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Abstract

The vocal folds, which are located in the larynx, are the main organ of voice production for human
communication. The vocal folds are under continuous biomechanical stress similar to other
mechanically active organs, such as the heart, lungs, tendons and muscles. During speech and
singing, the vocal folds oscillate at frequencies ranging from 20 Hz to 3 kHz with amplitudes of a
few millimeters. The biomechanical stress associated with accumulated phonation is believed to
alter vocal fold cell activity and tissue structure in many ways. Excessive phonatory stress can
damage tissue structure and induce a cell-mediated inflammatory response, resulting in a
pathological vocal fold lesion. On the other hand, phonatory stress is one major factor in the
maturation of the vocal folds into a specialized tri-layer structure. One specific form of vocal fold
oscillation, which involves low impact and large amplitude excursion, is prescribed therapeutically
for patients with mild vocal fold injuries.

Although biomechanical forces affect vocal fold physiology and pathology, there is little
understanding of how mechanical forces regulate these processes at the cellular and molecular
level. Research into vocal fold mechanobiology has burgeoned over the past several years. Vocal
fold bioreactors are being developed in several laboratories to provide a biomimic environment
that allows the systematic manipulation of physical and biological factors on the cells of interest in
vitro. Computer models have been used to simulate the integrated response of cells and proteins as
a function of phonation stress. The purpose of this paper is to review current research on the
mechanobiology of the vocal folds as it relates to growth, pathogenesis and treatment as well as to
propose specific research directions that will advance our understanding of this subject.
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Introduction

The vocal folds, which are located within the larynx, are the main organ of voice production
for human communication. During normal phonation, the vocal folds undergo oscillations at
frequencies ranging from 20 Hz to 3kHz with amplitudes of a few millimeters [1]. During
phonation, various mechanical stresses including tensile (~1.0 MPa), contractile (~100 kPa),
aerodynamic (~1-10 kPa), inertia (~1-2 kPa), impact (~0.5-5.0 kPa) and shear stresses
(~0.8 kPa) act on the mucosa or muscles of human vocal folds [2-5]. To withstand large
repetitive mechanical stresses, the vocal folds have a distinctive geometry, histology and
viscoelasticity that result in efficient oscillations during phonation [6-12]. The human vocal
folds possess three anatomically distinctive layers, namely, the epithelium (0.05 — 0.1 mm
thick), the lamina propria (1.5 — 2.5 mm thick) and the vocalis muscle (7—8 mm thick). The
epithelium and lamina propria are connected to each other by a very thin layer of the
basement membrane [8,13] and are the major vibratory tissue during phonation. The lamina
propria is a hypocellular composite of extracellular matrix (ECM) molecules, including
proteoglycans, collagen, elastin and hyaluronic acid. Cells including myofibroblasts,
macrophages and fibroblasts are distributed sparsely across the lamina propria [14].

The lamina propria has three layers, each one characterized by a particular ECM
composition [10-12,15,16]. The superficial lamina propria contains sparse elastin and
collagen fibers that make this layer pliable for mucosal oscillation. The intermediate lamina
propria contains more elastin and collagen fibers. The deep lamina propria contains less
elastin but more collagen fibers in relation to the superficial and intermediate layers. The
intermediate and deep lamina propria constitute the vocal ligament, providing elasticity and
stiffness for the vocal folds. With this specialized structure, the vocal fold lamina propria is
pliable enough for oscillation yet strong enough to withstand the phonatory stress
[6,7,9,12,17-19].

Mechanical forces are known to alter cell identity and activity [20]. Depending on their type
and magnitude, such forces can cause cell damage or stimulate proliferation or repair [21].
The best examples of these interactions are from stem cell studies. Stems cells will likely
differentiate into bone cells when subjected to compressive forces because bones nearly
constantly experience compressive forces. When stem cells are exposed to stretching forces,
they tend to differentiate into more muscle-like cells. In other words, the specific magnitude,
distribution, and orientation of the mechanical forces applied to the cells could play a key
role in integrating stem cells into the body in a useful and functional way [22-24]. Vocal
fold fibroblasts, the most abundant cells in the vocal fold lamina propria, exhibit similar
characteristics and functions as mesenchymal stem cells [25].

