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ABSTRACT

Viruses evade detection by the host immune system through the suppression of antiviral
pathways. These pathways are thus obscured when measuring the host response to viral
infection and cannot be inferred by current network reconstruction methodology. Here we
aim to close this gap by providing a novel computational framework for the inference of
such inhibited pathways as well as the proteins targeted by the virus to achieve this inhi-
bition. We demonstrate the power of our method by testing it on the response to influenza
infection in humans, with and without the viral inhibitory protein NS1, revealing its direct
targets and their inhibitory effects.
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1. INTRODUCTION

Many viruses use the host’s cellular machinery to replicate themselves. On the other hand, hosts

contain mechanisms for sensing the presence of viruses, for example, via viral DNA/RNA sensors.

These mechanisms trigger the activation of immune signaling pathways that lead to attacking the pathogen

and to warning nearby cells (Takeuchi and Akira, 2009).

In order to evade detection, some viruses subvert these defense mechanisms by suppressing essential

proteins or protein–protein interactions along antiviral pathways. This pattern of manipulation is sometimes

driven by a particular viral protein that inhibits antiviral pathways in the host that would otherwise be

induced by the other viral components. Therefore, this framework has the following key factors: a wild-

type (WT) virus; some protein P of the virus carrying out an inhibitory role; and the rest of the viral

components, denoted DP. Consequently, relevant host pathways can be divided into three categories:

pathways that are induced by the presence of the DP components; out of these, pathways that are inhibited

by the WT owing to the presence of the suppressing protein P; and finally, pathways that show up only in

the WT scenario, supposedly triggered by that same protein P. This general framework is illustrated in

Figure 1.

In this article, we aim to elucidate these different types of pathways, focusing on the pathways that are

inhibited by the special protein P. Many viruses are known to fit to this framework (Brzózka et al., 2006;
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Reid et al., 2007; Ronco et al., 1998). Here we focus on the influenza A virus, whose NS1 protein is known

as an antiviral signaling inhibitor (Gack et al., 2009; Li et al., 2006; Pichlmair et al., 2006), and for which

human gene expression data are available, describing the response to both the WT virus and its DNS1

mutant.

The reconstruction of signaling pathways for a given response is based upon defining some source (aka

anchor) proteins mediating the process, and on a genome-wide screen yielding terminal proteins that are

affected by it. These are used to infer a compact protein–protein interaction (PPI) subnetwork connecting

the anchors to the terminals (Lan et al., 2011; Yosef et al., 2011). However, the setting of the current article

differs from previous ones in that the target pathway is inhibited rather than active in the studied condition,

and to reveal it one should contrast the normal response to the pathogen with the response resulting from

knocking out the inhibitor gene.

Our contribution in this article is twofold: (i) we provide a general computational framework for the

inference of host pathways that are inhibited by a virus during an infection process; and (ii) we apply our

framework to study influenza infection in humans, predicting the involvement of several human genes in

the inhibition process—specifically, out of 19 inferred proteins, 7 are known to be directly inhibited by the

NS1 protein and another 9 predictions are supported by evidence from other influenza proteins or from

other viruses.

2. PRELIMINARIES

Let G = (V, E) be a directed graph representing a PPI network with vertex set V and edge set E. Let

T2� T1�V be two sets of terminals representing the response to the DP mutant (T1) and the response that is

common to the WT virus and its DP form (T2). We relate to these sets as the two conditions. Let a 2 VyT1

be an anchor node (either a single protein or an auxiliary node representing several proteins). We seek a

FIG. 1. A schematic overview of the inhibition framework. (Top) Viral effector proteins, including the inhibitory

protein P (e.g., NS1) and the remaining viral proteins DP. (Bottom) Host transcriptional response; genes are divided into

three categories: genes that are expressed in the presence of the DP mutant virus but not in the WT, and vice versa, and

genes that are expressed in both conditions. As the WT virus includes all DP proteins, we would expect the differ-

entially expressed response for the DP virus to be fully contained by the response to the WT virus. However, this is not

the case because of the role that P plays in the inhibition of pathways that are activated by the other viral proteins.
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compact subtree H = (U, F) of G that will explain the data; that is, H should span the terminals in T1 and

provide a parsimonious explanation for the inhibition of the terminals in T1yT2.

