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Introduction 
The intestinal mucosa barrier (IMB), which is the first line of 
defense against a hostile environment, is composed of a single 
layer of columnar epithelium with inter-epithelial tight junc-
tions.  Intestinal mucositis is a clinical term that is used to 
describe the side effects of cancer chemotherapy on the intes-
tinal mucosa surface, resulting from dysfunction of the IMB.  
Typical symptoms are bloating, abdominal pain and diarrhea.  
Approximately 40%–100% of cancer patients undergoing che-
motherapy develop mucositis[1–4], and 50% of these patients 
require a reduction in the dose of chemotherapy or occasional 
cessation of treatment.  Mucositis is occasionally fatal.  How-

ever, no effective treatment for mucositis has been developed.  
In recent years, researchers have focused on traditional 

Chinese medicine for its therapeutic effects and low toxicity.  
Ganoderma lucidum (Leyss, ex Fr) Karst (Gl) has been widely 
used to promote health and longevity in China for thousands 
of years.  Ganoderma lucidum polysaccharides (Gl-PS) comprise 
the critical biological activity components of Gl.  Gl-PS have 
been reported to prevent oxidative damage[5], protect the liver, 
and reduce serum glucose levels without causing toxicity[6, 7].  
In addition, Gl-PS modify biological and immune responses[8].  

Unfortunately, little attention has been paid to the effects of 
Gl-PS on gastrointestinal mucosal function.  In this study, we 
used a murine model of intestinal damage that was induced 
using methotrexate (MTX), which is a folate antagonist, to 
evaluate the protective role of Gl-PS in IMB.  The intestinal 
epithelial cell line IEC-6 was also used as an in vitro wounding 
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model to evaluate the role of Gl-PS on epithelial cell prolifera-
tion and cell restitution to elucidate the possible action mecha-
nisms of Gl-PS in the treatment of IMB.

Materials and methods
Materials 
Ganoderma lucidum polysaccharides (Gl-PS) were isolated from 
boiling water extracts of fruit bodies of Ganoderma lucidum 
(Leyss, ex Fr) Karst followed by ethanol precipitation, dialy-
sis and protein depletion using the Sevag method.  Gl-PS is 
glycopeptide with a molecular weight of 584 900.  The ratio 
of polysaccharides to peptides is 93.61%: 6.49%.  The poly-
saccharides consisted of D-rhamnose, D-xylose, D-fructose, 
D-galactose, D-mannose  and  D-glucose  with a  molar ratio 
of 0.793:0.964:2.944:0.167:0.389:7.94.  The polysaccharides were 
linked together by β-glycosidic linkages.  Gl-PS is a hazel-
colored water-soluble powder that was kindly provided by 
the Fuzhou Institute of Green Valley Bio-Pharm Technology.

Inbred female BALB/c mice (7–8 weeks old) were purchased 
from the Department of Experimental Animals at the Health 
Science Centre at Peking University in Beijing, China.  The ani-
mals were housed in environmentally controlled conditions 
with 12-h light/12-h dark cycles and were allowed free access 
to water and standard laboratory chow.  

IEC-6 cells were obtained from the Cell Bank of Peking 
Union Medical College (Beijing, China).  IEC-6 cells were 
routinely maintained in the presence of Dulbecco’s modified 
Eagle’s medium (DMEM) (Gibco BRL, USA) containing 5% 
inactivated fetal calf serum (FCS), 10 μg/mL insulin, 2.8 g/L 
sodium bicarbonate, 100 U/mL penicillin G sodium and 100 
μg/mL streptomycin sulfate.

MTX was purchased from Zhejiang Hengrui Pharmaceuti-
cal Co, Ltd.  Malondialdehyde (MDA) and superoxide dis-
mutase (SOD) analysis kits were purchased from the Nanjing 
Jiancheng Biology Research Center.  The TGFβ ELISA kit was 
purchased from Wuhan Boster Bio-engineering Co, Ltd.  Pri-
mary, and secondary antibodies for the measurement of IgA 
were obtained from Sigma Chemical Co.  

