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Abstract

Sin Nombre virus (SNV; family Bunyaviridae, genus Hantavirus) causes a hemorrhagic fever

known as hantavirus pulmonary syndrome (HPS) in North America. There have been

approximately 200 fatal cases of HPS in the United States since 1993, predominantly in healthy

working-age males (case fatality rate 35%). There are no FDA-approved vaccines or drugs to

prevent or treat HPS. Previously, we reported that hantavirus vaccines based on the full-length M

gene segment of Andes virus (ANDV) for HPS in South America, and Hantaan virus (HTNV) and

Puumala virus (PUUV) for hemorrhagic fever with renal syndrome (HFRS) in Eurasia, all elicited

high-titer neutralizing antibodies in animal models. HFRS is more prevalent than HPS (>20,000

cases per year) but less pathogenic (case fatality rate 1–15%). Here, we report the construction and

testing of a SNV full-length M gene-based DNA vaccine to prevent HPS. Rabbits vaccinated with

the SNV DNA vaccine by muscle electroporation (mEP) developed high titers of neutralizing

antibodies. Furthermore, hamsters vaccinated three times with the SNV DNA vaccine using a gene

gun were completely protected against SNV infection. This is the first vaccine of any kind that

specifically elicits high-titer neutralizing antibodies against SNV. To test the possibility of

producing a pan-hantavirus vaccine, rabbits were vaccinated by mEP with an HPS mix (ANDV

and SNV plasmids), or HFRS mix (HTNV and PUUV plasmids), or HPS/HFRS mix (all four

plasmids). The HPS mix and HFRS mix elicited neutralizing antibodies predominantly against

ANDV/SNV and HTNV/PUUV, respectively. Furthermore, the HPS/HFRS mix elicited

neutralizing antibodies against all four viruses. These findings demonstrate a pan-hantavirus

vaccine using a mixed-plasmid DNA vaccine approach is feasible and warrants further

development.
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1. Introduction

A 1993 outbreak of acute illness characterized by fever, myalgia, and pulmonary failure in

the four corners region of the southwest United States led to the discovery of Sin Nombre

virus (SNV), one of the etiological agents of hantavirus pulmonary syndrome (HPS) [1–3].

According to the Centers for Disease Control and Prevention, from 1993–2012, there have

been 586 reported cases of HPS in the U.S. with a case fatality rate of 35%. SNV is the

predominant hantavirus causing disease in North America including the most recent HPS

outbreak in Yosemite Valley, California [4].

Hantaviruses cause two unique diseases targeting the lung (HPS) or the kidney hemorrhagic

fever with renal syndrome (HFRS). HPS is primarily associated with New World

hantaviruses (e.g. SNV and ANDV) found in the Americas, whereas Old World hantaviruses

(e.g. HTNV, PUUV, Seoul virus, and Dobrava-Belgrade virus) cause HFRS in Europe and

Asia [5,6]. There are currently no FDA-approved vaccines or therapeutics to treat hantavirus

disease [7].

Hantaviruses are enveloped viruses with a trisegmented, negative-sense RNA genome. The

S segment encodes for the nucleoprotein (N), M segment encodes the Gn and Gc

glycoproteins, and L segment encodes the RNA-dependent RNA polymerase [8]. While both

N and Gn/Gc have been shown to contribute to protective immunity (reviewed in [7]), only

the glycoproteins have been shown to be the targets of neutralizing antibodies. Moreover,

neutralizing antibodies have been shown to be sufficient to confer protection in passive

transfer experiments using Gn/Gc-specific monoclonal and polyclonal antibodies [9–11].

We have previously reported on the construction and efficacy of gene gun-delivered DNA

vaccines targeting HTNV and PUUV M segment in nonhuman primates, hamsters, and

humans in a phase I clinical trial [12–14]. We have also reported that an ANDV M gene-

based DNA vaccine, and a plasmid containing both the ANDV and HTNV M genes, could

elicit high titer neutralizing antibodies in rabbits and nonhuman primates when delivered by

mEP or gene gun [11,15,16]. Others have demonstrated that a N-based or glycoprotein

fragment-based DNA vaccine were capable of eliciting detectable neutralizing antibody

titers in BALB/c mice (Focus Reduction Neutralization Test80 = 20) and protecting deer

mice against infection with SNV in the absence of high titer neutralizing antibodies [17,18].