Information about the relationships between cells, proteins and biomechanical simulation is
sparse in the vocal fold literature. Progress over the past ten years includes in vivo evidence
of how phonatory forces affect vocal fold physiological and pathophysiological processes.
Cell culture devices and bioreactors are used to determine the relationship between
phonation-relevant mechanical stimulation and cell response. Ongoing and future research
on systems biology may lead to a better understanding of vocal fold mechanobiology.
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In vivo Evidence of the Role of Phonatory Forces in Vocal Fold Physioslogy
and Pathophysiology

Effecs of phonatory forces on vocal fold development

Newborn vocal folds do not have a layered structure typical of the lamina propria [14,26—
28]. The superficial lamina propria was observed to appear between 7 and 12 years of age
[14,27]. A clear demarcation between the intermediate and the deep lamina propria in terms
of cell density and population was assured at the age of 7. A differentiated layer
organization of collagen and elastic fibers was observed in the lamina propria around the age
of 13 [29]. These observations suggest that the vocal folds do not possess an intrinsic
layered structure. A maturation process is involved in the development of vocal fold layers.
These findings naturally lead to questions about whether phonatory forces are involved in
vocal fold maturation and whether other factors, such as hormones, could also contribute to
the process.

Indirect evidence of the role of phonation in vocal fold maturation can be gleaned from
investigations in adult patients with cerebral palsy who were unphonated since their birth
[30-32]. Histological results uniformly showed that the vocal folds from these unphonated
patients looked hypoplastic and homogeneous without differentiable vocal fold ligament and
Reinke’s Space. The cells also exhibited signs of degeneration with few vesicles in the
cytoplasm. Cells did not produce vocal fold ECM proteins and expressed minimal
hyaluronan receptors. Results suggested that phonation after birth might be necessary to
signal or activate vocal fold fibroblasts to synthesize and organize ECM proteins for normal
vocal fold growth and maturation.

Further evidence showed that biomechanical stimulation is necessary for both the maturation
and the maintenance of the layered ECM organization in the vocal folds. A 62-year-old male
was unphonated for 11 years and 2 months after a cerebral hemorrhage [33]. His vocal fold
mucosa showed signs of atrophy with a uniform structure and undifferentiated layers in the
lamina propria. These changes from the normal structure suggest that vocal fold fibroblasts
may need constant biomechanical stimulation for ECM synthesis to maintain vocal fold
tissue homeostasis. Furthermore, the gradient and heterogeneous structure of the vocal fold
lamina propria might be the result of variations in the magnitude of forces across the
thickness of the lamina propria.

Relationship between phonatory forces and vocal fold injury

Phonatory forces can alter the vocal fold tissue’s physical structure by disrupting the
intracellular adhesion and cellular structure as well as by inducing a cell-mediated response
to tissue damage. Animal studies using rabbits showed that either transient (30 minutes) or
prolonged (3 hours) experimentally induced, raised-intensity phonation could significantly
increase the mRNA expression of interlukin (IL)-1p, an inflammatory cytokine compared to
controls [34,35]. Other cytokines related to ECM remodeling, such as matrix
metalloproteinase (MMP)-1 and transforming growth factor beta (TGF-B)-1, were also
found in greater concentration following raised phonation [33,34]. A human subject study
reported that one hour of continuous loud phonation induced a marked increase in secretion
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protein concentrations of the pro-inflammatory cytokines IL-1p, tumor necrosis factor
(TNF)-alpha and MMP-8 from baseline to the 10-minute post-phonation time point. Subtle
vocal fold edema was also noticed concomitantly under the laryngoscope [36]. Acute edema
may be the outcome of submucosal capillary rupture, vasodilation, leakage of blood plasma
into the extravascular compartment, and inflammatory cytokine release [37]. Clinically,
vocal fold hemorrhage or acute laryngitis is often manifested after an acute episode of loud
phonation.

