesis used this scenario as their

experimental template and as such assumed that there is a large gap, of the order of 2 mm,

between the tumour and neighbouring vasculature at the onset of angiogenesis. In this work we

consider whether the assumption that there is a significant gap between the tumour and

neighbouring vasculature is unique to intra-cornea tumour implants, or whether this characterises

avascular tumour growth more generally. To do this we utilise a simple scaling argument, derive a

multi-compartment model for tumour growth, and consider in vivo images. This analysis

demonstrates that the corneal implant experiments and the corresponding mathematical models

cannot be applied to a clinical setting.
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1. Introduction

Folkman (Folkman, 1976) proposed that tumours undergo three distinct phases of growth:

an initial avascular phase of slow limited growth, then an angiogenesis phase where the

tumour cultivates its own blood supply, and finally a phase of rapid vascularised growth.

Folkman also proposed that inhibiting angiogenesis could provide an effective anti-tumour

therapy.

A common technique for observing in vivo angiogenesis with minimal intervention is to

implant an avascular tumour into the stroma of the cornea or the aqueous humor of the eye
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in a test animal (Gimbrone et al., 1974; Ausprunk and Folkman, 1977; Muthukkaruppan et

al., 1982). This technique allows the sprouting of capillaries towards and into the tumour to

be readily observed through the transparent cornea, as exemplified by Figure 6(a). However,

the cornea is a large and uniquely avascular region of tissue. Angiogenesis in this setting

takes place with a distance between the tumour and neighbouring vasculature of more than a

millimetre, which is much larger than the intercapillary distance typically observed in

“normal” vascular tissue (Fait et al., 1998).

Many of the initial mathematical and computational models of angiogenesis have been

developed to recreate the results of intra-corneal tumour implant experiments by assuming

there is a significant gap, of the magnitude of the width of the cornea, between the tumour

and the neighbouring vasculature (Balding and McElwain, 1985; Chaplain and Stuart, 1993;

Byrne and Chaplain, 1995; Chaplain, 2000; Plank and Sleeman, 2004). These investigations

have been very successful at modelling the cornea implant experiments and have been well

verified in context; however it is not obvious that a significant gap should exist between a

tumour and the neighbouring capillaries when an in vivo tumour grows in “normal” vascular

tissue. Furthermore, while many modelling explorations have previously invoked analogous

assumptions when considering normally vascularised tissue, recent imaging suggests that

there is no significant gap between an in vivo avascular tumour and its neighbouring

capillaries (Shubik, 1982), as illustrated by Figure 6(a).

Thus there is a need to explore this potential discrepancy between a modelling framework

for vascular tumour angiogenesis and recent observations, and we firstly explore this be

utilising a simple scaling argument. For the intra-cornea implant experiments to directly

apply to a typical in vivo tumour the in vivo tumour must develop and/or maintain a

significant gap between itself and the neighbouring capillaries. Consider a spherical tumour

of radius rtum(t), a function of time t, growing in vascular tissue. Then the volume of the

tumour, Vtum, is

Now suppose that following the initiation of cancer in a single cell there is a region of non-

cancerous cells between the tumour and the surrounding vasculature which remains of

constant width as the tumour grows. To be consistent with the intercapillary distance in

vascular tissue the distance between the tumour and neighbouring vasculature should be

approximately 50 µm (Fait et al., 1998) and the volume of tissue in such a gap between the

tumour and surrounding vasculature (in µm3), Vgap, is then

It can then be shown that the maintenance of this gap of constant width requires the non-

cancerous tissue to increase in volume at the relative rate compared to cancer tissue of
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To use this result to compare the cellular proliferation rates of cancerous and non-cancerous

cells we recall that tumours of radius three cell widths, which corresponds to a rtum of

approximately 80 µm (Casciari et al., 1992; Buckley et al., 1999) will typically consist of

only proliferating cells (LaRue et al., 2004). For this value of rtum, the tumour radius, we

find that the non-cancerous cells must initially proliferate approximately 50% as quickly as

the cancerous cells. Having non-cancerous cells proliferate half as quickly as cancerous cells

may be faster proliferation than would be anticipated, but is not completely unfeasible for

particularly slow growing tumours or tumours growing in tissue with a particularly high cell

turnover rate. However in general no obvious mechanism exists which would upregulate

non-cancerous cell proliferation to this extent. This suggests that any initial gap between the

tumour and the neighbouring vasculature will begin to close as the tumour starts to grow,

and will do so rapidly compared to the growth rate of the tumour.