There have been no reports of DNA vaccines, or any other type of vaccine, capable of

eliciting high titer neutralizing antibodies against SNV. In the current study, we report on

the development, immunogenicity, and protective efficacy of a full length M gene-based

DNA vaccine to SNV. We expand on these findings and demonstrated the efficacy of

multivalent DNA vaccines simultaneously targeting the causative agents of both HPS and

HFRS.
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2. Materials and methods

2.1. Viruses, cells, and medium

SNV strain CC107 [19], ANDV strain Chile-9717869 [20], HTNV strain 76–118 [21], and

PUUV strain K27 [22] were propagated in Vero E6 cells (Vero C1008; ATCC CRL 1586).

These cells were maintained in Eagle's minimum essential medium with Earle's salts

containing 10% fetal bovine serum, 10 mM HEPES, pH 7.4, and Penicillin Streptomycin

(Invitrogen) at 1X, and gentamicin sulfate (50 μg/ml) at 37 °C in a 5% CO2 incubator.

2.2. Animals

Female New Zealand white rabbits (Oryctolagus cuniculus) aged 11 weeks were used in the

DNA vaccination studies. Female Syrian hamsters (Mesocricetus auratus) aged 6–8 weeks

were used in the vaccination/challenge study.

2.3. Construction of hantavirus M gene vaccine plasmid

The SNV M gene DNA vaccine plasmid pWRG/SN-M(2a) was constructed by reverse

transcription of viral RNA, followed by PCR amplification of cDNA, and standard cloning

techniques. Forward and reverse primers were based on SNV sequences. The forward

primer was SN-Fj (5′-

GGCCGCGGCCGCGGATCTGCAGGAATTCGGCACGAGAGTAGTAGACTCCGCAC

GAAGAAGC) and the reverse primer was SN-Mrev (5′-

GGCCTTCGAATAGTAGTAGACTCCGCAGGAAC). The forward primer included a NotI

restriction site (underlined) and the reverse primer included a BstBI restriction site

(underlined). cDNA was purified by use of a PCR purification kit (Qiagen) and used as a

template in PCR. Primers were included in the PCR mix, which also included Platinum Taq

High Fidelity DNA polymerase (Invitrogen); the PCR conditions were one 3-min cycle at 94

°C followed by 30 cycles of 94 °C for 30 s and 68 °C for 8 min. The PCR product was cut

with NotI and BstBI and then ligated into NotI-BstBI-cut modified pWRG7077 vector to

produce pWRG/SN-M(2a).

To produce an optimized plasmid, the SNV M gene open reading frame from pWRG/SN-

M(2a) was codon-optimized [23] and four amino acids were changed to consensus residues

based on alignments with published SNV M genes. The optimized gene was synthesized by

GeneArt and subcloned into the NotI and BglII sites of the DNA vaccine vector

pWRG7077, creating pWRG/SN-M(opt). This plasmid has been submitted to the ATCC,

Patent Deposit Designation PTA-11660. The HTNV M gene DNA vaccine plasmid is

designated as pWRG/HTN-M(x), the PUUV vaccine plasmid is pWRG/PUU-M(s2), and the

ANDV is pWRG/AND-M, they have been described previously [13,14].

2.4. mEP vaccination

Anesthetized New Zealand white rabbits were vaccinated by mEP using either the Inovio

Elgen delivery device or the Ichor TriGrid delivery device. DNA vaccination with the

Inovio Elgen delivery device was conducted as previously described [16]. Each vaccination

session was a single mEP event in one leg.
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Rabbits vaccinated using the Ichor TriGrid delivery device was conducted as previously

described [24]. The dose of DNA per injection is provided in figure legends.

2.5. Gene gun vaccination

Vaccinations using an XR particle-mediated epidermal delivery device (gene gun)

(PowderJect-XR delivery device; PowderJect Vaccines, Inc.) have been described

previously [13,14,25]. Anesthetized outbred female Syrian hamsters (6–8 weeks or older)

were vaccinated with four administrations per vaccination. This procedure is non-painful

with the only adverse effect being mild erythema at the vaccination site.