Role of phonatory forces in vocal fold rehabilitation

A specific form of vocal fold oscillation called “resonant voice” is prescribed clinically for
patients with mild vocal fold injury. The assumption is that the biomechanical stresses
associated with resonant voice are beneficial to vocal fold repair. Resonant voice involves
large-amplitude but low-impact vocal fold vibrations [38—40], relative to normal speech.
Research has shown that mechanical force amplitude regulates vocal fold cytokine response
[41,42].

The first study used an in vitro model to evaluate the effects of cyclic equibiaxial tensile
strain (CTS) on rabbit vocal fold fibroblast cultures [41]. In this in vitro study, CTS was
applied for varying excitation time periods (4-36 continuous hours), force magnitudes (0 —
18%) and frequencies (static — 0.5 Hz) in fibroblast cultures in the presence or absence of
IL-1B. A key pro-inflammatory cytokine, IL-1, induces numerous pro-inflammatory
mediators, such as inducible-nitric oxide synthase (iNOS), nitric oxide (NO),
cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and MMPs. The excessive synthesis
of pro-inflammatory markers generally leads to unfavorable healing outcomes [43-45].
Results showed that a low magnitude of CTS significantly blocked COX-2, MMP-1 and
PGE2 synthesis up to 24 hours and NO up to 36 hours in the IL-1B-induced inflamed
cultures. Although the 0.5 Hz frequency is not within human phonation range, this study
provided the very first data to show a threshold cell responses to vibration magnitude.

Another study investigated the biological effects of voice rest versus two different forms of
tissue mobilization (i.e., resonant voice exercises and spontaneous speech) for
experimentally-induced acute vocal fold inflammation in human subjects [42]. Voice rest,
resonant voice exercises and spontaneous speech can be considered on a continuum of tissue
mobilization and especially vocal fold impact stress magnitude: (1) none for voice rest, (2)
normal- to large-amplitude vocal fold oscillations and low-impact stress for resonant voice
exercises and (3) normal-to large-amplitude oscillations with potentially larger impact stress
for spontaneous speech. Nine vocally healthy human participants were subjected to a vocal
loading task involving 45 minutes of loud voice phonation (75-90 dB SPL at 15 cm
microphone-to-mouth distance) during a one-hour period. Participants randomly assigned to
one of three treatment groups-voice rest, resonant voice exercises or spontaneous speech-
were monitored for four hours in the clinic. After a four-hour treatment period, participants
were discharged with instructions to continue to follow their corresponding treatment
condition. Laryngeal secretions were sampled from the vocal fold surfaces at the following
time points: pre-loading (baseline), immediately post-loading, 4-hour post-treatment onset,

J Cytol Mol Biol. Author manuscript; available in PMC 2014 May 06.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Lietal.

Page 5

and 24-hour post baseline. Enzyme-Linked Immuno Sorbent Assays (ELISA) were then
used to measure the concentrations of cytokines in the secretions.

Differentiated cytokine profiles were noted across treatment groups. Protein concentrations
of pro-inflammatory mediators (IL-1pB, IL-6 and MMP-8) were lowest following resonant
voice exercises and highest following the spontaneous speech condition at the 24-hour post
baseline time point. The concentration of the anti-inflammatory cytokine I1L-10 showed an
opposite trend at the 24-hour time point, i.e., concentrations for this marker were highest
following resonant voice exercises and lowest following voice rest. These preliminary
findings suggest that large-amplitude, low-impact vocal fold tissue mobilization, as reported
for resonant voice exercises, may optimize the quality of the healing response for acute and
mild vocal fold injury by attenuating pro-inflammatory and stimulating anti-inflammatory
responses.

In vitro studies of vocal fold bioreactor

In vitro bioreactors have been proposed to create a dynamic and biomimetic vocal fold
vibratory microenvironment that allows the systematic investigation of the relationship
between vocal fold cells and phonation-relevant mechanical stimulation (Table 1 for
summary). Most existing bioreactors are mechanically driven [46-50], i.e. they use
electromagnetic voice coil actuators to apply vibratory excitations onto the cells via moving
bars [47,48,50] or sample holders [49]. An alternative bioreactor design using aerodynamic
forces to generate vibrations was recently proposed [51]. Porous substrates (such as
Tecoflex) or hydrogel were used for cell seeding in most studies. Strain and frequency of
vibration are the primary variables, which were controlled by the computer software (such
as Labview), during the mechanical testing using these bioreactors. The degree of substrate
displacement was measured as a function frequency of applied voltage using digital image
correlation technique [49] or laser dopper vibrometer coupled with high-speed digital
imaging [51]. Local mechanical forces exerted on the cells were not reported. Finite element
models will be required to quantify all components of mechanical stresses and strains with
known material properties of the substrate (see Future Prospects for Vocal Fold
Mechanobiology for further discussion).