For the mathematical models based upon the intra-cornea experiments to be more widely

applicable the assumption that there is a significant gap between the tumour and

neighbouring capillaries requires further validation, especially since it appears to demand

extreme parameter choices in the context of a simple scaling argument. Alternatively, if no

such gap exists at the onset of angiogenesis then this poses the question of what causes the

gap to close.

We now consider how the distance between a typical in vivo avascular tumour and the

neighbouring capillaries evolves as the tumour grows. In particular we consider whether a

significant gap can be maintained between the tumour and capillaries, and if not then why

does the gap close and how quickly does it do so. The results of this study will then imply

whether or not the mathematical models based upon the intra-cornea implant experiments

can be applied in a general context.

2. The Model

To consider how the distance between an in vivo tumour and the neighbouring capillaries

evolves as the tumour grows we model the growth of an avascular tumour beginning with a

small collection of cells and finishing with an avascular tumour which has reached diffusion

limited saturation. We consider populations of healthy non-cancerous cells, proliferating

cancerous cells, quiescent cancerous cells and necrotic cells. We assume that the system can

be modelled as a continuum of cells and exhibits radial symmetry. These assumptions form

an idealised model for avascular tumour growth, but one which constitutes a best case

scenario for maintaining a significant gap between the tumour and neighbouring vasculature.

If a significant gap between the tumour and neighbouring vasculature cannot be maintained

by our idealised model, then we would not expect it to be maintained with the introduction

of asymmetries which effectively reduce the gap in at least one direction.
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The domain of our model consists of the tumour spheroid and a region of the non-cancerous

cells out-side the tumour up to the nearest capillaries, as shown in Figure 1.

We take the rates of mitosis and necrosis per proliferating cell to be km(c) and kd(c)

respectively, where c is the local oxygen concentration; km(c) is represented by a

monotonically increasing function which saturates to a finite rate and kd(c) is taken to be a

monotonically decreasing non-negative function. The Michaelis-Menten based kinetics

where A, B, cm, and cd are constants exhibit these properties and have been shown to

provide a good fit to the rate of oxygen consumption by cells (Lin, 1976).

We assume that proliferating cells can become quiescent and vice versa. Whilst the local

oxygen concentration can be a factor in determining this change of state, other factors such

as cell-cell interaction and the availability of growth factors are also likely to be influential

(Mueller-Klieser, 2000). The effect of all these potential factors is too complex to be

considered in detail. Instead we note that proliferating cells are generally found on the outer

rim of an avascular tumour and quiescent cells are generally observed further towards the

tumour’s centre (LaRue et al., 2004; Mueller-Klieser, 2000). To model this we postulate that

proliferating cells tend to become quiescent if too far from the edge of the tumour and

quiescent cells tend to become proliferative if too close to the edge of the tumour. We also

assume that becoming quiescent does not affect a cell’s death rate. The resulting equations

for the proliferating and quiescent cell populations are

where p(r, t) and q(r, t) are the densities of proliferating and quiescent cells respectively, v(r,

t) is the local cell velocity, S tum(t) is the radius of the tumour, R is the width of the

proliferating rim, α is the rate at which proliferating cells become quiescent outside the

proliferating rim, β is the rate at which quiescent cells become proliferative inside the

proliferating rim, and H(x) is the Heaviside function (which takes the value 0 if x is

negative, and 1 if x is positive).

To investigate whether it is feasible for a significant gap to be maintained between the

tumour and the vasculature as the tumour grows we also consider the dynamics of the non-

cancerous cells immediately outside the tumour. We assume that non-cancerous cells

proliferate more slowly than cancerous cells but otherwise exhibit similar dynamics; in

particular we assume that their proliferation depends upon the local oxygen concentration

and have the same shaped dependence upon the local oxygen concentration. We also assume

that necrotic cells undergo linear degradation. Then the evolution of non-cancerous cells and

necrotic cells is given by
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where h(r, t), and n(r, t) are the densities of non-cancerous cells and necrotic cells

respectively, λ < 1 is the relative proliferation rate of non-cancerous cells, and ν is the linear

degradation rate of necrotic cells. Note that the kinetics of healthy and cancerous cells can

be chosen to allow the canceous cells to proliferate at lower oxygen concentrations than the

non-cancerous cells. If this is done it is found not to significantly alter our results and the

model presented here constitutes the base case scenario for gap maintenance. We estimate

the relative proliferation rate of non-cancerous cells, λ, using the fact that in the absence of

any tumour the non-cancerous cell population should be in equilibrium. Hence λ is chosen

so that in the absence of any tumour, oxygen feedback regulates cell proliferation and

necrosis in exactly the way required to maintain the observed intercapillary distance.