2.6. Challenge with hantavirus

Anesthetized Syrian hamsters were exposed to SNV or ANDV by intramuscular (i.m.)

injection to the caudal thigh. 200 PFU SNV (100 ID50) or 200 PFU ANDV (25 LD50) was

diluted in sterile phosphate-buffered saline (pH 7.4) and administered in a volume of 0.2 ml.

2.7. PRNT

Plaque-reduction neutralization tests (PRNT) were performed using Vero E6 as previously

described [14]. The 50% (or 80%) PRNT titer (PRNT50 or PRNT80 titer) was the highest

serum dilution reducing the number of plaques by 50% (or 80%) relative to the average

number of plaques in control wells that received medium alone. For most of the experiments

in this report, and in previous studies, we have reported PRNT50 titers because this gives the

highest level of sensitivity when evaluating vaccines for the first time in vivo. PRNT80 titers

are more stringent and are used when sensitivity is less important than obtaining a

conservative determination of the neutralizing antibody titer.

2.8. N-specific ELISA

The enzyme-linked immunosorbent assay (ELISA) used to detect N-specific antibodies (N-

ELISA) was described previously [14,25,26]. The endpoint titer was determined as the

highest dilution that had an optical density (OD) greater than the mean OD for serum

samples from negative-control wells plus 3 standard deviations. The PUUV N antigen was

used to detect SNV N-specific antibodies as previously reported [22].

2.9. Ethics

Animal research was conducted under an IACUC approved protocol at USAMRIID (USDA

Registration Number 51-F-00211728 & OLAW Assurance number A3473-01) in

compliance with the Animal Welfare Act and other federal statutes and regulations relating

to animals and experiments involving animals. The facility where this research was

conducted is fully accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care, International and adheres to principles stated in the Guide for the

Care and Use of Laboratory Animals, National Research Council, 2011.
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2.10. Statistical analysis

Comparison of neutralizing titers was done using Student's t test (two-tailed). P values of

less than 0.05 were considered significant. Survival analyses were done using log-rank test.

Analyses were conducted using GraphPad Prism (version 5).

3. Results

3.1. Individual hantavirus M-gene-based DNA vaccines elicited neutralizing antibodies
when delivered by mEP in rabbits

Groups of three rabbits were vaccinated four times by mEP using pWRG/HTN-M(x) and

pWRG/PUU-M(s2), and neutralizing antisera titers were determined by plaque reduction

neutralization test (PRNT) (Fig. 1A and B). A comparison with previously published titers

produced in rabbits by mEP vaccination with an ANDV full-length M segment was included

in Fig. 1C. Similarly, a SNV full-length M gene segment DNA vaccine, pWRG/SN-M(2a),

was immunogenic in rabbits but only after three or four vaccinations (Fig. 1D) indicating

this plasmid was less immunogenic than the HTNV, PUUV, or ANDV [16] vaccines. An

optimized version of the SNV M gene open reading frame was synthesized and sub-cloned

into the DNA vaccine vector to produce pWRG/SN-M(opt). pWRG/SN-M(2a) and

pWRG/SN-M(opt) M genes are identical except for the open reading frame where

optimization resulted in 980/3423 (29%) nucleotide changes and four amino acid changes:

Q27K, A241T, G434D, P519S, where the first letter is the symbol for the amino acid in the

product from pWRG/SN-M(2a), the number is the amino acid position, and the second letter

is the amino acid in the product from pWRG/SN-M(opt). pWRG/SN-M(opt) elicited high-

titer (>10,000) neutralizing antibodies after mEP detectable in sera on day 56, after two

vaccinations (Fig. 1E). The mean PRNT titers produced by the two SNV DNA vaccines

were plotted to illustrate the increased immunogenicity of the optimized SNV M gene

plasmid to the original plasmid (Fig. 1F).

3.2. Immunogenicity of combination DNA vaccines targeting causative agents of HPS,
HFRS, and HFRS/HPS

We next determined if the plasmids could be combined to produce vaccines eliciting specific

neutralizing antibody responses against multiple hantaviruses causing HFRS (HTNV and

