Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 5;70(Pt 5):o516–o517. doi: 10.1107/S160053681400693X

N,N,N′-Trimethyl-N′′-(4-nitro­phen­yl)-N′-phenyl­guanidine

Ioannis Tiritiris a, Wolfgang Frey b, Willi Kantlehner a,*
PMCID: PMC4011204  PMID: 24860331

Abstract

The C—N bond lengths in the guanidine unit of the title compound, C16H18N4O2, are 1.298 (2), 1.353 (2) and 1.401 (3) Å, indicating double- and single-bond character. The N—C—N angles are 115.81 (16), 118.90 (18) and 125.16 (18)°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. In the crystal, C—H⋯O hydrogen bonds are observed between the methyl- and aromatic-H atoms and nitro-O atoms. One H atom of the phenyl ring and of the NMe2 group associate with the O atoms of the nitro group, giving chains along the a- and b-axis directions. Cross-linking of these two chains results in a two-dimensional network along bc.

Related literature  

For the synthesis and characterization of compounds for blue OLEDs, see: Agarwal et al. (2011). For the crystal structures of N-methyl­ated di­phenyl­guanidines, see: Tanatani et al. (1998). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999). For the crystal structure of N′′-(4-carbazol-9-yl-phen­yl)-N,N′-diethyl-N,N′-di­phenyl­guanidine, see: Tiritiris & Kantlehner (2013), and of N′′-(4-meth­oxy­phen­yl)-N,N,N′-trimethyl-N′-phenyl­guanidine, see: Tiritiris et al. (2014).graphic file with name e-70-0o516-scheme1.jpg

Experimental  

Crystal data  

  • C16H18N4O2

  • M r = 298.34

  • Monoclinic, Inline graphic

  • a = 18.409 (2) Å

  • b = 7.7140 (8) Å

  • c = 22.493 (3) Å

  • β = 109.503 (7)°

  • V = 3010.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection  

  • Nicolet P3/F diffractometer

  • 2974 measured reflections

  • 2974 independent reflections

  • 2237 reflections with I > 2σ(I)

  • 3 standard reflections every 50 reflections intensity decay: 3%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.124

  • S = 1.06

  • 2974 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681400693X/nr2049sup1.cif

e-70-0o516-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400693X/nr2049Isup2.hkl

e-70-0o516-Isup2.hkl (146.1KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400693X/nr2049Isup3.cml

CCDC reference: 994178

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.93 2.49 3.416 (3) 173
C2—H2A⋯O1ii 0.96 2.72 3.064 (3) 102

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr B. Iliev (IoLiTec GmbH) for the synthesis of the title compound.

supplementary crystallographic information

1. Comment

We were interested in the synthesis and characterization of aromatic guanidines to examine their suitability in OLEDs (Agarwal et al., 2011). Because the crystal structure of the title compound was not known so far, it was decided to carry out an appropriate investigation. According to the structure analysis, the C1–N3 bond in the guanidine unit is 1.298 (2) Å, indicating double bond character. The bond lengths C1–N2 = 1.401 (3) Å and C1–N1 = 1.353 (2) Å are elongated and characteristic for C–N imine single bonds. The N–C1–N angles are 115.81 (16)° (N1–C1–N2), 125.16 (18)° (N2–C1–N3) and 118.90 (18)° (N1–C1–N3), showing a deviation of the CN3 plane from an ideal trigonal planar geometry (Fig. 1). Similar bond lengths and angles of the guanidine CN3 part have been found by structure analysis for N''-(4-Carbazol-9-yl-phenyl)- N,N'-diethyl-N,N'-diphenyl-guanidine (Tiritiris & Kantlehner, 2013), several N-methylated diphenylguanidines (Tanatani et al., 1998) and N''- (4-methoxyphenyl)-N,N,N'-trimethyl-N'- phenylguanidine (Tiritiris et al., 2014). Non-classical C–H···O hydrogen bonds (Desiraju & Steiner, 1999) between methyl hydrogen atoms, aromatic hydrogen atoms and oxygen atoms of the nitro groups are present [d(H···O) = 2.49 and 2.72 Å] (Tab. 1). One hydrogen atom of the phenyl ring (H12) is associated with the oxygen atom (O2) of the nitro group, resulting in chains along the b axis. A second hydrogen atom of the NMe2 group (H2A) is connected with O1, giving chains along the a axis. By crosslinking of both chains, a two-dimensional network along bc results (Fig. 2).

