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The Special Supplemental Nutrition Program
for Women, Infants, and Children (WIC), a fed-
erally funded nutrition and health program,
was established as a pilot program in 1972.1

WIC provides nutrition education, referrals,
breastfeeding support, and nutritious supple-
mental food for low- to moderate-income fam-
ilies with nutritionally at-risk pregnant and
breastfeeding women, infants, and children up
to the 5th birthday.1,2 With an annual federal
budget of $6.2 billion, the WIC program serves
nearly 9 million participants each month
through 1900 local agencies in state public
health departments, Indian tribal organizations,
and US territories.1,2 Additionally, the WIC
Overseas Program provides services to Amer-
icans and dependents living overseas at US
military bases. Nearly 30% of pregnant women
participate in the WIC program nationally each
year.2 In 2010, the WIC program served
62.6% of all who were eligible. WIC served
84.8% of eligible infants, 80.6% of eligible
postpartum women (both breastfeeding and
nonbreastfeeding), and 52.4% of eligible chil-
dren aged 1 to 4 years.3 In California, WIC
agencies provide services to nearly1.45 million
women, infants, and children each month at
more than 625 sites statewide with an annual
budget of approximately $1.2 billion.4

Research focused on the prenatal benefits of
the WIC program has not produced consistent
conclusions.5 Some research has indicated that
WIC participation is associated with improved
birth outcomes6 and that provision of WIC
services to pregnant women reduced low birth
weights (< 2500 g) and very low birth weights
(< 1500 g) by 30% and 54%, respectively, with
substantial reductions in first-year medical costs
for US infants.7 Moreover, prenatal WIC partici-
pation was found to reduce racial disparities in
infant mortality rates. For example, the infant
mortality rate for African Americans was

significantly lower for WIC participants than for
non---WIC participants.8 However, other studies
have indicated that prenatal participation in WIC
hadminimal effects on adverse birth outcomes.9,10

Not all women and children who are eligible
to receive WIC services actually participate in
the program.11 In 2007, only 59% of the total
eligible US population participated in the pro-
gram.12 Research has demonstrated that sig-
nificantly higher rates of enrollment were
observed for women who received prenatal
care at health department--- and community-
sponsored clinics compared with hospital
clinics and private physician offices.13 The
number of prenatal visits was found to be
positively associated with WIC participation
rates among pregnant women,13 and the num-
ber of prenatal visits was found to improve
birth outcomes. Previous participation in the
WIC program was positively associated with
early prenatal enrollment in WIC.14

Spatial analytical methods and geographic
information systems (GISs) have increasingly
been used in public health, epidemiology, and
nutrition research.15---17 Nutrition researchers
have begun to recognize the importance of GIS
and spatial analysis, particularly as they relate to
measuring the role of the built environment18

and the food environment.19 GIS and nonsta-
tistical (i.e., descriptive) mapping techniques
have recently been used to explore disparities in
access to fresh produce in low-income neigh-
borhoods.20 We are unaware of any studies,
however, that have used statistically based
spatial analyses to assess WIC-eligible women
who were not participating in WIC services.

Hot spot analysis is a statistically based
method to assess geographic clustering. Specifi-
cally, hot spot analysis is used to pinpoint
locations of statistically significant high- and
low-value clusters of a phenomenon of interest
by evaluating each feature (e.g., census tract)
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within the context of neighboring features and
against all features in the dataset.21 A feature
with a high value may be a statistically signifi-
cant hot spot if it is also surrounded by other
features with high values, as opposed to simply
being a data outlier. The local mean for a feature
and its neighbors is compared proportionally
with the global mean of all features (e.g., all
census tracts in a state). When the observed
local mean is much different than the global
mean and that difference is too large to be the
result of random chance, a statistically signifi-
cant z score results and a hot spot cluster is
detected.22 Recent studies using this technique
have explored factors associated with West Nile
virus incidence,23 tuberculosis transmission,24

patterns of sexually transmitted diseases,25

locations of health care services,26 and
community-level overweight and obesity.27

The purpose of our study was to identify the
macro- and microlevel geographic regions of
California that contain clusters of WIC-eligible
nonparticipants. Findings were intended to
provide the California WIC Program with an
evidence base for funds allocation, to inform
program decisions for a subset of counties and
subcounty areas, and to strategically target
specific populations and areas for WIC service
enhancements (i.e., opening of new WIC
centers).

METHODS

We linked data from the California Birth
Statistical Master File (BSMF) for all womenwith
a live birth in 2010 (n = 503 722) with pro-
gram data from the California WIC Integrated
Statewide Information System (WIC-ISIS).4 The
BSMF consists of variables documented on the
birth certificate by hospital staff. WIC-ISIS data
are entered byWIC staff during each participant
visit. We linked WIC-ISIS records to the BSMF
data on a combination of mother’s name and
date of birth, infant’s name and date of birth,
date of last prior live birth, father’s name, and
address (city and zip code). To account for data
quality issues, we took a broad query from
WIC-ISIS that included all women who deliv-
ered or had an expected delivery date from
November 2009 through February 2011, in-
cluding all prenatal records for women who had
a documented live birth in WIC-ISIS, as well as
those who had a miscarriage, abortion, or

stillbirth or who were lost to follow-up (outcome
unknown). After accounting for duplicate re-
cords and excluding non-California residents
from the BSMF, the final study population
consisted of 501 907 California resident
women with a live birth in 2010, of whom
279 288 (55.6%) had a prenatal record in
WIC-ISIS. Of the remaining 222 619
women without a prenatal record in WIC-ISIS,
30 697 were deemed eligible for WIC services,
based on their receipt of Medi-Cal benefits
(i.e., Medicaid for California residents), which
paid for prenatal care, labor and delivery, or
both, as documented on the birth certificate.
Thus, our final analytical sample included these
30 697 WIC-eligible nonparticipants.

Outcome Variable of Interest

Our outcome of interest for hot spot analysis
was the density per square mile of WIC-eligible
nonparticipants. Women were categorized as
WIC participants if they had a prenatal re-
cord in WIC-ISIS. To obtain the density of
WIC-eligible nonparticipants at the census tract
level, we first calculated the area per California
census tract in ArcGIS version 10.1 (Esri,
Redlands, CA) and then divided the number of
WIC-eligible nonparticipants in a census tract
by that census tract’s square mile area.

Analyses

Geocoding. The BSMF was geocoded before
linkage to WIC-ISIS. We geocoded residential
addresses for mothers who gave birth in 2010
using the browser-based geocoder available
through the California Environmental Health
Investigations Branch (http://www.ehib.org/
toollist.jsp). During the geocoding process, we
compared each address with reference data for
streets and addresses across California and
ultimately assigned each a latitude and longi-
tude to create a point on a map (similar to
placing a pin on a map). We attained a 98%
geocoding match rate (i.e., addresses matched
a reference address in the geocoder). We then
conducted a “point in polygon join” (i.e., re-
verse geocoding) within the GIS to assign
a census tract number to each geocoded ad-
dress point. We used census tract boundaries
for 2000 because 2010 boundaries were not
available until well after we completed our
data linkage, reverse geocoding, and spatial
analyses.

Descriptive mapping. We used descriptive
GIS mapping techniques to assess the spatial
distribution of WIC-eligible nonparticipants at
the state, county, and subcounty levels. We
explored the distribution of WIC-eligible non-
participant counts, percentages of women who
were WIC-eligible nonparticipants of all
WIC-eligible women, and densities with the-
matic maps and corresponding data tables.
These maps provided preliminary indications
of the spatial distribution of WIC-eligible non-
participants. In such thematic maps, however, it
was not possible to reliably determine defini-
tive patterns across the 7049 census tracts in
the state. We conducted spatial analyses that
invoked a number of statistical tests in our next
phase of analysis to determine the location
of statistically significant clusters of high
densities of WIC-eligible nonparticipants.
Spatial analysis. We used a series of spatial

analytical techniques to find clusters of
WIC-eligible nonparticipants on the macro-
(i.e., state) and microlevels (county).

Step 1—Analysis of Variation in

California Census Tract Areas

In California, census tracts range in size from
0.02 to 7992.4 square miles, with a mean area
of 22.4 square miles (SD = 173.79). This
variation can cause analytic challenges in 2
ways. First, in descriptive mapping, one is
visually biased by the bigger-sized tracts even
though the measured outcome may be just as
pronounced (or more so) in smaller tracts
(census tracts are relatively homogeneous in
population size and demographic makeup).
Second, it is difficult to develop an appropriate
neighborhood (local mean) size (i.e., spatial
scale) with large variation in areas. To un-
derstand the degree of size variation in Cal-
ifornia’s 7049 census tracts, we calculated
the square mile area of all census tracts in the
state. We considered census tracts that pos-
sessed a square mile area greater than 1.5
standard deviations above the state mean census
tract area outliers (n = 118) and temporarily
removed them from the dataset. In addition,
we also removed small census tracts that had
been adjacent to the removed ones (and
appeared as “islands”; n = 11). This allowed us to
begin to control for variability in census tract size
in the next step of the analysis, considering
census tracts of homogeneous geographic sizes.
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Step 2—Determination of Spatial Scale,

Part A

We began to determine the appropriate
spatial scale for remaining California census
tracts (n = 6920). Because our hot spot analysis
examined each census tract in the context of its
neighbors, we needed to develop an analytic
sphere of influence around each census tract.
We therefore calculated the average and max-
imum distance it would take to get from the
geocentroid of each census tract to the geo-
centroid of its nearest 2 neighbors, deciding
a priori that 3 neighboring census tracts with
high or low WIC-eligible nonparticipant den-
sities would constitute a cluster.

Step 3—Determination of Spatial Scale

(the Moran I ), Part B

To inform allocation of resources in the most
focused area possible, we were interested in
using the smallest possible distance (analytic
sphere of influence) at which clustering of
WIC-eligible nonparticipants was most intense,
if clustering existed at all. If geographic analysis
was to be useful, our outcome of interest
(WIC-eligible nonparticipants per square mile)
needed to exhibit spatial autocorrelation (based
on Tobler’s first law of geography, which
states that everything is related to everything
else, but nearby things are more related than
things that are far away28) to ensure that we
found the shortest distance for which clustering
(spatial autocorrelation) was intense. A com-
mon statistical measure of the degree to which
a set of spatial features and their associated
data values tended to be clustered or dispersed
is the Moran I.21

We performed the Moran I test at multiple
distances using the results from step 2. Our
shortest distance tested was two thirds of the
maximum distance it would take to reach the
2 nearest neighboring census tracts. Our ex-
perience has shown that using the actual
maximum distance is often too conservative
when trying to find the distance of most intense
clustering at local geographic scales, because
it is possible that all island census tracts were
not removed or that larger census tracts con-
tinued to inflate the result of the distance-to-
2-neighbors calculation. Subsequent Moran I
tests were done incrementally, using half of the
average distance to 2 neighbors found in step 2.
Testing continued until the resulting z score

peaked and was statistically significant (P< .05).
The distance at that peak point (see Figure A,
available as a supplement to the online version
of this article at http://www.ajph.org) represented
the smallest distance at which clustering of
WIC-eligible nonparticipants was most intense
and therefore represented an appropriate scale of
analysis for subsequent hot spot analyses (step 5).