PUUV), HPS (ANDV and SNV) and a combination targeting both HFRS and HPS agents

(HTNV, PUUV, ANDV, and SNV). Groups of three rabbits were vaccinated with

combinations of DNA vaccines targeting HFRS, HPS or HFRS/HPS delivered by mEP. Sera

were collected, and neutralizing antibody titers were determined by SNV, ANDV, HTNV,

and PUUV PRNT. Titers at different time points for individual rabbits (Fig. 2A), and mean

titers for the groups (Fig. 2B), were plotted. All but one of the rabbits (#6320) developed

homotypic neutralizing antibody responses after a single vaccination, and all were positive

after the first boost. Additionally, both the HFRS and HPS DNA vaccines elicited some

level of cross-neutralization against the HPS or HFRS hantavirus, respectively, based on

geometric mean titers (GMT) for the PRNT80 values after a single vaccination in all by one

rabbit (Fig. 3). Nevertheless, the highest SNV and ANDV mean titers were found in the

HPS vaccine and the HFRS/HPS vaccine groups, and the highest HTNV and PUUV mean

titers were found in the HFRS vaccine and HFRS/HPS vaccine groups. These data
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demonstrate that it is possible to mix hantavirus DNA vaccines into a single-injection

vaccine and produce neutralizing antibodies against multiple hantaviruses. The neutralizing

antibody titers did not significantly vary between the HFRS or HPS bivalent vaccines and

the HFRS/HPS quadravalent combination (p > 0.05) indicating little interference between

the targets in the larger combination vaccine.

SNV M gene-based DNA vaccine delivered by gene gun protects hamsters against SNV

infection, but not lethal disease caused by ANDV. Currently, there is no animal model for

disease caused by SNV, but there are models of SNV infection. Syrian hamsters injected

with a dose as low as 2 PFU become infected with SNV as measured by seroconversion to

the N protein [20]. Because the M gene-based DNA vaccines do not include the N protein, it

is possible to monitor the development of anti-N antibodies as a measure of productive

infection. To determine if our SNV vaccine was protective, groups of 7–8 hamsters were

vaccinated by gene gun with pWRG/SN-M(opt) or a negative control plasmid either two

times (0 and 3 weeks), three times (0, 3, and 6 weeks) or were not vaccinated at all.

Neutralizing antibody titers were determined at 0, 3, 6, and 9 weeks by PRNT (Fig. 4A).

pWRG/SN-M(opt) was immunogenic in hamsters, however, antibody titers were lower than

rabbits vaccinated by mEP. After two vaccinations, a statistically significant antibody

response was observed compared to negative control DNA vaccination group (p = 0.0026

and p = 0.0112, respectively). Titers increased after a third vaccination (week 9 sera), but

this increase was not statistically significant (Fig. 4B).

To evaluate the protective efficacy of the SNV DNA vaccine (5 weeks after the last

vaccination), hamsters were challenged with SNV and were then monitored for

seroconversion by N-ELISA. Analysis of sera collected four weeks after challenge revealed

5 of 8 hamsters receiving two vaccinations were protected from SNV infection (62.5%, p =

0.0392 when compared to negative control DNA vaccination group), 7 of 7 hamsters

receiving three vaccinations were protected from SNV infection (100%, p = 0.0008 when

compared to negative control DNA vaccination group), and no hamsters receiving negative

control DNA or left unvaccinated were protected from SNV infection (Fig. 4C). This

indicated that pWRG/SN-M(opt) could protect hamsters against SNV but required

neutralizing antibody titers equivalent to those produced by three vaccinations.

We next hypothesized that this vaccine would be capable of cross-protecting against ANDV

infection in the hamster disease model. Unlike SNV, ANDV infection of Syrian hamsters

causes a lethal endothelium-leak disease that closely resembles human HPS [20]. To test

this, 8 hamsters were vaccinated 3 times at 3-week intervals with pWRG/SN-M(opt) using

gene gun. A group of 7 unvaccinated hamsters served as a negative control for the ANDV

challenge. Five weeks after the last vaccination, hamsters were challenged with 200 PFU of

ANDV by the i.m. route (25 LD50). Only 3 of 8 hamsters vaccinated with pWRG/SN-

M(opt) survived despite the presence of SNV neutralizing antibodies in 6 of 8 hamsters

(group GMT = 135, p = 0.0045 when compared to no vaccine controls) (Fig. 5B). One of 7

hamsters survived in the negative control group (p = 0.3108) (Fig. 5A). Results of an ANDV

PRNT demonstrated that sera from vaccinated hamsters had little cross-neutralization

activity (data not shown). Thus, the antibody response elicited by the SNV DNA vaccine

failed to confer statistically significant protection against ANDV.
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4. Discussion

SNV-associated HPS is a serious and unpredictable public health threat, as affirmed by the

2012 outbreak at Yosemite National Park, CA [4] that resulted in 3 fatalities and more than

260,000 park visitors potentially exposed to a lethal virus. Here, we present the construction,

immunogenicity, and protective efficacy of a novel SNV DNA vaccine designated

pWRG/SN-M(opt). To our knowledge, this is the first SNV vaccine of any kind that has

been shown to elicit high-titer neutralizing antibodies (i.e., PRNT50 > 1000). The antibody

response elicited by pWRG/SN-M(opt) is among the most potent per vaccination ever

achieved with a hantavirus DNA vaccine. One to two vaccinations with pWRG/SN-M(opt)

plasmid alone using mEP resulted in SNV PRNT50 titers as high as 40,280, and one

vaccination with the combined SNV and ANDV plasmids resulted in SNV PRNT titers as

high as 20,480. The PRNT80 GMT for rabbits vaccinated one or two times with pWRG/SN-

M(opt) was 5120. These PRNT80 titers were higher than those reported for HPS survivors

[27]. Studies were not performed to elucidate which of the 980 nucleotide and/or four amino

acid changes improved the immunogenicity of the SNV DNA vaccine. We speculate that a

combination of changes resulted in improved vaccine quality (e.g., plasmid stability,

plasmid yield) and vaccine immunogenicity (e.g., mRNA stability, efficiency of expression,

and protein folding). Neutralizing antibodies are not required for protection; however, we

and others have shown that neutralizing antibodies are sufficient to protect [10,11,16,28–31].

Thus, a hantavirus vaccine capable of eliciting a potent neutralizing antibody response is an

excellent candidate for evaluation as a SNV vaccine (e.g., Phase 1 clinical trials) and a

means to produce a neutralizing antibody-based immunoprophylactic/therapeutic.

Hantaviruses are a neglected worldwide infectious disease problem and it would be

beneficial to have a single vaccine capable of protecting against multiple pathogenic

hantaviruses. This would reduce the burden of developing specific vaccines for the myriad

different pathogenic hantaviruses around the world. Combinations of plasmids co-delivered

separately or delivered as mixtures shows promise in animal models [15,32]. Data from

these studies have demonstrated that DNA vaccines can also elicit cross-protection against

other species of hantaviruses [13,14]. This cross-neutralizing activity appears to be highly

variable and can depend on the vaccine, the route of delivery, the species, and the individual.

For example, in nonhuman primates, the ANDV DNA vaccine elicited antibodies that

demonstrated a high level of cross-neutralizing activity against SNV [15]. However, the

same vaccine delivered to rabbits failed to elicit SNV cross-neutralizing antibodies [16].

Similarly, a combination of ANDV and HTNV M genes was capable of eliciting cross

neutralizing antibodies against both HPS and HFRS hantaviruses in nonhuman primates; but

titers were low [15]. Here, we tested the possibility of combining SNV and ANDV plasmids,

PUUV and HTNV plasmids, or a combination of all four plasmids delivered by mEP in

rabbits. We found that the HPS vaccine elicited potent responses against both SNV and

ANDV, but not HTNV or PUUV. Conversely, the HFRS vaccine elicited a potent response

against both HTNV and PUUV but not ANDV or SNV. When all four plasmids were

combined, comparable levels of neutralizing antibody titers relative to the HPS or HFRS

vaccines were produced against all four hantaviruses (Fig. 3). Given the importance of
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neutralizing antibodies in protection [9–11], the levels achieved with the quadravalent

vaccine suggest it will protect against ANDV, SNV, PUUV, and HTNV.

Previous studies using gene gun technology to administer the HTNV/PUUV DNA vaccines

in hamsters has shown significantly reduced anti-HTNV neutralizing antibody responses

when the plasmids were mixed [32]. Interestingly, this interference was not observed if the

HTNV and PUUV were delivered separately or when coated on different gold particles

before delivery. While the mechanism is unknown, it is likely the interference occurs when

the different plasmids are expressing the Gn/Gc proteins in the same cells. The data in Figs.

2 and 3 indicate that the anti-PUUV response was higher than the anti-HTNV responses and

the anti-SNV response was higher than the anti-ANDV response. Despite this apparent

dominance, the anti-HTNV and anti-ANDV responses were still impressive. Dominance of

the PUUV and SNV plasmids over the HTNV and ANDV plasmid, respectively, could

reflect the advantages of optimization because neither the HTNV nor ANDV vaccines used

in this study were codon optimized.

To investigate the efficacy of the optimized SNV DNA vaccine, we used the Syrian hamster

infection model. This model and a deer mouse infection model are the only systems

available to evaluate protection against SNV [33,34]. For these studies, we used gene gun

delivery since a gene gun had been previously shown to successfully deliver HTNV and

PUUV DNA vaccines to hamsters and humans [12]. In addition, we were interested in

demonstrating that the pWRG/SN-M(opt) vaccine could be effectively delivered using

different delivery technologies. We found that the pWRG/SN-M(opt) vaccine was

immunogenic in hamsters, although the titers were significantly lower than those achieved in

rabbits (with orders of magnitude more DNA) using mEP. Despite lower titers, hamsters

were still protected from SNV infection. In contrast, despite ANDV cross-neutralizing

antibodies elicited by mEP in rabbits (Fig. 2), hamsters vaccinated with pWRG/SN-M(opt)

did not cross-protect against ANDV disease (Fig. 4).

The experiments reported here consist of a first-look at the SNV DNA vaccine, and

combinations thereof. These experiments involved different animals species (i.e., rabbits and

hamsters), DNA doses (i.e., micrograms to milligrams), vaccination schedules (i.e., 2-, 3-, or

4-week intervals), and delivery technologies (i.e., gene gun and two types of muscle

electroporation). Although no single experiment directly compared how changing these

parameters affected immunogenicity, our findings that all of these vaccination conditions

resulted in the production of neutralizing antibodies demonstrate the robustness of the SNV

DNA vaccine. Future studies will directly test how dose, schedule, and device affect the

quantity, quality, and duration of the immune responses.

The present report demonstrates active protection against SNV infection in hamsters.

Protection following vaccination with the mulit-valent hantavirus vaccines was not tested.

Previous findings that hantavirus neutralizing antibodies are sufficient to protect should

allow a passive approach to efficacy testing involving active vaccination of one species

followed by passive transfer of immunity to animal models of infection and/or disease. For

example, sera from rabbits, nonhuman primates, or even humans vaccinated with the

multivalent hantavirus vaccines could be tested for a capacity to protect hamsters against
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infection and/or disease caused by SNV, ANDV, PUUV, and HTNV. A limitation to a

passive transfer approach is that it only evaluates the protection conferred by the humoral

immune response. Although neutralizing antibodies have been shown to be sufficient to

protect, there is a recent example of hantavirus DNA vaccines protecting against disease in

the absence of detectable neutralizing antibodies. The PUUV DNA vaccine protected

hamsters against lethal disease caused by ANDV in the absence of neutralizing antibodies

[13]. Here, we found the SNV DNA vaccine did not protect hamsters against lethal disease

caused by ANDV suggesting the cell-mediated immune response elicited by the PUUV

DNA vaccine is more cross-reactive with epitopes on the ANDV glycoproteins than the

SNV DNA vaccine. Thus, if the passive transfer approach to efficacy testing proves

inadequate to evaluate protection and cross-protection against hantaviruses, then it will be

necessary to develop new animal models of HPS and HFRS that allow direct efficacy testing

of mono- and multi-valent hantavirus vaccines.

This report is the first to describe a SNV vaccine capable of eliciting high-titer neutralizing

antibodies, and protection, in animal models. We demonstrated the feasibility of combining

this vaccine with other hantavirus vaccines to expand the breadth of neutralizing activity.

Current treatment for hantavirus disease is strictly supportive care [35,36]. But the endemic

and episodic emergence of lethal HPS and HFRS warrants the development of a direct

countermeasure to prevent disease caused by infection with SNV and other hantaviruses

around the world.
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Fig. 1.
Hantavirus neutralizing antibodies produced in rabbits vaccinated with full-length hantavirus M gene-based DNA vaccines

using mEP. Groups of 3 rabbits were vaccinated with DNA vaccines (A) pWRG/HTN-M(x) and (B) pWRG/PUU-M(s2) on

days noted by black arrows by mEP (Inovio Elgen device, dose 0.4 mg DNA per injection). Sera collected were tested in

homotypic PRNT. Symbols represent the mean of two separate PRNT50 ± SE. (C) The same data from (A) and (B) were

combined to show mean titers for the groups. Previously published mean titers from rabbits vaccinated with pWRG/AND-M

were shown for comparison. Note the vaccination days were different for the Andes DNA vaccine (shown in gray arrows).