Mechanically driven bioreactors

Titze et al. [46] first used a bioreactor that was able to generate vibratory regimes
comparable to vocal fold oscillations with 0-1 mm amplitudes, 20-200 Hz frequencies and
on-off stress cycles [46]. The bioreactor was controlled by two motor drivers: one for low
frequency or static strains and one for high-frequency vibrational strains. In this study,
human vocal fold fibroblasts were seeded in 3D porous polyurethane and subjected to 100
Hz vibration at 20% axial strain for 6 hours. Results indicated vibration increased mRNA
expressions of ECM-related genes, including MMP-1, HA synthase 2, CD44, fibronectin,
fibromodulin, and decorin, compared to the static controls without vibration. Further studies
using a similar bioreactor design were reported [47,48]. Adult normal dermal fibroblasts
were encapsulated in hydrogel samples that were crosslinked to Tecoflex films. Cells were
subjected to 100 Hz vibrations with a uniaxial displacement of 1-mm amplitude for up to 10
days. Compared to static controls, real PCR data showed that vibrations increased mRNA
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expressions of HA synthase 2, decorin, fiboromodulin, and MMP-1, while collagen and
elastin expression was relatively unchanged. Gene expression levels were highest on Days 3
and 5 after vibratory stimulation and lowest on Day 10. Accumulated ECM protein levels,
GAG and collagen were also measured in the hydrogel samples. Sulfated GAG increased
and collagen decreased significantly compared to static controls after 5 and 10 days of
vibratory stimulation, respectively.

Wolchok et al. [49] reported another mechanically driven bioreactor study that applied
mechanical stimulation to human vocal fold fibroblasts at 100 Hz for 21 days. Instead of
moving strips, cells were seeded on a porous polyurethane foam sheet housed in commercial
multi-well culture plates. Cytokine proteins of TGF-B1 and monocyte chemoattractant
protein (MCP)-1 were measured in the culture medium sample after 1 day of vibration.
Compared to static controls, TGF-p1 and MCP-1 levels were significantly increased and
decreased, respectively, in the culture medium. By the end of the experiment (i.e., Day 21),
a significant accumulation of fibronectin and collagen type 1 proteins was found in the
porous substrate. The resulted substrate was significantly stiffer than the static controls.

Gaston et al. [50] advanced the bioreactor design by reproducing phonation-relevant
vibrations and making the vibratory strips contact each other during operation.
Physiologically, when the vocal folds oscillate, contact between certain areas of the two
sides occurs depending on the frequency, amplitude and type of oscillation. The bioreactor
had three computer-controlled motors that could generate three independent mechanical
stimuli: a linear voice-coil actuator for vibration (0-2727 Hz), a linear stepper motor for
stretch (0—100% of elongation), and a rotary stepper motor for angle change (0-39°).
Modified T-cell culture flasks were fastened to the bioreactor base. Cell-seeded Tecoflex
strips were held in the T-flasks during the experiment. In this study, the bioreactor was used
to characterize the response of functional phenotypes of human vocal fold fibroblasts
(hVFF) and bone marrow mesenchymal stem cells (BM-MSC) to mechanical vibrations.
Cells were subjected to 200 Hz vibration and 20% strain for 8 hours. Both hVFF and BM-
MSC were viable (96%) after being subjected to the prescribed mechanical vibrations.
Interestingly, semi-quantitative RT-PCR results showed that both hVFF and BM-MSC
vibration groups had comparable gene expression levels of TGF-B1, collagen | and
fibronectin, compared to the static controls. Results showed that h\VFF had similar
mechanobiological responses to those of BM-MSC in terms of ECM-related gene
expressions. This finding contradicts previous bioreactor studies that showed that fibroblasts
were mechano-sensitive in their gene expression following a brief exposure (e.g., 60
minutes) of mechanical stimulation [46].