2. Experimental

One equivalent of N,N-dimethyl-N',N'-methylphenyl- chloroformamidinium-chloride (synthesized from N,N-dimethyl- N',N'-methylphenylthiourea and phosgene) was reacted with one equivalent of 4-nitroaniline (Sigma-Aldrich) in acetonitrile, in the presence of one equivalent triethylamine, at 273 K. The obtained mixture consisting of the guanidinium chloride and triethylammonium chloride was reacted in the next step with an excess of an aqueous sodium hydroxide solution at 273 K. After extraction of the guanidine with diethyl ether from the water phase, the solvent was evaporated and the title compound was isolated in form of a colourless solid. Single crystals have been obtained by recrystallization from a saturated acetonitrile solution at room temperature.

3. Refinement

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5Ueq(C) and d(C—H) = 0.96 Å. H atoms for Caromatic were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound. The C–H···O hydrogen bonds (indicated by dashed lines) are arranged in a two-dimensional network (bc-view). Only hydrogen atoms involved in the hydrogen bonding system are shown.

Crystal data

C16H18N4O2 F(000) = 1264
Mr = 298.34 Dx = 1.316 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 35 reflections
a = 18.409 (2) Å θ = 14–17°
b = 7.7140 (8) Å µ = 0.09 mm1
c = 22.493 (3) Å T = 293 K
β = 109.503 (7)° Plate, colorless
V = 3010.9 (6) Å3 0.35 × 0.25 × 0.20 mm
Z = 8