We close our model by assuming that the cell volume fraction of tissue is constant, which

implies the following equation for the local cell velocity

where VL is the mean volume of a live cell, VN is the mean volume of a necrotic cell, and 

is the cell volume fraction, and that oxygen diffuses out of the capillaries and is taken up by

living cells. If we assume that the rate of oxygen uptake for the normal processes which

keep cells alive also follows Michaelis-Menten kinetics and the rate of additional oxygen

uptake required for cell proliferation is proportional to the rate of proliferation, then the

evolution of the local oxygen concentration is given by

where c(r, t) is the local oxygen concentration, kn(c) is the Michaelis-Menten kinetics for the

oxygen uptake for normal processes, γ is the constant of proportionality for additional

oxygen uptake for mitosis, and D is the diffusion coefficient of oxygen.

We take the initial state of our tumour to be the largest collection of cells which can be

assumed to be entirely proliferating, which is a tumour of radius equal to three cell widths

(LaRue et al., 2004). We also assume that the tumour front moves with the local cell

velocity, so that

as do the neighbouring capillaries and that initially the distance between the tumour and

vasculature is 50µm, which is consistent with the intercapillary distance (Fait et al., 1998).
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Again this assumption is the most favourable possible in terms of maintaining a gap. For our

final boundary condition we assume the capillary network is a constant source of oxygen.

Where possible we estimate parameters directly from the literature, but it is necessary to

estimate some parameters by performing an a posteriori analysis of parameters. To do this

we numerically simulate the evolution of the tumour for different values of the unknown

parameters and refine the estimates until the modelled tumour growth is consistent with

observed tumour growth. In particular we ensure that our modelled tumour’s growth curve,

size at saturation, relationship between necrotic core radius and tumour radius, and oxygen

diffusion distance are all consistent with observed behaviour. A summary of all the

parameters used in our model and their values is presented in Table 1. (Note that the oxygen

concentration on the edge of our domain can be non-dimensionalised out of our model and

hence need not be estimated explicitly).

Given this model we now simulate the evolution of our tumour whilst paying particular

attention to the distance between the tumour and the neighbouring capillaries.

3. Results

Figure 2 shows the growth dynamics for the modeled tumour. Figure 2(a) shows that our

modelled tumour undergoes an initial period of exponential growth, then the growth rate

slows and the tumour saturates at a radius of approximately 1 mm, which is consistent with

observed tumour growth.

Figure 2(b) shows the width of the gap between the tumour and the neighbouring

vasculature as the tumour grows. It can be seen that the width of the gap decreases

significantly as the tumour grows and the capillaries effectively reach the surface of the

tumour well before the tumour growth saturates. Note that the ability of the edge of the

tumour to reach the surrounding vasculature relies on the implicit assumption that there to

be no obstruction lying between the tumour and vasculature. This assumption is likely to be

valid when the tumour is a secondary metastasis, but may not be valid if the tumour is a

primary tumour with a basement membrane separating the surrounding vasculature from the

tumour.

To further highlight this we compare the configurations of the initial state of our modelled

tumour, the final state of our modelled tumour, and a typical tumour following an intra-

cornea implant in Figure 3. Each of the schematics in Figure 3 is on the same scale with a

1mm scale bar shown. In Figure 3(a) there is initially a small gap of width 50 µm between

our modelled tumour and neighbouring capillaries. In Figure 3(b) it can1 be seen that when

our modelled tumour has grown to its saturated size, as given by diffusion limited control,

there is effectively no gap between the tumour and the vasculature. However, in Figure 3(c)

it can be seen that following tumour implantation into the cornea there is a large gap

between the tumour and the vasculature. The difference between Figures 3(b) and 3(c) is

marked and highlights that the results of our model conflict with observed angiogenesis in

the corneal implant experiments where capillaries are seen to sprout towards and into an

avascular tumour.
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To investigate whether the lack of a gap between our modelled tumour and the neighbouring

vasculature is due to a failing of our model, or whether this properly captures in vivo

behaviour, we now suppose that non-cancerous cell proliferation is somehow upregulated so

as to maintain a constant gap between the tumour and the neighbouring vasculature as the

tumour grows to its saturated size, even though there is no clear biological motivation for

such behaviour. It can be shown that the corresponding kinetics of the non-cancerous cells

must be

where vtum is the speed of the tumour front. We now test whether kinetics of this form are

feasible by considering the corresponding rates of proliferation of the cancerous cells and

non-cancerous cells, which are shown in Figure 4 where a rate of unity corresponds to the

proliferation rate of cancerous cells in a limitless oxygen supply. Our modelling shows that

to maintain a uniform gap between the tumour and the vasculature some non-cancerous cells

are initially required to proliferate at a rate which is 55% that of the tumour cells.

Note that Figure 4 only shows the rate of proliferation required to maintain a gap of constant

width. For the initial gap of 50 µm, which is consistent with the intercapillary distance, to

evolve into a gap of 2000 µm, which is observed following an intra-cornea tumour implant,

requires non-cancerous cells to proliferate on average approximately 160 times faster than

this.

4. Discussion and Conclusions

Our modelled tumour showed that simple biologically motivated dynamics for the

proliferation of non-cancerous cells caused the distance between the tumour and

neighbouring vasculature to decrease quickly compared to the growth rate of the tumour, so

that at saturation the neighbouring capillaries effectively lie on the surface of the tumour,

unless there is some obstruction which prevents the tumour from reaching the surrounding

vasculature. This was despite taking care to ensure that any idealisations in our model

contributed to the model being a best case scenario for maintaining the distance between the

tumour and vasculature.

Non-cancerous cell proliferation can be forced to maintain a constant gap between the

tumour and vasculature, but this requires non-cancerous cells to initially proliferate

approximately 55% as quickly as tumour cells, which are typically taken to have lost growth

control. This result is consistent with our initial scaling argument, which motivated the

problem, which showed that maintaining a uniform gap between a tumour and the

vasculature requires the non-cancerous cells to initially proliferate approximately 50% as

quickly as the cancerous cells. Whilst the rate of proliferation required to maintain such a

gap is high, it is not unfeasible. However the absence of any biologically motivated

mechanism which would up-regulate non-cancerous cell proliferation in this way, and

having shown that oxygen feedback is not sufficient, suggests that non-cancerous cell

proliferation is not generally up-regulated to this extent.
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We have found that the rate of proliferation required to maintain a gap of constant width

between the tumour and vasculature is high and demands extreme parameter values.

However, for an in vivo tumour growing in vascular tissue to evolve into a state which is

consistent with that seen following an intra-cornea tumour implant would require non-

cancerous cells to proliferate on average approximately 160 times faster that was required to

maintain a gap of constant width. This would imply that some non-cancerous cells would be

proliferating at least two orders of magnitude faster than cancerous cells which is in conflict

with our general understanding of tumour systems. This is clearly impossible. Furthermore,

a 2 mm gap between the tumour and neighbouring vasculature would greatly exceed the

diffusion distance of oxygen and it is not clear how an in vivo tumour in such a

configuration would be supported. From this we conclude that the 2mm gap following intra-

cornea tumour implants is unique to that setting and cannot be included in a general model

of tumour blood flow dynamics.

Our model assumes that capillaries are carried with the movement of local cells and neglects

any angiogenic stimuli or mechanical properties of the capillaries which might resist their

movement. We have also neglected any contact inhibition of normal, non-cancerous, cell

growth. If any of these effects are included then the non-cancerous cell growth rates required

for gap maintenance will be even higher. Hence our model is a best case scenario for gap

maintenance and in an in vivo tumour we would expect the gap to close even quicker than it

does in our model. Given this and that the gap closes quickly in our modelled tumour we

conclude that in a well developed in vivo tumour growing in vascular tissue there will not be

a significant gap between the tumour and neighbouring capillaries, unless the presence of a

basement membrane prevents the tumour from reaching the surrounding vasculature. In

which case our simple scaling argument still applies and the gap between the tumour and

surrounding vasculature should only be the width of the basement membrane, which will be

relatively thin.

This conclusion implies that mathematical models of angiogenesis should not consider an

initial gap between the tumour and the vasculature. Furthermore, the studies based on

corneal implants serve as building blocks for developing models for angiogenesis in that

setting, but do not immediately translate to a clinical setting. Hence the results and

conclusions of models based upon the corneal implants should be disregarded unless they

can be replicated in a more general setting. In particular, models based upon the cornea

implant experiments are likely to overestimate the importance of angiogenesis and the

effectiveness of anti-angiogens. However, if the models based upon the cornea implant

experiments can be generalised then these works can then become more biologically

accurate and clinically relevant. Furthermore, the new vasculature which is cultivated by

tumour angiogenesis tends to be distorted and leaky compared to normal vasculature. The

fact that at the initiation of angiogenesis the surrounding capillaries actually lie on the

surface of the tumour implies that this leaky distorted vasculature will only exist within the

interior of the tumour. This could mean that during treatment healthy tissue will be exposed

to less toxicity than predicted by the corneal implant motivated models because less toxic

therapy will leak into regions of healthy tissue surrounding the tumour.
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These conclusions are supported by experimental observations. The image of the avascular

tumour in Figure 6(a) shows small blood vessels growing directly into the periphery of a

tumour that was initially avascular. It demonstrates that blood vessels penetrate directly into

the tumour-host interface rather than via an elaborate network of vessels adjacent to the

tumour edge as seen in the cornea experiments, such as that shown in Figure 6(a). In Figure

6(a) it can be seen that the corneal implant is surrounded by an extremely large region of

avascular tissue and the resulting angiogenesis across a large gap between the tumour and

vasculature does not represent angiogenesis for an in vivo tumour growing in vascular tissue.

5. Summary

We have considered the evolution of the gap between an avascular tumour and the

neighbouring vasculature as the tumour grows. A simple mathematical model illustrates that

a well established yet avascular tumour will not exhibit a gap between the tumour and the

vasculature and that the neighbouring capillaries effectively lie on the surface of the tumour.

These conclusions are reinforced by a simple scaling argument and images of in vivo

tumours. This illustrates that mathematical and computational models based on the cornea

implant experiments, which assume a significant gap between the tumour and neighbouring

vasculature, cannot be immediately applied to a clinical setting.
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Figure 1.
A schematic cross-section of the domain being considered.
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Figure 2.
The growth dynamics of our modelled tumour, given the parameters in Table 1.
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Figure 3.
A schematic comparison of the configurations of the tumour corresponding to (a) the initial conditions taken in our model, (b)

the final state of our modelled tumour, and (c) a typical tumour following implantation into the cornea, each to scale with a 1mm

scale bar shown. The central shaded regions correspond to the tumour, the red lines outside the tumour represent the capillaries

and any unshaded regions correspond to non-cancerous cells.
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Figure 4.
The rate of proliferation of the different cells types when non-cancerous cell kinetics are chosen to ensure a gap of constant

width is maintained between the tumour and neighbouring vasculature as the tumour grows to its maximum size as given by

diffusion limited control.
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Figure 5.
An in vivo avascular tumour and a tumour implanted into a cornea.

(a) An in vivo avascular tumour (the white region) growing in a mouse mound chamber. The tumour has been added to the

wound chamber in a matrigel disc, and on the outer ring of the disc endothelial buds which were obtained from scrotal fat were

place. A 200 µm length bar is shown.
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Figure 6.
An in vivo avascular tumour and a tumour implanted into a cornea.

(a) Angiogenesis following tumour implantation into a test animal’s cornea (Velpandian).
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Table 1

The parameters in our model.

Parameter Description Value Taken Reference

A The maximum rate of proliferation of cancerous cells 1.4 × 10−6 s−1 Grote et al. (1977)

B The maximum rate of necrosis of cells 2.1 × 10−6 s−1 A posteriori estimation

Ĉm The non-dimensional critical oxygen concentration in
Michaelis-Menten proliferation kinetics

0.1 A posteriori estimation

Ĉd The non-dimensional critical oxygen concentration in
Michaelis-Menten based necrosis kinetics

0.1 A posteriori estimation

σ A parameter in the cell necrosis kinetic 0.9 A posteriori estimation

α The rate at which proliferating cells become quiescent outside
the proliferating rim

1.4 × 10−6 s−1 A posteriori estimation

β The rate at which quiescent cells become proliferative inside
the proliferating rim

1.4 × 10−6 s−1 A posteriori estimation

R The width of the proliferating rim 80 µm LaRue et al. (2004); Casciari et al.
(1992); Buckley et al. (1999)

ν The rate of linear decay of necrotic cells 2.8 × 10−7 s−1 A posteriori estimation

λ The ratio of the rate of proliferation of non-cancerous cells to
cancerous cells

0.3 See text

VL The mean volume of a live cell 3 × 10−9 cm3 Landry et al. (1981, 1982)

VN The mean volume of a necrotic cell 1.5 × 10−9 cm3 Landry et al. (1981, 1982)

The cell volume fraction 0.66 Buckley et al. (1999)

D The diffusion coefficient of oxygen 2 × 10−5 cm2 s−1 Grote et al. (1977); Hlatky and Alpen
(1985)
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