We assume that the virus inhibitory protein works by inhibiting specific interactions in the host through

binding to one of their end points (Gack et al., 2009; Reid et al., 2007). For a vertex v 2 U, let H(v) denote

the subtree rooted at v. If (u, v) is a candidate inhibited (directed) edge in H, then we assume that H(v) is

inhibited and, hence, all the terminals within it should be in T1yT2. Thus, we seek a small subset I 4 F of

inhibited edges that ‘‘cover’’ all terminals in T1yT2 while minimizing the number of ‘‘false positive’’

terminals in T2. We may require some minimal distance from the anchor to both endpoints of an edge for

classifying that edge as inhibited—for example, if the anchor node represents all viral proteins, then a

minimum distance of one reflects the reasonable assumption that only host-host interactions can be in-

hibited. We call the arising problem of finding a subnetwork and an associated set of inhibited edges

inhibited pathway reconstruction (IPR). Its precise objective is defined in the next section.

3. THE ALGORITHM

We devised an algorithm for solving the IPR problem based on an integer linear programming (ILP)

approach. The algorithm uses a flow-based technique in order to connect an anchor to a set of terminals Ti

by pushing jTij units of flow out of the anchor and collecting them at the terminals. The amount of flow per

edge e 2 E and condition i 2 f1‚ 2g is denoted by the variable xe,i. The algorithm uses binary variables qe to

mark the inhibited edges and uses auxiliary binary variables re to propagate inhibition downstream, thus

ensuring that no two edges on the same path from the anchor could be classified as inhibited. The variables

pe assist in counting false positive terminals of T2. Finally, variables of the form ze indicate for every edge

e 2 E whether it participates in the solution subnetwork H.

Denote by R�E the subset of edges touching a node that, according to prior knowledge, is able to form a

physical interaction with the virus inhibitory protein. The goal is to minimize a weighted combination of:

the number of edges in H; the number of inhibited edges from R; the number of inhibited edges not in R;

and the number of false positive terminals of T2. In our formulation we denote by In(v) (Out(v)) the set of

incoming (outgoing) edges of a node v 2 V respectively; 1A(x) denotes the indicator function. The ILP

formulation is given below. For clarity, we omitted the constraints on variable ranges.

min
X
e2E

ze + a1

X
e2R

qe + a2

X
e2EyR

qe + b
X
e2E

pe

s.t.: X
e2Out(a)

xe‚ i = jTij i = 1‚ 2 (1)

X
e2In(v)

xe‚ i =
X

e2Out(v)

xe‚ i + 1Ti
(v) 8v 2 Vyfag‚ i = 1‚ 2 (2)

xe‚ ipjTij � ze 8e 2 E‚ i = 1‚ 2 (3)X
e2In(t)

xe‚ 2 = 0 8t 2 T1yT2 (4)

ze1
+ ze2

p1 8v 2 V‚ e1 6¼ e2 2 In(v) (5)

jT2j � (qe - 1) + xe‚ 2ppepxe‚ 2 8e 2 E (6)

0ppepjT2j � qe 8e 2 E (7)X
e2In(t)

(qe + re)q1 8t 2 T1yT2 (8)

qe‚ repze 8e 2 E (9)

qep1 - re 8e 2 E (10)

X
e02In(v)

qe0

 !
+ ze - 1pre 8v 2 V‚ e 2 Out(v) (11)
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X
e02In(v)

re0

 !
+ ze - 1pre 8v 2 V‚ e 2 Out(v) (12)

rep
X

e02In(v)

(qe0 + re0 ) 8v 2 V‚ e 2 Out(v) (13)

We now explain in detail the constraints of the program:

� The first two constraints ensure that each of the terminals is reached from the anchor in each of the

conditions in which it is expressed: for each condition i 2 f1‚ 2g, the anchor releases flow equal to the

number of terminals observed in Ti; a terminal collects a single unit of flow and passes on the rest; a

nonterminal passes all of its incoming flow downstream.
� Constraint (3) ensures that edges with nonzero flow take part in the solution.
� Constraint (4) requires that terminals in T1yT2 not receive flow of type i = 2, reflecting our biological

assumption that genes expressed only in the DP condition do not receive an incoming signal from the

anchor in the WT condition.
� Constraint (5) ensures that the resulting subnetwork forms a tree.
� The next two constraints set pe as the number of terminals falsely located under an inhibited edge e.

That is, pe = xe,2 if qe = 1, otherwise pe = 0.
� Constraint (8) requires that all terminals in T1yT2 be inhibited, directly or indirectly.
� The last five constraints define the interrelations between q, r, and z. The variable qe is set to 1 if and

only if the edge e is inhibited directly by the virus. In this case, re is set to 0 and the inhibition

propagates to downstream neighboring edges in the solution by turning on their r variable. Formally, if

qe = 1 then re = 0; and if qu,v = 1 or ru,v = 1 then for every edge (v, w) 2 E for which zv,w = 1, also

rv,w = 1.