Murine MTX-induced enteritis model
The animals were randomly assigned to five groups that 
contained nine animals each.  Mice received ig once daily for 
10 consecutive days of (1) low-dose Gl-PS (50 mg/kg), (2) 
intermediate-dose Gl-PS (100 mg/kg), (3) high-dose Gl-PS (200 
mg/kg), (4) vehicle (ie, sterile physiological saline), which was 
used as a model control, and (5) vehicle (ie, sterile physiologi-
cal saline) as a normal control.  With the exception of group 
(5), the mice were injected intraperitoneally (ip) with MTX (50 
mg/kg) on the 7th d and 8th d.  Two days after completing the 
course of MTX (the 11th d), the mice were sacrificed by cervi-
cal dislocation.  Subsequently, the intestinal tissue samples 
were harvested and prepared for histological studies.  The 
other segments of the intestine were removed to determine 
MDA and SOD levels.  Before the mice were sacrificed, blood 
samples were obtained from each animal to perform bio-
chemical analyses (plasma IgA level).  The experiments were 

approved by the Animal Care and Research Ethics Committee 
of the Peking University Health Science Center.

Intestinal morphology and histopathology
Tissue samples of the intestine (0.5 cm) were obtained at a 
distance of 15 cm from the pylorus of each animal following 
laparotomy.  Imaging using light microscopy (LM) and trans-
mission electronic microscopy (TEM) was performed for mor-
phological and histopathological studies.  The tissue sections 
were stained with hematoxylin and eosin for imaging using 
LM.

Measurement of MDA and SOD levels 
Quantitative MDA and SOD measurements were performed 
with tissues that were obtained from the intestine using the 
MDA and SOD analysis kits.  

Measurement of total immunoglobulin A 
A sandwich ELISA technique was used as previously 
described[9].  

Determination of IEC-6 cell proliferation
IEC-6 cells (3×104) were seeded into 96-well plates (Costar, 
USA) in the presence of DMEM containing 5% FCS.  The 
cultures were treated with different concentrations of Gl-PS.  
After 44 h of incubation at 37 °C and 5% CO2, a colorimetric 
MTT assay was performed as previously described[10].  The 
cultures were incubated with tetrazolium salt thiazolyl blue 
(20 μL) at a concentration of 5 mg/mL for another 4 h.  The 
cell supernatants were discarded, and the cells were lysed 
using dimethyl sulfoxide (DMSO).  The metabolization of MTT 
directly correlates with the cell number and was quantitated 
by measuring the absorbance at 570 nm (reference wavelength 
450 nm) using a microplate-reader.

Determination of ODC and c-Myc mRNA expression profiles using 
RT-PCR analysis
The mRNA expression profiles of ODC and c-Myc in IEC-6 
cells were evaluated using reverse transcription polymerase 
chain reaction (RT-PCR) with the Access RT-PCR system 
(Takara, Japan) according to the manufacturer’s procedures.  
IEC-6 cells that were treated with or without Gl-PS were har-
vested after 12 h of incubation.  The total RNA was extracted 
using TRIzol Reagent (Invitrogen, USA).  The concentration 
of RNA was spectrophotometrically quantified.  The cDNA 
was synthesized using the Advantage RT-for-PCR kit protocol 
(Promega, USA).  Diluted aliquots from these reactions were 
subsequently used as templates for PCR.

Commercial primers to rat glyceraldehyde 3-phosphate-
dehydrogenase (GAPDH) (sense, 5’-GCCAAGGTCATCCA-
TGACAAC-3’ and antisense, 5’-GTCCACCACCCTGTTGCT-
GTA-3’), rat ODC (sense, 5’-TGCTTGACATTGGTGGTG-3’ 
and antisense, 5’-TTCTCATCTGGCTTGGGT-3’) and rat 
c-Myc (sense, 5’-GCTCGCCCAAATCCTGTA-3’ and antisense, 
5’-ACCCTGCCACTGTCCAAC-3’) were provided by Shang-
hai Sangon Biological Engineering Technology and Service Co, 
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Ltd (Beijing, China) were used to generate products of 498 bp, 
355 bp and 385 bp, respectively.  The PCR reactions included 
0.4 μmol/L of each primer, 0.2 mmol/L dNTPs, 1×PCR-
Buffer with 15 mmol/L MgCl2 and 2 U/μL Taq polymerase 
(Takara, Japan).  The PCR cycling protocol was as follows: 
45 s at 94 °C, 45 s at 60 °C (GAPDH), 57 °C (ODC), or 59 °C 
(c-Myc) and 2 min at 72 °C.  This protocol was performed for 
24 (GAPDH)/26 (ODC)/26 (c-Myc) cycles and included an ini-
tial 5-min denaturation at 94 °C and a final 10-min extension at 
72 °C.  The performed cycles of PCR was chosen to ensure the 
exponential amplification of all specific cDNA products.  The 
PCR-amplified samples were electrophoresed using 1.5% aga-
rose gels, stained with ethidium bromide, visualized via UV 
transillumination and quantified via densitometry scanning 
using AlphaEaseFC V4.0.0 software (Alpha Innotech Corp).  
ODC and c-Myc expression profiles were normalized relative 
to that of GAPDH.

Monolayer wounding and measurement of epithelial cell restitu
tion
IEC-6 cell restitution assays were performed using a modi-
fied version of a previously described technique[11, 12].  IEC-6 
cells were plated in six-well polystyrene plates (Costar) with 
normal growth medium and allowed to reach confluence.  A 
denuded epithelial wound was created in a standardized fash-
ion by scraping the IEC-6 monolayers with a 200-μL pipet tip.  
After the scraping, the cells were washed twice with D-Hanks’ 
buffer to remove residual cell debris.  The wounded monolay-
ers were cultured for 42 h in DMEM containing 2% FCS in 
the presence or absence of Gl-PS.  Wound areas were viewed 
under the microscope at various time points after wounding 
and photographed with an Olympus IX71 microscope.  The 
denuded wound area (ROI, region of interest) was quantified 
using LEICA QWIN software (Germany).  Two wound areas 
per well were analyzed.  Each group was tested in triplicate, 
and at least three independent experiments were performed.  
Restitution was calculated as the migration ratio using the fol-
lowing equation: (ROI0 h–ROI42 h)/ROI0 h×100%.  The data are 
expressed as the mean value±sd (standard deviation) repre-
senting at least three independent experiments.

IEC-6 cell supernatant collection and determination of TGFβ 
levels
The collection of IEC-6 cell supernatants was performed as 
previously described[13].  IEC-6 cells were plated in 6-well 
culture dishes at a density of 2.5×105 cells/dish.  After 24 h, 
the medium was replaced with medium that had been supple-
mented with different concentrations of Gl-PS.  IEC-6 mono-
layers were wounded using a 200-μL pipet tip as previously 
described.  The cells were washed twice with D-Hanks’ buffer 
and subsequently incubated with fresh medium that had been 
supplemented with Gl-PS.  After 24 h, the cell supernatants 
were collected.  Secretion of TGFβ from supernatants was 
determined using a sandwich ELISA kit according to the man-
ufacturer’s protocol.

Statistical analysis
The data were analyzed using one-way ANOVA followed by 
the least-significant difference (LSD) test.  P values that were 
below 0.05 were considered statistically significant.

Results
Morphological and histological results
As shown in Figure 1, Gl-PS did not perturb the morphologi-
cal and histological features of the jejunum in mice.  All tissue 
sections of the intestine of the control group were normal.  In 
the tissue sections of the MTX-treated mice, we observed vil-
lus shortening, variable degrees of fusion, epithelial atrophy, 
a decreased number of crypt cells, crypt loss and the develop-
ment of abscesses in crypts.  In addition, we noted an inflam-
matory infiltration in the lamina propria.  The number of gob-
let cells was significantly decreased in the villi and the crypts.  
Although the histopathological features in the MTX+Gl-PS 
100 mg/kg-treated group were similar to the findings in the 
MTX-treated group, the total small intestine damage in the 
MTX+Gl-PS 100 mg/kg-treated group was less than that of the 
MTX-treated group.

Examination of the intestinal ultrastructure revealed that 
the microvilli in the normal control group were long, abun-

Figure 1.  Morphology of the murine jejunum under magnification of 100 
and 200.  Normal: group of normal control; MTX: group of MTX model; Gl-
PS: group of 100 mg/kg Gl-PS under MTX stress.  These photographs are 
representative examples of a group of nine mice. 
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dant and neatly arranged, whereas the microvilli in the MTX-
treated group were reduced, shortened and disordered.  
Some of the microvilli were ablated.  Swelling of the nuclear 
membrane and mitochondria was observed.  The intestinal 
ultrastructural changes in the MTX+Gl-PS 100 mg/kg-treated 
group were ameliorated compared to those in the MTX-treated 
group (Figure 2).

Gl-PS decreased MDA levels but increased SOD levels in mice 
intestine 
We showed that the concentration of MDA in the intestine 
of mice in the MTX-treated group was significantly higher 
than that in the normal control group (P<0.001).  However, 
we observed decreases in MDA concentration in MTX+Gl-PS 
groups in a dose-dependent manner (Figure 3).  However, the  

level of SOD in the MTX model group was down-regulated 
compared to that in the control group (P<0.01).  MTX-induced 
decreases in SOD responded to Gl-PS treatment in a dose-
dependent manner (P<0.05) (Figure 4).

The concentration of IgA in serum
The concentration of total serum IgA was measured using an 
ELISA.  MTX treatment significantly decreased the total serum 
IgA concentration compared to the normal control (P<0.05).  
Gl-PS treatment elevated the concentration of IgA in a dose-
dependent manner (Figure 5).

 
Effect of Gl-PS on the proliferation of IEC-6 cells
The cells were incubated with different concentrations of 
Gl-PS (0.1, 1, and 10 μg/mL) for 48 h.  As shown in Table 1, 

Table 1.  Effects of Gl-PS on IEC-6 cells proliferation.  n=8.  Mean±SD.  
bP<0.05, cP<0.01 vs DMEM.

                   Group	                                             OD value (570 nm)
 
	 DMEM	 0.626±0.072
	 Gl-PS 0.1 μg/mL	 0.725±0.080b

	 Gl-PS 1 μg/mL	 0.751±0.075c

	 Gl-PS 10 μg/mL	 0.840±0.077c 

Figure 3.  Effect of Gl-PS on MDA content in supernatant homogenate 
for intestine in MTX-induced mice.  n=9.  Mean±SD.  cP<0.01 vs normal 
control.  eP<0.05,  fP<0.01 vs MTX model.

Figure 4.  Effect of Gl-PS on SOD content in supernatant homogenate 
of intestine in MTX induced mice.  n=9. Mean±SD.  cP<0.01 vs normal 
control.  eP<0.05, fP<0.01 vs MTX model. 

Figure 5.  Effect of Gl-PS on serum IgA level in MTX-induced mice.  IgA 
level show by OD490 value.  n=7.  Mean±SD.  bP<0.05 vs normal.  eP<0.05 
vs MTX model.

Figure 2.  Changes of intestinal ultrastructure.  (A) normal control group. 
(B, D, E) MTX model group.  (C, F) group of 100 mg/kg Gl-PS under MTX 
stress.  The arrow (D) indicates swelling of nuclear membrane.  The arrow 
(D, E) indicates tight junction.  * indicates swelling of mitochondria.
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Gl-PS significantly promoted the proliferation of IEC-6 cells in 
a dose-dependent manner compared to the control.  The pro-
liferation rate was 34% higher in cells that were treated with 
10 μg/mL Gl-PS compared to that in control cells.

Gl-PS modulated mRNA expression profiles of ODC and c-Myc in 
IEC-6 cells
Semiquantitative RT-PCR was used to determine the effect of 
Gl-PS on ODC and c-Myc mRNA expression profiles in IEC-6 
cells.  As shown in Figures 6 and 7, ODC and c-Myc mRNAs 
were expressed in IEC-6 cells.  Gl-PS (10 and 20 μg/mL) treat-
ment significantly up-regulated the expression of ODC and 
c-Myc mRNAs compared with that in the normal control 
group (Figures 6 and 7).

Gl-PS enhanced IEC-6 cell restitution
As shown in Table 2, Gl-PS caused a dose-dependent 
enhancement of intestinal epithelial cell restitution in a well-
established wounding model with IEC-6 cell monolayers.  We 
detected a 36% increase in the restitution of IEC-6 cells that 
were treated with 10 μg/mL Gl-PS compared to that of control 
cells.

Effects of Gl-PS on TGFβ levels in IEC-6 cell culture supernatants
Recent evidence has supported a central role for TGFβ in the 
process of intestinal epithelial restitution[14].  Therefore, the 
production of TGFβ was measured to determine the possible 
involvement of this cytokine in Gl-PS-mediated restitution.  
No significant effect was observed on the production of TGFβ 
following Gl-PS treatment (Table 3).

Discussion
The intestinal epithelial barrier, including the biotic, mechani-
cal and immunity barriers, is a crucial barrier against pathogen 
infection.  Previous studies have not demonstrated an effective 
method to prevent IMB damage[15].  It is necessary to develop 
natural medicines that are effective in treating IMB dysfunc-
tion and intercurrent diseases.  In the current report, the effects 
of Gl-PS on the intestinal epithelial barrier were investigated.  

Chemotherapy commonly produces structural damage to 
the intestinal mucosa in cancer patients[16] and causes side 
effects such as severe enterocolitis. In agreement with previ-
ous studies[17], the results of the present study reveal that 
MTX induced small intestinal injury, which is characterized 
by villus shortening and fusion, epithelial atrophy, crypt loss, 

Table 3.  Effects of Gl-PS on TGFβ level in IEC-6 cells culture supernatants.  
Values represent means (±SD) from three independent experiments 
performed in duplicate.

                   Group	                                                 TGFβ (pg/mL)  
 
	 DMEM	 9.602±0.001
	 Gl-PS 5 μg/mL	 9.603±0.001
	 Gl-PS 10 μg/mL	 9.605±0.001
	 Gl-PS 20 μg/mL	 9.607±0.002

Table 2.  The effect of Gl-PS on IEC-6 cells wound restitution.  n=8.  
Mean±SD.  bP<0.05, cP<0.01 vs DMEM.

                   Group	                                             OD value (570 nm)
 
	 DMEM	 0.486±0.054
	 Gl-PS 0.1 μg/mL	 0.544±0.062
	 Gl-PS 1 μg/mL	 0.587±0.046b

	 Gl-PS 10 μg/mL	 0.661±0.089c 

Figure 6.  The mRNA expression of ODC and GAPDH in IEC-6 cells by RT-
PCR.  (A) 1–4: IEC-6 cells were treated with 0, 5, 10, and 20 μg/mL Gl-PS 
and it is mRNA expression of ODC.   a–d: IEC-6 cells were treated with 0, 
5, 10,  and 20 μg/mL Gl-PS and it is mRNA expression of GAPDH.  (B) PCR 
products were quantified by densitometric scanning and ODC expression 
was normalized relative to the steady-state expression of GAPDH used 
as internal control (intensity ratio: ODC to GAPDH).  Values represent 
means±SD from three independent experiments.  bP<0.05, cP<0.01 vs 
normal.

Figure 7.  The mRNA expression of c-Myc and GAPDH in IEC-6 cells by RT-
PCR.  (A) 1–4: IEC-6 cells were treated with 0, 5, 10, and 20 μg/mL Gl-PS 
and it is mRNA expression of c-Myc.  a–d: IEC-6 cells were treated with 0, 5, 
10, and 20 μg/mL Gl-PS and it is mRNA expression of GAPDH.  (B) Quanti-
fication of RT-PCR data.  n=3.  bP<0.05 vs normal control.
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inflammatory infiltration of the lamina propria, and goblet cell 
depletion.  Gl-PS treatment reduced intestinal mucosal dam-
age in this study and reduced gastric mucosal lesions in a pre-
vious study[18].

Increased oxidative stress and decreased antioxidant 
defenses have been demonstrated in intestinal mucosal 
biopsies of patients with MTX-induced damage to the small 
intestinal epithelium.  These damages may be reduced by 
antioxidant agents.  As previously reported, protective effects 
of various antioxidants, such as curcumin[19], aged garlic 
extract[20] and N-acetylcysteine[17], have been shown in MTX-
induced small intestinal damage.  MDA is frequently used 
in the measurement of lipid peroxide levels and correlates 
with the degree of lipid peroxidation.  SOD levels correlate 
with the elimination of free radicals.  Gl-PS have been widely 
used as antioxidants in vivo and in vitro[21–23]. Therefore, in the 
present study, we investigated whether Gl-PS inhibit MTX-
induced small intestine damage via decreasing MDA levels 
and increasing SOD levels.  We showed that the MDA level in 
the small intestinal mucosa of MTX-treated mice was remark-
ably increased, suggesting that MTX treatment caused oxida-
tive damage and lipid peroxidation in the intestinal mucosa.  
MTX-induced increases in MDA levels were attenuated after 
Gl-PS administration (Figure 3).  These findings may indicate 
that Gl-PS protect intestinal tissue against MTX-induced lipid 
peroxidation.  The present study also demonstrated that the 
MTX-induced downregulation of SOD was inhibited by Gl-PS 
treatment in the intestinal mucosa of mice (Figure 4).  These 
results suggest that the effects of Gl-PS may be achieved via its 
antioxidant and free radical-eliminating activities.

Immunoglobulin A (IgA) is an important component of the 
intestinal immunological barrier and is the most abundant 
immunoglobulin at the mucosal surface where it plays crucial 
role in mucosal protection[24].  The protective barrier of the 
gastrointestinal system is impaired in IgA deficiency, and IgA-
deficient individuals tend to develop gastrointestinal infec-
tions[25, 26].  Gl-PS are well-known modulators of the immune 
system[27, 28].  In this study, we found that MTX-treated mice 
displayed a reduced level of serum IgA.  This result indicates 
that mucosal immune barrier dysfunction occurs during MTX-
induced intestine damage.  Gl-PS restored the level of IgA, 
suggesting that Gl-PS bolstered intestinal immunity.  

Observations over the past several years have demonstrated 
the ability of the gastrointestinal tract to rapidly restore the 
continuity of the surface epithelium after extensive destruc-
tion.  Three different phases have been identified.  First, 
epithelial cells that are adjacent or just beneath the injured 
surface migrate into the wound to cover the denuded area, 
which is a process that has been termed epithelial restitution.  
Secondly, epithelial cell proliferation takes place to replenish 
the decreased cell pool.  Finally, maturation and differentia-
tion of epithelial cells enable the epithelium to maintain its 
functional activities[12].  The initial mechanism contributing to 
rapid resealing of epithelial defects after mucosal injury is the 
migration of viable epithelial cells from the wound margin 
into the denuded area, which is a process that does not require 

cell proliferation[29].  The data presented in this study revealed 
that Gl-PS at a concentration of 10 μg/mL augmented the 
migration of intestinal epithelial cells in an in vitro model that 
mimicked the early cell division-independent stages of epi-
thelial restitution.  When Gl-PS were added immediately after 
wounding, they significantly increased intestinal epithelial cell 
migration in a dose-dependent manner.  Although the exact 
mechanism of restitution has not been elucidated, the cytokine 
TGFβ has been shown to play an important role in the stimu-
lation of cell migration after wounding.  Some studies have 
revealed that the intestinal epithelial cell restitution process is 
stimulated via a TGFβ-dependent pathway[30, 31].  However, in 
other cases, the intestinal epithelial cell restitution was inde-
pendent of TGFβ[32].  In our study, we found that Gl-PS did not 
affect TGFβ expression in IEC-6 cells after wounding.  These 
results may indicate that Gl-PS stimulate restitution possibly 
through a TGFβ-independent pathway.

Epithelial cell proliferation, which is another essential mech-
anism to mediate resealing of mucosal wounds in the intestine, 
was substantially promoted by Gl-PS treatment in our investi-
gation.  This effect was dose-dependent, and maximal effects 
were detected at a concentration of 10 μg/mL Gl-PS.  

The polyamines are a group of ubiquitously distributed 
organic cations that are intimately involved in the regulation 
of gastrointestinal mucosal growth[33].  ODC, which is a pyri-
doxal phosphate-dependent enzyme, is the first rate-limiting 
enzyme for the biosynthesis of polyamines.  The extent of the 
ODC mRNA expression correlates with the cell proliferation.  
Treatment of gastrointestinal origin cells with difluoromethy-
lornithine, which is a suicide substrate inhibitor of ODC and 
induces depletion of intracellular polyamines, inhibits prolif-
eration[34, 35].  In addition, induction of the ODC gene may play 
an important role in the signaling pathways that are associated 
with several oncogenes.  Transformation by activated ras, v-src 
and myc appears to be tightly coupled to ODC gene expression 
and polyamine accumulation[36–38].  ODC is a transcriptional 
target of c-Myc[39], which has a central role in the proliferation 
of normal cells.  Following mitogenic stimulation of quiescent 
cells, c-Myc is rapidly induced and remains elevated, sug-
gesting that it is required for continuous cell growth[40].  In the 
present study, an increase in c-Myc and ODC gene expression 
(Figure 6 and 7) was observed in IEC-6 cells 12 h after expo-
sure to Gl-PS.  c-Myc and ODC gene expression were coinci-
dent to the stimulatory effect on cell proliferation (Table 1).

In summary, the present study demonstrated that Gl-PS 
reduced MTX-induced intestinal toxicity.  We demonstrated 
that Gl-PS increased the antioxidation and intestinal immunity 
in vivo, accelerated wound repair by stimulating cell prolifera-
tion and migration in vitro, and up-regulated c-Myc and ODC 
mRNA expression.  However, Gl-PS had no effects on TGFβ 
levels.  Altogether, we demonstrated a new protective effect 
of Gl-PS on the intestinal barrier via induction of epithelial 
cell proliferation and migration.  The present study may pro-
vide a pharmacological basis for the clinical use of Gl-PS in 
preventing enteritis in patients receiving chemotherapeutic 
agents.  Previous studies have shown that cell differentiation 
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also plays an important role in protecting the intestinal bar-
rier.  However, the effect of Gl-PS on cell differentiation was 
not assessed in this study.  Therefore, further investigation is 
required using molecular markers such as sucrase-isomaltase 
and alkaline phosphatase.
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