Groups of 3 or 4 rabbits were vaccinated with (D) the first generation SNV M gene-based DNA vaccine, pWRG/SN-M(2a) or

(E) the optimized SNV M gene-based DNA vaccine, pWRG/SN-M(opt), on days noted by black arrows. Sera collected were

tested in homotypic PRNT. (F) The same data from (D) and (E) were combined to show mean titers for the groups. Black

arrows indicate vaccination days for pWRG/SN-M(2a) and gray arrows indicate vaccination days for pWRG/SN-M(opt). The

PRNT limit of detection was a titer of 20 (dashed lines).
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Fig. 2.
Single-injection multiagent hantavirus DNA vaccines are feasible by mEP. Three mixtures of hantavirus DNA vaccine plasmids

were delivered to rabbits by mEP (Ichor Tri-grid). Groups of 3 rabbits were vaccinated at 3-week intervals and sera were

collected for PRNT analysis. The HFRS mixture was comprised of equal volumes of pWRG/HTN-M(x) and pWRG/PUU-

M(s2), (2 mg DNA total, 1 mg/plasmid/injection, 1 injection/vaccination). The HPS mixture was comprised of equal volumes of

pWRG/ANDM and pWRG/SN-M(opt) (2 mg DNA total, 1 mg/plasmid/injection, 1 injection/vaccination). The HFRS/HPS

mixture was comprised of equal volumes of HTNV, PUUV, ANDV, and SNV DNA vaccine plasmids (4 mg DNA total, 1 mg/

plasmid/injection, 2 injections/vaccination). (A) Neutralizing antibody titers for individual rabbits are shown. The virus used in

the neutralization test is shown on the y-axis. (B) Mean neutralization titers for each group ± SE. The PRNT limit of detection

was a titer of 20 (dashed lines).
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Fig. 3.
PRNT80 GMT against HTNV, PUUV, ANDV, and SNV for each DNA vaccine formulation after 1, 2, or 3 vaccinations. These

data are from the same experiment shown in Fig. 2; however, PRNT80 GMT are presented (A) after 1 vaccination, (B)after 2

vaccinations, and (C) after 3 vaccinations. The PRNT limit of detection was a titer of 20 (dashed lines). ns indicates a lack of

statistical significance when titers were compared from HFRS or HPS mix to HFRS/HPS mix vaccine. Significance lines pertain

to (A), (B), and (C).
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Fig. 4.
pWRG/SN-M(opt) DNA vaccine (gene gun) is immunogenic and protective in hamsters. Groups of 7–8 hamsters received 2 or 3

vaccinations with the pWRG/SN-M(opt) SNV DNA vaccine, 3 vaccinations with a negative control DNA vaccine, or no

vaccine. (A) Sera collected were tested for SNV neutralizing antibodies by PRNT. Mean titers ± SE are shown. (B) Individual

PRNT50 titers from sera collected on week 9 are presented with the GMT and 95% confidence interval depicted. The PRNT

limit of detection was a titer of 20 (dashed lines). (C) Sera collected on week 16 (5 weeks postchallenge) were tested by ELISA

for evidence of SNV infection. All prechallenge sera samples were negative by ELISA (data not shown).<indicates titer was

below level of detection for the assay. *indicates antibody responses were statistically significant when compared to negative

DNA vaccination controls.
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Fig. 5.
pWRG/SN-M(opt) DNA vaccine (gene gun) does not protect hamsters from ANDV challenge. A group of 8 hamsters received 3

vaccinations with pWRG/SNM(opt). (A) Vaccinated and unvaccinated hamsters were challenged with 200 PFU ANDV i.m. and

observed for survival. (B) Sera collected prechallenge were tested by SNV PRNT for homotypic neutralizing antibodies. The

PRNT limit of detection was a titer of 20 (dashed lines). *indicate antibody response was statistically significant when compared

to no vaccine controls. s indicates the PRNT titer of a surviving hamster.
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