The program can be solved efficiently by noting that it is sufficient to restrict z and q to integer (binary)

values; in this case, the other variable types (x, p, and r) are naturally assigned integer values in any optimal

solution, as shown in the Appendix.

3.1. Implementation details

Implementation platform. We implemented the algorithm in Java, using the commercial IBM ILOG

CPLEX optimizer to solve the ILP.

ILP performance settings. As solving the ILP is time consuming, we filtered the PPI network using

a heuristic data reduction method that aims to retain those edges that are more likely to participate in

the optimal solution (Mazza et al., 2013). This method selects edges that lie on a near-shortest path

(in our setting up to one edge longer than a shortest path) between the anchor and any of the terminals.

Further, we instructed the ILP solver to accept approximate solutions that deviate by at most 20%

from the optimum and set a time limit of 3 hours for an execution. Instead of returning one arbitrary

solution that fulfils the approximation ratio, we instructed the algorithm to return a solution pool of size

at most 20.

Selection of parameter values. Our algorithm depends on three types of parameters. The first pa-

rameter is the bias, which reflects the difference of weights a2-a1, set in the range 0–4, which we

referred to as unbiased (0) and biased (1–4) experiments. For each bias we tested different combi-

nations of the other two parameters: (i) the exact number of allowed inhibitions: either 3, 4, or 5 (added

to the ILP by restricting the sum of all qe-s to this value), and (ii) the false positive penalty (b): either 2,

4, or 8.

Analyzing multiple solutions. In order to cope with multiple solutions (either multiple approximate

solutions to the same instance or solutions to different selections of parameters), all of our analyses were

based on aggregate statistics rather than on a single instance. For example, to predict nodes that are likely to

be located under inhibited edges, we computed per node the percent of solutions in which it is found under

some inhibited edge and defined a corresponding score.
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4. EXPERIMENTAL RESULTS

4.1. Data preparation

We tested our method on data from Shapira et al. (2009) concerning infection of primary human

bronchial epithelial cells by the influenza virus. The data consisted of two mRNA expression profiles

showing gene activity in human cells in the presence of the influenza virus: one in its wild-type form and

another with the NS1 gene deleted (DNS1 mutant). Additionally, the data contained information on physical

interactions between influenza proteins and human proteins, tested using the Y2H method. We applied our

algorithm to reconstruct PPI subnetworks anchored at the DNS1 proteins through which we infer signaling

pathways that are likely to be inhibited by the influenza NS1 protein.

As the background network for the application, we used the network of Yosef et al. (2011), which

contains 44,738 bidirectional PPIs over 10,169 proteins. We added the DNS1 proteins (NS2, PA, PB1, PB2,

M1, M2, HA, NA, NP) along with their 124 interactions with human proteins as reported in Shapira et al.

(2009). We further added manually curated interactions between the viral RNA and 16 human proteins, 5 of

them having specific interactions with viral RNA (Allen et al., 2009; Diebold et al., 2004; Guillot et al.,

2005; Pichlmair et al., 2006; Sabbah et al., 2009; Wu et al., 2011), and the remaining 11 interact with Poly

I:C, a viral-RNA-like component (collected from the RNA-protein network of Ingenuity� Systems IPA).

Finally, we connected all virus-related nodes to an artificial node that represents the DNS1 mutant, serving

as the anchor for the application. We allowed inhibitions (e 2 I) only for edges whose both endpoints are at

distances of at least two from the artificial anchor (that is, only host–host interactions).

The terminal sets for the two conditions were selected as all genes at time point t = 8h, whose differential

expression score in the corresponding profile was above a cutoff of 0.67 (Shapira et al., 2009). We selected

t = 8 since earlier time points had too few differentially expressed genes and later time points induced an

order of magnitude more genes that might be associated with secondary responses. The first terminal set

included all 62 differentially expressed genes from the DNS1 profile, while the second set included 28

genes that were expressed in both profiles. We aimed to study how NS1 suppresses the expression of the 34

genes that belong to the first profile only. (In this study, we ignored genes in PR8yDNS1; one possible

explanation for their expression is an activation signal stemming from NS1).

We first applied the heuristic filtering, yielding 9684 directed interactions over 1666 genes. With this

background, we tested all combinations of parameters, analyzed separately per bias. Every resulting so-

lution consisted of a subnetwork and a set of inhibited edges.

4.2. Biological results

We used the output produced by our algorithm to provide two types of predictions. First, we sought to

divide the revealed pathways into two subsets, pathways that are inhibited by NS1 (henceforth, the in-

hibited set) and pathways that are not (the non-inhibited set). Second, we looked for genes that are likely to

play an explicit role in the NS1 inhibition process.