Data collection

Nicolet P3/F diffractometer Rint = 0.000
Radiation source: sealed tube θmax = 26.0°, θmin = 1.9°
Graphite monochromator h = −22→21
Wyckoff scan k = 0→9
2974 measured reflections l = 0→27
2974 independent reflections 3 standard reflections every 50 reflections
2237 reflections with I > 2σ(I) intensity decay: 3%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0442P)2 + 2.9581P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2974 reflections Δρmax = 0.18 e Å3
203 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0044 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.11956 (11) 0.3349 (3) 0.21285 (9) 0.0330 (4)
N1 0.09025 (10) 0.2129 (2) 0.16803 (8) 0.0384 (4)
N2 0.16570 (9) 0.4615 (2) 0.19854 (7) 0.0356 (4)
N3 0.10725 (10) 0.3212 (2) 0.26620 (7) 0.0384 (4)
C2 0.12086 (14) 0.1763 (3) 0.11771 (10) 0.0493 (6)
H2A 0.0856 0.2179 0.0784 0.074*
H2B 0.1276 0.0534 0.1150 0.074*
H2C 0.1697 0.2333 0.1264 0.074*
C3 0.03122 (15) 0.0957 (3) 0.17362 (11) 0.0544 (6)
H3A 0.0551 −0.0061 0.1964 0.082*
H3B −0.0021 0.0632 0.1323 0.082*
H3C 0.0016 0.1525 0.1958 0.082*
C4 0.24120 (12) 0.4984 (3) 0.24453 (11) 0.0467 (5)
H4A 0.2483 0.4306 0.2818 0.070*
H4B 0.2445 0.6194 0.2552 0.070*
H4C 0.2805 0.4697 0.2269 0.070*
C5 0.13871 (12) 0.5590 (3) 0.14236 (9) 0.0351 (4)
C6 0.05972 (12) 0.5794 (3) 0.11112 (10) 0.0426 (5)
H6 0.0246 0.5297 0.1277 0.051*
C7 0.03365 (14) 0.6734 (3) 0.05569 (10) 0.0506 (6)
H7 −0.0191 0.6847 0.0349 0.061*
C8 0.08444 (15) 0.7502 (3) 0.03083 (10) 0.0529 (6)
H8 0.0665 0.8125 −0.0067 0.063*
C9 0.16233 (15) 0.7334 (3) 0.06238 (11) 0.0529 (6)
H9 0.1971 0.7867 0.0462 0.064*
C10 0.18983 (13) 0.6391 (3) 0.11746 (10) 0.0451 (5)
H10 0.2426 0.6291 0.1380 0.054*
C11 0.11811 (11) 0.4595 (3) 0.30767 (9) 0.0343 (4)
C12 0.14071 (12) 0.4207 (3) 0.37217 (9) 0.0381 (5)
H12 0.1473 0.3054 0.3849 0.046*
C13 0.15342 (12) 0.5484 (3) 0.41700 (9) 0.0389 (5)
H13 0.1689 0.5200 0.4596 0.047*
C14 0.14288 (11) 0.7195 (3) 0.39797 (9) 0.0359 (5)