Step 4—Accounting for the Larger

Polygons

Once we determined the distance that was
the exemplar sphere of influence, or distance
band, for the hot spot analysis, we next
accounted for the large and island census tracts
that had previously been left out of the analysis.
To do this, we created a definition file called
a spatial weights matrix that represented the
spatial structure of our data and quantified the
spatial relationships that existed among the
features in the dataset. The structure of the
matrix was an N ·N table where N was the
number of features in the dataset. Every fea-
ture in the dataset had 1 row and 1 column.
We chose a binary strategy to quantify the
relationships among data features in our data-
set so that in the matrix a feature either was
a neighbor (1) or was not (0). In this case, we
included a feature as a neighbor if it was within
the distance band calculated in step 3 or, for
the previously excluded features, if it was 1 of
the 2 nearest neighbors. With this strategy,
every feature in the dataset was guaranteed 2
neighbors even if those neighbors did not fall
within the local distance band parameter.

Step 5—Hot Spot Analysis

Finally, we conducted hot spot analyses to
determine the locations of statistically signifi-
cant clusters of census tracts with higher
densities of WIC-eligible nonparticipants than
would be expected given the mean density of
WIC-eligible nonparticipants in the dataset.

We first conducted this 5-step geoprocessing
approach to analyze the density ofWIC-eligible
nonparticipants for all 7049 census tracts in
California to detect counties with clusters of
WIC need relative to the state mean. Once we
determined significant hot spot clusters and
identified priority counties, we repeated the
5-step geoprocessing approach to identify more
local clusters of census tracts relative to means
of those priority counties.

RESULTS

Our results consist of 2 main components:
(1) the step-by-step results that led to each
subsequent stage in the hot spot analysis,
drawing attention to the reproducibility and
objectivity of the hot spot methodology, and (2)
the locations in which we found hot or cold
spots for WIC-eligible nonparticipants.

Descriptive Maps

Descriptive thematic maps portray the
number, percentage, and density ofWIC-eligible
nonparticipants across California by counties
and census tracts (Figure 1). Counts and per-
centages were categorized by quintiles. These
maps indicated that counties in the Bay Area, the
Central Valley, and the Los Angeles County
Basin possessed large counts and densities of
WIC-eligible nonparticipants (Figure 1a, 1c, 1d)
and provided initial information about
the burden of unmet WIC service needs. Figure
1b portrayed the percentage of WIC-eligible
women who were eligible nonparticipants, pro-
viding initial indications ofWIC service coverage.

Incremental Spatial Autocorrelation

The distance at which clustering of
WIC-eligible nonparticipants was greatest,
when considering all 7049 California census
tracts, was 26 kilometers (16.2 miles; z score =
37.3; P < .001). The distance in county-specific
analyses varied by county: Sacramento (dis-
tance = 5 km; z score = 9.1; P< .001 [see
Figure A]), San Francisco (distance = 1.1 km;
z score = 3.2; P= .001), Los Angeles (distance =
11 km; z score = 39.4; P< .001), and Fresno
(distance = 9 km; z score = 10.6; P< .001).

Hot Spot Cluster Analysis

Results from hot spot analyses at the census
tract level portray a detailed picture of the
statistically significant clusters of WIC-eligible
nonparticipants (Figure 2). Red census tracts
denoted hot spot clusters with significantly
higher densities of WIC-eligible nonpartici-
pants than the mean density of eligible non-
participants for all census tracts (P< .05). Yel-
low tracts represented census tracts that had
densities of WIC-eligible nonparticipants that
were not statistically different from the mean
density of WIC-eligible nonparticipants in the
state. Blue census tracts denoted cold spots,
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Note. ENPs = eligible nonparticipants; WIC = Women, Infants, and Children.

FIGURE 1—Thematic maps of Special Supplemental Nutrition Program for Women, Infants and Children–eligible nonparticipants by (a) number at

the county level, (b) percentage at the county level, (c) number at the census tract level, and (d) dot density at the census tract level: California,

2010.
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or lower densities of WIC-eligible nonpartici-
pants, that were significant at the P< .05 level.

In statewide analyses (58 counties), we
found statistically significant hot spot clusters of
census tracts with high densities of WIC-eligible
nonparticipants in 21 counties: 7 counties in
the Central Valley (Sacramento, Yolo, Placer,
San Joaquin, Stanislaus, Madera, Fresno), 6
counties in the San Francisco Bay Area (Marin,
San Francisco, Contra Costa, Alameda, San
Mateo, Santa Clara), 3 Central Coast counties
(San Benito, Monterey, San Luis Obispo), and 5

Southern California counties (Ventura, Los
Angeles, Orange, San Bernardino, Riverside;
P< .05). Significant cold spot clusters (blue
shading), with low densities of WIC-eligible non-
participants, existed in 37 counties, with notable
clusters in the more rural regions of the state.

The San Francisco Bay Area, Los Angeles
County, and the Central Valley, which encom-
passed large hot spots and a large number of
WIC-eligible nonparticipants, merited closer
attention. County-specific hot spot analyses
revealed neighborhood-level clusters of census

tracts with high densities of WIC-eligible non-
participants, primarily in urban areas of the
counties (Figure 3). We found local hot spot
clusters of census tracts with high densities of
WIC-eligible nonparticipants in the Downtown
and North Highlands neighborhoods of Sacra-
mento; the Tenderloin, Civic Center, South
of Market, and Mission neighborhoods in
San Francisco; the Downtown, Reseda, and
Long Beach areas in Los Angeles; and the
Central Valley.

DISCUSSION

GIS and spatial analyses have experienced
considerable growth and popularity in public
health in recent decades. The growing role
of space and geography in understanding
health issues and applying interventions un-
derscores the fact that the field of spatial
epidemiology, with ever improving hardware
and software tools, is greatly needed.

In California, we used data visualization
techniques with a GIS and conducted system-
atic and complex spatial analyses to determine
the location of statistically significant clusters
of census tracts with high densities of WIC-
eligible nonparticipants in 2010. We used
a 5-step geoprocessing approach, culminating
in cluster-detecting hot spot analyses, which
allowed us to first determine the California
counties with greatest unmet need for WIC
services. Then, in 4 counties, we performed
local hot spot analyses to determine the op-
portunity neighborhoods with regard to clus-
ters of WIC-eligible nonparticipants.

We detected clusters of WIC-eligible non-
participants in the San Francisco Bay Area,
along the Central Pacific Coast, in the Central
Valley, and in the Los Angeles Basin. These
clusters of high eligible nonparticipant densities
appeared to parallel areas of high population
density and large densities of families living
in poverty (data not shown). County-level hot
spot analyses in Sacramento, San Francisco,
Fresno, and Los Angeles highlighted locations
in which WIC directors could consider
enhancing WIC services and outreach by in-
creasing staffing, service hours, or the number
of WIC sites available on the local level.
Conversely, statistically significant cold spots
highlighted regions in which expanded WIC
services may not have been needed and in

Note. ENPs = eligible nonparticipants; WIC = Women, Infants, and Children. Analyses based on density of Women, Infants and

Children–ENPs per square mile per census tract (n = 7049). Hot spots (red) represent clusters of census tracts with densities

of ENPs that were significantly higher than mean densities of ENPs for the state (P < .05). Cold spots (blue) represent clusters

of census tracts with densities of ENPs that were significantly lower than mean densities of ENPs for census tracts throughout

the state (P < .05). Yellow areas represent census tracts with densities of ENPs that were not significantly different than the

mean density for all census tracts in the state. Distance band = 26 kilometers (16.2 miles). Projected coordinate system:

NAD83, CA Teale Albers.

FIGURE 2—Clusters of Special Supplemental Nutrition Program for Women, Infants and

Children ENPs: California, 2010.
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which WIC may have been adequately serving
those communities’ needs.

The results of our spatial and statistical
analyses have been presented to WIC direc-
tors, WIC staff, health care providers, and
stakeholder groups through GIS maps, inter-
active online map presentations, and reports.
The results have been used to guide resource
allocation decisions, target outreach efforts,
and help guide public health policy and pro-
gram enhancement decisions. In Sacramento
County, for instance, 1 local WIC agency used
results from Sacramento hot spot cluster anal-
yses, in concert with local data, to guide the
opening of 2 new WIC centers.

Our study has several limitations. We
focused on the location of residence at the time

of birth in 2010 and, as a result, cluster
analyses may not represent the reality of
counties, cities, and local regions today. In our
experience, however, we have not seen large
changes in WIC service needs from one year
to the next between 2008, 2009, and 2010,
and our current findings are likely to rep-
resent needs for WIC services for the years
immediately preceding and following 2010.
Moreover, our methodology is highly repro-
ducible and can be used annually to track
change and improvements in programmatic
services. Although our hot spot analyses allow
us to determine locations in which WIC ser-
vices may need to be modified to meet in-
creasing or decreasing service needs, hot spot
analyses do not allow us to determine the

factors that are associated with such clusters
of need. Multivariate logistic regression and
spatial regression methods are needed to de-
termine such associations and will be consid-
ered in subsequent analyses.

Finally, our calculation for WIC-eligible
nonparticipants in California (n = 30 697) was
based on Medi-Cal status (i.e., if women were
on Medi-Cal, they were eligible for WIC ser-
vices). Women may also have been eligible for
WIC services if their income was lower than
185% of the federal poverty level, even if they
were not receiving Medi-Cal benefits. We
estimate that this could have expanded our
population of WIC-eligible nonparticipants to
approximately 51 300. Data for these larger
eligible nonparticipant estimates were not

Note. Hot spots (red) represent clusters of census tracts with densities of eligible nonparticipants (ENPs) that were significantly higher than mean densities of ENPs for the county (P < .05). Cold

spots (blue) represent clusters of census tracts with densities of ENPs that were significantly lower than mean densities of ENPs for census tracts throughout the county (P < .05). Yellow areas

represent census tracts with densities of ENPs that were not significantly different than the mean density for all census tracts in the county. Existing WIC Centers are represented by green stars.

Projected coordinate system: NAD 83, CA Teale Albers.

FIGURE 3—County-specific hot spot maps for Special Supplemental Nutrition Program for Women, Infants and Children ENPs in (a) Sacramento,

(b) San Francisco, (c) Los Angeles, (d) and Fresno: California, 2010.

RESEARCH AND PRACTICE

S188 | Research and Practice | Peer Reviewed | Stopka et al. American Journal of Public Health | Supplement 1, 2014, Vol 104, No. S1



available for our analyses and will be consid-
ered for future research.

The federally funded WIC program has
been around for nearly 4 decades and,
although the program continues to provide
important nutrition support and health ed-
ucation to millions of mothers, infants, and
children across the country each year, the
use of spatial data and complex spatial
analyses foster fine-tuned assessments of
program coverage and areas of refined
service apportionment.

Our 5-step geoprocessing analysis that cul-
minated in hot spot maps provided a rigorous
and systematic method to determine the loca-
tion of statistically significant clusters of
WIC-eligible women. Use of these approaches
in addition to traditional data visualization
techniques (e.g., thematic maps) provides poli-
cymakers and program managers with an
evidence base for important public health
program and funding decisions. Similar analy-
ses can be conducted for other public health
programs to help assess the coverage and
breadth of services in specified catchment areas
that can facilitate targeting of public health
services. During good budgetary times, hot spot
analyses can point to counties, cities, and local
neighborhoods in which services can be en-
hanced. During less favorable economic times,
cold spot clusters can help inform policymakers
and program directors to provide services in
more efficient ways or relocate services to areas
of higher need. Used in concert with statistical
modeling approaches and spatial epidemiology,
hot spot analyses provide additional tools for
researchers, public health practitioners, and
policymakers. j
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