Aerodynamically driven bioreactors

Vocal fold oscillation are airflow-induced in reality. Conventional, mechanically driven
bioreactors apply idealized loading that may or may not be representative of human
phonation. One limitation of the mechanically-driven bioreactors is that the vibratory forces
are transferred mechanically. Cells may be agitated by unwanted mechanical or fluid
perturbations [51]. Farran et al. [51] developed a bioreactor composed of a power amplifier,
an enclosed loudspeaker and a function generator. Cells were seeded on the silicone
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membranes and exposed to acoustic pressure fluctuations. The bioreactor was able to
generate vibrations within a frequency range of 60-300 Hz and an amplitude range of 1-30
mm, which is within the physiological range of human vocal fold oscillations. Human
neonatal foreskin fibroblasts (NFFs) were subjected to an hour vibration at 60, 110 and 300
Hz followed by a 6-hour rest. Vibrations at 110 Hz increased cell proliferation compared to
other mechanical testing regimes. Quantitative polymerase chain reaction (qQPCR) data
showed that ECM-related gene expressions of collagen type |, CD44, MMP-1 and tissue
inhibitor of metalloproteinase 1 (TIMP1) were dependent on the vibratory frequency and
amplitude. These results again confirmed that mechanical forces involved in human
phonation are a critical epigenetic factor modulating fibroblast functions in ECM production
and degradation. A uniform pressure also seems to induce a more realistic cell response than
more complex shear and normal stress loading associated with axial testing. The acoustic
excitation in this bioreactor design fails to mimic the collision between the vocal folds.

In general, direct comparison of gene expression data among these bioreactor studies was
not practical due to the differences in the vibration regimens, cell types and the substrates
that cells were seeded on. Overall, collagen type | seemed to be the most sensitive gene to
mechanical stimulation in fibroblast cultures although the response varied with the
mechanical regimens applied.

Future Prospects for Vocal Fold Mechanobiology

Mechanobiology is a multi-scale biological problem. A systems-biology based analysis is
required to bridge the mechanical and chemical signals at molecular, cellular, tissue and
organ levels to understand this complex problem in a tractable and effective manner. Agent-
based computational models (ABMs) have been used to integrate biological data and predict
concentrations of vocal fold cells and ECM as a function of phonatory stress [52,53]. The
ABMs simulate the interactions among (1) platelets, (2) cells, specifically neutrophils,
macrophages and fibroblasts, (3) growth factors, specifically transforming growth factor
[TGF]-p1, basic fibroblast growth factor [bFGF]), (4) cytokines, specifically interleukin
[IL]-1B, IL-6, IL-8, IL-10, and TNF-a.), (5) collagenase (MMP-8), (6) ECM substances,
specifically collagen type I, elastin and HA) and (7) a damage associated molecular pattern
(DAMP) variable [52,54-56]. The models have an interface to input a person’s biomarker
profile consisting of inflammatory mediators (IL-1p, IL-6, IL-8, IL-10, TNF-a. and MMP-8)
[52,54-56], representing vocal fold health. Based on initial inputs, the models predict the
long-term wound healing response (future biomarker profile) for the subject of the
investigation.

The ABMs were calibrated and validated with empirical data covering a panel of cytokines
obtained from laryngeal secretions in a human subject study [57]. The ABM [52,54,55] also
allowed testing of the biological effects of three behavioral treatment options, that is voice
rest, resonant voice exercise and spontaneous speech, for acute vocal fold injury in silico.
The fundamental difference among the treatments is the putative magnitude of mechanical
forces in the vocal fold tissue. Algorithms regarding biological effects of mechanical-based
treatments were implemented based on the literature in exercise physiology [58-60], then
the model was calibrated with individual cytokine levels in laryngeal secretions from the

J Cytol Mol Biol. Author manuscript; available in PMC 2014 May 06.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Lietal.