C15 0.11713 (12) 0.7640 (3) 0.33462 (9) 0.0400 (5)
H15 0.1088 0.8795 0.3224 0.048*
C16 0.10416 (12) 0.6349 (3) 0.29011 (9) 0.0403 (5)
H16 0.0858 0.6639 0.2476 0.048*
N4 0.15796 (10) 0.8552 (2) 0.44528 (8) 0.0420 (4)
O1 0.17013 (11) 0.8141 (2) 0.50039 (7) 0.0594 (5)
O2 0.15764 (12) 1.0061 (2) 0.42853 (9) 0.0682 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0320 (10) 0.0350 (10) 0.0298 (9) 0.0008 (8) 0.0075 (8) 0.0000 (8)
N1 0.0432 (10) 0.0390 (9) 0.0322 (8) −0.0066 (8) 0.0116 (7) −0.0069 (7)
N2 0.0323 (8) 0.0417 (10) 0.0296 (8) −0.0062 (7) 0.0062 (7) −0.0008 (7)
N3 0.0466 (10) 0.0382 (10) 0.0318 (8) −0.0040 (8) 0.0148 (7) −0.0027 (7)
C2 0.0575 (14) 0.0557 (14) 0.0345 (11) 0.0041 (12) 0.0152 (10) −0.0095 (10)
C3 0.0602 (15) 0.0503 (14) 0.0496 (13) −0.0181 (12) 0.0141 (11) −0.0088 (11)
C4 0.0341 (11) 0.0515 (14) 0.0465 (12) −0.0057 (10) 0.0027 (9) 0.0047 (10)
C5 0.0376 (10) 0.0360 (11) 0.0314 (9) −0.0010 (9) 0.0113 (8) −0.0025 (8)
C6 0.0363 (11) 0.0529 (13) 0.0386 (11) −0.0004 (10) 0.0124 (9) 0.0043 (10)
C7 0.0445 (13) 0.0609 (15) 0.0408 (12) 0.0045 (11) 0.0068 (10) 0.0038 (11)
C8 0.0671 (16) 0.0527 (14) 0.0349 (11) −0.0012 (12) 0.0118 (11) 0.0083 (11)
C9 0.0603 (15) 0.0551 (15) 0.0477 (13) −0.0103 (12) 0.0237 (12) 0.0064 (11)
C10 0.0412 (12) 0.0511 (13) 0.0430 (12) −0.0064 (10) 0.0142 (9) 0.0027 (10)
C11 0.0327 (10) 0.0400 (11) 0.0318 (10) −0.0023 (8) 0.0127 (8) −0.0015 (9)
C12 0.0458 (12) 0.0339 (11) 0.0343 (10) 0.0012 (9) 0.0128 (9) 0.0033 (9)
C13 0.0430 (11) 0.0448 (12) 0.0290 (10) 0.0014 (10) 0.0118 (8) 0.0033 (9)
C14 0.0364 (11) 0.0397 (11) 0.0335 (10) 0.0008 (9) 0.0141 (8) −0.0054 (9)
C15 0.0475 (12) 0.0356 (11) 0.0388 (11) 0.0094 (9) 0.0167 (9) 0.0031 (9)
C16 0.0471 (12) 0.0445 (12) 0.0279 (10) 0.0078 (10) 0.0108 (9) 0.0036 (9)
N4 0.0435 (10) 0.0426 (11) 0.0429 (10) −0.0015 (8) 0.0184 (8) −0.0078 (8)
O1 0.0782 (12) 0.0658 (12) 0.0362 (8) −0.0074 (9) 0.0215 (8) −0.0125 (8)
O2 0.1042 (16) 0.0391 (10) 0.0635 (11) −0.0023 (10) 0.0309 (11) −0.0080 (8)