In the following subsections, we discuss the analyses made to achieve our predictions and describe the

validation methods. In both analyses we focused on the group of experiments with bias = 4, in order to best

exploit our prior knowledge on the interactions that NS1 is able to form.

4.2.1. Extracting the inhibited pathways. In order to distinguish between inhibited and non-

inhibited pathways, we counted for each of the 232 human non-terminal genes belonging to any solution

subnetwork (163 total with bias = 4 and all 9 combinations of the other two parameters), the percentage of

solutions in which it appears below some inhibited edge. We assumed that the higher the percentage, the

more likely it is that a gene participates in an inhibited pathway. On the other hand, we have prior

knowledge that the NS1 protein has strong inhibition effects on immune system–related pathways.

Therefore, to select the threshold that best divides the list into two functionally coherent groups, we applied

the GSEA method (Subramanian et al., 2005) to our ranked list (using classic weights) to compute the

enrichment score and leading edge subset (i.e., the high-ranking genes) with respect to the comprehensive

Gene Ontology (GO) category ‘‘cellular response to cytokine stimulus.’’ This analysis yielded an en-

richment score of 0.28 ( p < 0.02 over 1000 permutations of the ranked list), breaking the list into 93 genes

in the inhibited set (corresponding to a threshold of 1.2%) and 139 in the non-inhibited set.

We compared the biological functions of the inhibited versus non-inhibited gene sets using the GO

annotation. We computed the enrichments of the inhibited set with respect to five antiviral response–related
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FIG. 2. Functional enrichment analysis of the inhibited set. For every gene ontology (GO) category (left-most

column), the following information is given (columns 2–5, respectively): hyper-geometric test p-value, calculated based

on a background of 10194 genes that comprise the human PPI network that we used; total number of genes in the GO

category; size of the intersection with the 93 genes in the inhibited set; and the intersecting gene names.

FIG. 3. Performance of the Inhibited Pathway Reconstruction algorithm. The plots compare the - log p-value of the

hyper-geometric enrichment test between the IPR predicted inhibited pathways (x-axis) and the IPR non-inhibited

pathways (top), or the inhibited pathways produced by the naı̈ve algorithm (bottom). The circles represent GO cate-

gories. IPR, inhibited pathway reconstruction.
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GO categories, such as toll-like receptor (TLR) signaling and interferon production (Fig. 2). As depicted in

Figure 3a, these p-values were more significant than the respective p-values attained for the non-inhibited

set, indicating that our predicted inhibited pathways indeed have a unique immune-related role, which

might explain why NS1 chooses to focus on their inhibition.

Next, we compared the performance of our algorithm to that of a naı̈ve approach, which predicts the

inhibited pathways by reconstructing a minimum Steiner tree that spans the genes in DNS1yPR8 using

NS1 as the anchor. This method is inherently biased as it uses knowledge on feasible virus–host PPIs of

NS1. However, it is naı̈ve in the sense that it is not aware of the information embodied in the DNS1 X PR8

condition. We applied the same heuristic filtering and collected all suggested solutions within 20% of the

optimum, amounting to 44 subnetworks with a total of 93 noninput genes in their union. The intersection of

these genes with the inhibited set that was inferred by our algorithm (also of size 93) contained 43 genes,

showing that the predictions are quite different. Figure 3b shows that the p-values attained for the inhibited

set produced by our algorithm compare favorably to those attained by the naı̈ve algorithm.

4.2.2. Inferring the inhibited genes. To predict genes that are directly manipulated by NS1 in the

inhibition process, we performed the following steps. Per algorithm execution, we gathered the inhibited

edges from all suggested solutions. For each gene touching an inhibited edge (and leading to at least two

terminals), we predicted it as inhibited if it showed up for at least two of the nine parameter combinations

when setting the bias to a fixed value. To evaluate the robustness of these predictions with respect to the

FIG. 4. Predicted direct inhibitions of NS1. The histograms display the prediction robustness of each gene, defined as

the fraction of runs in which the gene was predicted when random 10% of the terminals were hidden. Separate histograms

are shown for the unbiased and biased settings. Genes that were predicted in both settings appear in light gray.
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gene expression measurements, we executed the above process 10 times, each time hiding 10% randomly

chosen terminals (6 out of 62). The robustness scores of our predictions, defined as the fraction of

executions in which they were raised, are summarized in Figure 4, for the unbiased (bias = 0) and biased

(bias = 4) settings (we omitted three predictions whose robustness score was below 0.4). Interestingly, 8

predictions were shared between the unbiased and biased analyses out of 13 and 19 predictions in total,

respectively. The predictions remained stable for a similar robustness analysis with respect to the input PPI

network, performed by removing from the filtered network 5% randomly chosen interactions and adding

5% randomly chosen interactions.

We evaluated the results of the biased analysis by looking for every predicted gene, whether it is

involved in any known viral interactions. Notably, 16 out of 19 genes had strong support from the literature

(Fig. 5). In particular, 7 are known to interact with NS1, including UBE2I, DVL2, CCDC33, DDX58,

BANP, MAPK9, and FXR2 (Mibayashi et al., 2007; Shapira et al., 2009). Another gene, TRAF2, interacts

with the influenza protein PB2 (Shapira et al., 2009). Interestingly, 8 additional genes are known to interact

with proteins of other viruses. For example, IRF3 interacts with the E6 protein of the human papillomavirus

FIG. 5. Literature support for predicted direct inhibitions of NS1. Every record shows the predicted gene, virus name,

and protein name with which it interacts, as well as the Pubmed ID that reported this interaction.
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(Ronco et al., 1998), and EP300 interacts with the A238L protein of the African swine fever virus (Granja

et al., 2008). As another support, we found that 7 of the 8 proteins that were predicted by both the unbiased

and biased configurations have known interactions with either influenza or other viruses (Figs. 5 and 6).

The genes for which we did not find support are ESR1, CCDC85B, and UBC. This might be either because

such interactions are unknown or because NS1 suppresses the corresponding interactions by operating on

their neighbor. To conclude, Figure 7 shows for all bias values the percentage of the predictions that are

also direct NS1 interactors. The high proportion of NS1 interactors for higher bias values indicates the

utility of using prior knowledge for generating more accurate and biologically relevant reconstructions.

5. CONCLUSIONS

In this article we described a novel network reconstruction method that is able to infer interactions

and pathways that are inhibited by viral proteins. This research opens the door for various future directions.

One possible extension is to relax the tree assumption, thus enabling synergy interactions and alternative

pathways to genes under normal versus inhibition conditions. Another future direction is to integrate prior

FIG. 6. Viral interactors of predicted inhibited genes. This histogram shows for every virus the number of predicted

inhibited genes that interact with at least one protein of that virus. Predicted genes that interact with more than one type

of virus are counted for each of these viruses. Predicted genes for which no support for viral interaction was found

appear under the column ‘‘no support’’.

FIG. 7. Biased prediction sta-

tistics. This histogram shows for

every bias value the percentage of

predictions that are NS1 inter-

actors.
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knowledge on interaction types (activation versus inhibition) to achieve reconstructions that account for the

direction of expression change. A final direction would be to explore multiple viruses simultaneously,

where each virus activates different sets of differentially expressed genes while performing different

inhibitions. Depending on the availability of such data, these suggested approaches may lead to new

predictions and hypotheses that could be subjects for experimental validations.

6. APPENDIX

Lemma 1. In the ILP algorithm from Section 3, assume that ze‚ qe 2 f0‚ 1g for every e 2 E. Then the

rest of the variable types, constrained by the ranges re 2 [0‚ 1]‚ pe 2 [0‚ jT2j], and xe‚ i 2 [0‚ jTij] (i = 1‚ 2),
are assigned integer values in any optimal solution.

Proof. Let v 2 V . We first prove that for every e 2 In(v) and i 2 f1‚ 2g, xe,i is an integer. From

constraint (5) and the integrality of z, at most one of these edges can have ze = 1, and thus, from constraint

(3), at most one of them can have a positive value for xe,i. Denote by Si(v) the set of terminals reachable

from v in condition i, and let t 2 Si(v). By applying the above argument for every node on the (single) path

from v to t, we conclude that t can receive flow only from v, hence from constraint (2) we infer thatP
e2In(v) xe‚ iqjSi(v)j. However, the other direction holds too since the flow (for condition i) that v sends can

be collected only by terminals in Si(v). Therefore, for every e 2 In(v), either xe,i = 0 or xe,i = jSi(v)j, as

required.

The integrality of r is proved by induction on the (tree) structure of an optimal subnetwork. [For an edge

e not in the subnetwork re = 0 from constraint (9)]. Let v 2 V and assume that for every e 2 In(v), re is an

integer. Let f 2 Out(v) with zf = 1. Now examine the expression
P

e2In(v) (qe + re), which appears in the last

constraint. If it evaluates to 0 we are done. Otherwise, either
P

e2In(v) qe > 0 or
P

e2In(v) re > 0. Com-

bining with the integrality of q, the induction hypothesis and constraint (9), either of these must equal 1.

From (11) or (12) it follows that rf = 1.

Finally, the integrality of p follows immediately from the integrality of q and x. -
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