Page 8

human study [57]. The model reproduced individual-specific mediator levels at 24 hours
post-injury with 73% accuracy (22/30 cases in the 95% confidence interval). This work
successfully incorporated the treatment effects of mechanical stresses into a biology-based
model. This new research direction will ultimately accelerate the understanding of the
mechanobiological pathways underlying phonation and tissue response in the vocal folds.

Systems-Based Research in Vocal Fold Mechanobiology

Comprehensive studies that integrate in vitro, in vivo and in silico approaches are needed to
advance the systems-biology research in vocal fold mechanobiology (Figure 1). Cross-scale
empirical data are required to develop integrative computational models.

Finite Element Model of Mechanical Stress and Strain Distribution

At the organ level, computational models such as finite element analysis can quantify
mechanical stress and strain at any location within the lamina propria, assuming that the
local mechanical properties of the vocal fold tissue is known through mechanical testing of
the tissue. Finite element models treat the tissue as a continuum. They yield average
mechanical stresses at the sub-millimeter scale. At the micrometer scale, the tissue can be
considered a representative volume element (RVE), composed of fibrils, attached cells, and
fibers, wherein the assumption of continuity is no longer valid. Given that we can predict the
amount of stress and stain on these RVES, micromechanical models can be developed to
relate the stress and strain acting on the RVE to the amount that is exerted on each cell. To
create such micromechanical models, the structural and mechanical properties of each fibril
as well as those of cells need to be known. Structural data can be obtained using a variety of
microscopy imaging techniques such as confocal scanning laser microscopy, nonlinear laser
microscopy [61], and atomic force microscopy.

Atomic Force Microscopy of Cell and Fibril Elasticity

The elastic properties of fibers and cells can be measured using techniques such as atomic
force microscopy (AFM), magnetic and optical tweezers, and particle tracking
microrheology [62,63]. Atomic force microscope is the most commonly used tool to study
the micro and nano mechanics of biological materials. Both nanotopographical and
mechanical properties can be obtained, allowing correlation to be drawn from these
properties. The AFM probe is composed of a tip attached to a cantilever that bends under
force. The probe and the sample can be moved with respect to each other. The main
advantage of AFM over other scanning techniques is that a sample can be imaged under
physiological conditions in an aqueous environment without fixation or dehydration. The
AFM microscopy allows force measurements at micrometer and nanometer scales. Force
versus deflection is obtained through indentation and the elastic properties are calculated
based on Hertzian theory.

Nano indentation tests can be used to measure the elastic properties of the matrix
constituents such as collagen, elastin, and cells. A schematic of AFM based
micromechanical tests on fibers and cells is shown in Figure 2. Two AFM techniques,
tensile tests [64] and indentation tests [63], can be used to measure the elasticity of one
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single fiber. In tensile tests, one side of a fiber is glued to the substrate and the other side of
the fiber is glued to an AFM probe. Motion of the probe away from the substrate causes the
AFM cantilever to bend in proportion to the applied traction force. The force vs
displacement data are then used to calculate Young’s elastic modulus. In indentation tests,
the sharp AFM tip is pressed onto the surface of a fiber and the resulting force-displacement
is used to calculate the elastic indentation modulus. Dynamic properties can be obtained by
dynamic displacement and the corresponding forces [65]. The elastic properties of collagen
and other ECM constituents reported in the literature are related to those of other organs and
may not correspond to the elasticity of vocal fold ECM constituents.

The size of a vocal fold fibroblast is several tens of micrometers. Nanoindentation is a well-
established technique to measure the local elastic properties of the cells [66,67] (Figure 2c).
The bulk properties of the cells are required for micromechanical models. Micro-indentation
or compression of fibroblast cells using colloidal probes can be used for characterizing bulk
properties [68] (Figure 2d). Although these measurements give initial preliminary data on
vocal fold fibroblast elasticity, adaptation of fibroblast elasticity to the substrate stiffness
[69] limits the use of such data for micromechanical models. Vocal fold fibroblasts can be
cultured in different constituent concentrations (i.e., elastin, hyaluronic acid, and
fibronectin) to be similar to in vivo conditions. The corresponding elastic properties can be
used as input data for micromechanical models.

With the concentration, constituent organization and elastic properties of the substrate or
ECM known, the magnitude of mechanical stress can be predicted at the cell level. At this
point, biological data of the cellular response to the mechanical stress can be collected and
modeled. For the ABMs to take into account the cellular response to mechanical force,
relevant mechano-transduction pathways should be identified and programmed into the
ABMs.

Vocal Fold Cell Mechanotransduction

The understanding of the exact mechanism of sensing mechanical force and converting it to
biochemical signals remains a challenge in molecular cell biology [70]. The ECM-integrin-
cytoskeleton pathway is one of the most studied signaling pathways in fibroblast cell lines
for other parts of the body. Integrins, cytoskeleton, G proteins, receptor tyrosine kinase
(RTKSs), mitogen activated protein kinase (MAPKS), and stretch-activated ion channels are
other well-understood mechnotransduction pathways [70,71]. However, none of the
aforesaid channels have been studied in vocal fold fibroblasts to date.

The biochemical activity of cells and their response to mechanical stimulation requires the
identification of mechanostransducer molecules and corresponding pathways leading to the
expression of genes and proteins that alter the metabolites of the cells. Mechanotransduction
can be studied using isolated cells with specific platforms [72] combined with live cell
imaging [73]. The imposed mechanical stress can be computed from micromechanical
models. Cellular responses to some mechanical forces such as tensile, shear and
compression have been widely studied for mechano-sensitive cells such as fibroblasts and
chondrocytes [70]. Most of these mechanobiological studies, however, have been limited to
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focus on oversimplified types of force, homogeneous substrates, and static conditions. It
would be more beneficial to study the response of vocal fold fibroblasts to combined
mechanical stresses as similar to the in vivo microenvironment. In order to achieve this goal,
an engineered vocal fold platform that can deliver isolated or combined mechanical
stimulations and also allow time-lapse fluorescent imaging for studying live cellular
response should be designed.

Conclusion

Although biomechanical forces clearly affect the physiology and pathology of the vocal
folds, current knowledge of the mechanical forces regulating these processes at the cellular
and molecular level is insufficient. Research on the vocal fold mechanobiology is warranted.
We propose a systems-based approach using integrated physical, biological and
computational method to capture the complex dynamics of vocal fold mechanobiology for
the eventual multi-scale biosimulation, spanning from molecules to the eventual voice

physiology.
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Figurel.
Systems biology of the vocal fold mechanobiology. At the organ level, finite element modeling is used to predict the average

mechanical stress and strain in vocal fold tissue. Subject specific information, such as vocal fold geometry, lamina propria
structural organization and high-speed imaging can provide information for the modeling and validation of a finite element
model capable of predicting average stress and strain in the tissue down to a level where continuum assumptions are no longer
valid. At the tissue level, structural and mechanical characterization of tissue constituents provides inputs to micromechanical
models to predict the amount of stress on a single cell. The mechanical stress on a single cell can induce an inflammatory
response involving other cell types. Co-culture of cells inside ex vivo vocal fold tissue can elucidate the complex interaction
between cells as well as their migration speed and dynamics, which are the essential data for the agent-based models (ABMSs). In
addition to the rules measureable at the cellular level using microscopic techniques, the cues that initiate the migration of these
cells are the result of complex interactions inside the cells. Bioreactors can provide sufficient RNA and protein samples for
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genomic and proteomic analysis respectively for complex cell-cell or cell-protein interactions. The use of computer science-
based pattern recognition techniques, such as pathway and network analysis, can identify and predict events at the cellular level.
Integration of all the data at the molecule, cell, tissue and organ levels can constitute a multi-scale model of vocal fold
mechanobiology. The clinical application of such a model is, for example, to predict the biological effect of phonation or
specific voice training on vocal fold injury and healing.
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a) I Indentation test l b) | Tensile test l
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Direction of probe motion

AFM probe -~
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-

|

Rigid substrate Rigid substrate
c) I Local indentation test ' d) | Bulk indentation test '
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Human cell Direction of probe motion

Substrate Substrate

Figure 2.
AFM based tests on fibrils and cells to identify their elastic properties: (a) indentation of single fibril, (b) tensile test on a single

fibril, (c) local characterization of cells using sharp tips, and (d) bulk characterization of cells using colloidal probes.
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