Geometric parameters (Å, º)

C1—N3 1.298 (2) C7—C8 1.374 (3)
C1—N1 1.353 (2) C7—H7 0.9300
C1—N2 1.401 (3) C8—C9 1.377 (3)
N1—C2 1.451 (3) C8—H8 0.9300
N1—C3 1.451 (3) C9—C10 1.379 (3)
N2—C5 1.411 (2) C9—H9 0.9300
N2—C4 1.457 (2) C10—H10 0.9300
N3—C11 1.387 (2) C11—C12 1.402 (3)
C2—H2A 0.9600 C11—C16 1.408 (3)
C2—H2B 0.9600 C12—C13 1.372 (3)
C2—H2C 0.9600 C12—H12 0.9300
C3—H3A 0.9600 C13—C14 1.381 (3)
C3—H3B 0.9600 C13—H13 0.9300
C3—H3C 0.9600 C14—C15 1.386 (3)
C4—H4A 0.9600 C14—N4 1.452 (3)
C4—H4B 0.9600 C15—C16 1.375 (3)
C4—H4C 0.9600 C15—H15 0.9300
C5—C10 1.390 (3) C16—H16 0.9300
C5—C6 1.397 (3) N4—O2 1.223 (2)
C6—C7 1.382 (3) N4—O1 1.226 (2)
C6—H6 0.9300
N3—C1—N1 118.90 (18) C8—C7—C6 121.0 (2)
N3—C1—N2 125.16 (18) C8—C7—H7 119.5
N1—C1—N2 115.81 (16) C6—C7—H7 119.5
C1—N1—C2 123.70 (18) C7—C8—C9 118.8 (2)
C1—N1—C3 119.52 (17) C7—C8—H8 120.6
C2—N1—C3 116.34 (18) C9—C8—H8 120.6
C1—N2—C5 121.22 (16) C8—C9—C10 121.3 (2)
C1—N2—C4 118.76 (16) C8—C9—H9 119.4
C5—N2—C4 119.93 (17) C10—C9—H9 119.4
C1—N3—C11 121.92 (18) C9—C10—C5 120.1 (2)
N1—C2—H2A 109.5 C9—C10—H10 119.9
N1—C2—H2B 109.5 C5—C10—H10 119.9
H2A—C2—H2B 109.5 N3—C11—C12 117.26 (18)
N1—C2—H2C 109.5 N3—C11—C16 125.34 (17)
H2A—C2—H2C 109.5 C12—C11—C16 117.30 (18)
H2B—C2—H2C 109.5 C13—C12—C11 121.7 (2)
N1—C3—H3A 109.5 C13—C12—H12 119.1
N1—C3—H3B 109.5 C11—C12—H12 119.1
H3A—C3—H3B 109.5 C12—C13—C14 119.09 (18)
N1—C3—H3C 109.5 C12—C13—H13 120.5
H3A—C3—H3C 109.5 C14—C13—H13 120.5
H3B—C3—H3C 109.5 C13—C14—C15 121.30 (19)
N2—C4—H4A 109.5 C13—C14—N4 119.30 (18)
N2—C4—H4B 109.5 C15—C14—N4 119.39 (19)
H4A—C4—H4B 109.5 C16—C15—C14 119.0 (2)
N2—C4—H4C 109.5 C16—C15—H15 120.5
H4A—C4—H4C 109.5 C14—C15—H15 120.5
H4B—C4—H4C 109.5 C15—C16—C11 121.35 (18)
C10—C5—C6 118.56 (19) C15—C16—H16 119.3
C10—C5—N2 120.95 (19) C11—C16—H16 119.3
C6—C5—N2 120.48 (18) O2—N4—O1 122.59 (19)
C7—C6—C5 120.2 (2) O2—N4—C14 118.72 (18)
C7—C6—H6 119.9 O1—N4—C14 118.70 (19)
C5—C6—H6 119.9
N3—C1—N1—C2 −157.1 (2) C8—C9—C10—C5 −0.2 (4)
N2—C1—N1—C2 18.9 (3) C6—C5—C10—C9 −1.3 (3)
N3—C1—N1—C3 15.0 (3) N2—C5—C10—C9 179.8 (2)
N2—C1—N1—C3 −169.05 (19) C1—N3—C11—C12 −149.4 (2)
N3—C1—N2—C5 −130.6 (2) C1—N3—C11—C16 34.4 (3)
N1—C1—N2—C5 53.7 (3) N3—C11—C12—C13 179.57 (19)
N3—C1—N2—C4 46.0 (3) C16—C11—C12—C13 −3.9 (3)
N1—C1—N2—C4 −129.7 (2) C11—C12—C13—C14 0.7 (3)
N1—C1—N3—C11 −163.60 (18) C12—C13—C14—C15 2.3 (3)
N2—C1—N3—C11 20.8 (3) C12—C13—C14—N4 −178.60 (18)
C1—N2—C5—C10 −158.0 (2) C13—C14—C15—C16 −2.0 (3)
C4—N2—C5—C10 25.4 (3) N4—C14—C15—C16 178.97 (19)
C1—N2—C5—C6 23.1 (3) C14—C15—C16—C11 −1.4 (3)
C4—N2—C5—C6 −153.4 (2) N3—C11—C16—C15 −179.51 (19)
C10—C5—C6—C7 1.9 (3) C12—C11—C16—C15 4.2 (3)
N2—C5—C6—C7 −179.2 (2) C13—C14—N4—O2 171.2 (2)
C5—C6—C7—C8 −1.0 (4) C15—C14—N4—O2 −9.8 (3)
C6—C7—C8—C9 −0.5 (4) C13—C14—N4—O1 −9.2 (3)
C7—C8—C9—C10 1.1 (4) C15—C14—N4—O1 169.88 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O2i 0.93 2.49 3.416 (3) 173
C2—H2A···O1ii 0.96 2.72 3.064 (3) 102

Symmetry codes: (i) x, y−1, z; (ii) x, −y+1, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: NR2049).

References

  1. Agarwal, N., Nayak, P. K., Ali, F., Patankar, M. P., Narasimhan, K. L. & Periasamy, N. (2011). Synth. Met. 161, 466–473.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, ch. 2. Oxford University Press.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  6. Tanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433–6442.
  7. Tiritiris, I., Frey, W. & Kantlehner, W. (2014). Acta Cryst. E70, o460. [DOI] [PMC free article] [PubMed]
  8. Tiritiris, I. & Kantlehner, W. (2013). Acta Cryst. E69, o1066. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681400693X/nr2049sup1.cif

e-70-0o516-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400693X/nr2049Isup2.hkl

e-70-0o516-Isup2.hkl (146.1KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400693X/nr2049Isup3.cml

CCDC reference: 994178

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES