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Abstract

Pancreatic cancer is one of the most deadly types of cancer and has extremely poor prognosis.

This malignancy typically induces only limited cellular immune responses, the magnitude of

which can increase with the number of encountered cancer cells. On the other hand, pancreatic

cancer is highly effective at evading immune responses by inducing polarization of pro-

inflammatory M1 macrophages into anti-inflammatory M2 macrophages, and promoting

expansion of myeloid derived suppressor cells, which block the killing of cancer cells by cytotoxic

T cells. These factors allow immune evasion to predominate, promoting metastasis and poor

responsiveness to chemotherapies and immunotherapies. In this paper we develop a mathematical

model of pancreatic cancer, and use it to qualitatively explain a variety of biomedical and clinical

data. The model shows that drugs aimed at suppressing cancer growth are effective only if the

immune induced cancer cell death lies within a specific range, that is, the immune system has a

specific window of opportunity to effectively suppress cancer under treatment. The model results

suggest that tumor growth rate is affected by complex feedback loops between the tumor cells,

endothelial cells and the immune response. The relative strength of the different loops determines

the cancer growth rate and its response to immunotherapy. The model could serve as a starting

point to identify optimal nodes for intervention against pancreatic cancer.
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1. Introduction

Pancreatic cancer is the fourth most common cause of cancer-related death in the United

States. It has extremely poor prognosis, with a one-year survival rate of about 25% and a

© 2014 Published by Elsevier Ltd.

Parameter estimation
The parameters for the reduced model are listed in Table 1. We note that many of the parameters are presently not measured in
pancreatic cancer, and they were estimated from experimental data of other diseases.
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five-year survival rate less than 5% (Hariharan et al., 2008). One reason for its poor

prognosis is that pancreatic cancer typically develops over a period of 10–15 years, but most

often does not cause symptoms until it is advanced and has metastasized (Corbo et al.,

2012). Currently surgery remains the treatment approach with the best chance of cure, but

only localized cancer is suitable for surgical intervention. Furthermore only about 20% of

patients present with localized disease at the time of diagnosis (Koido et al., 2011; Hackert

and Büchler, 2013). The most common histologic subtype of pancreatic cancer, which is the

subject of this paper, is pancreatic ductal adenocarcinoma.

The immune system has the capability to detect tumor cells by recognition of their tumor

specific antigens and subsequent elimination by cytotoxic CD8+ T cells (CTLs) or natural

killer (NK) cells (Fukunaga et al., 2004; Ryschich et al., 2005; Vivier et al., 2011).

However, tumor cells may use a variety of means to escape immune recognition and

elimination. For example, they may attract myeloid derived suppressor cells (MDSCs), anti-

inflammatory macrophages or T regulatory cells to block the activation of CTLs and NK

cells, or in some cases induce them to undergo apoptosis (Steer et al., 2010; Liyanage et al.,

2002). Tumors also have the ability to render T cells anergic or to engage inhibitory

checkpoint ligands (i.e. PD1) on the cell surface (Steer et al., 2010).

The progression of pancreatic cancer depends on the tumor microenvironment which is

dictated not only by pancreatic cancer cells (PCCs) but also by various host cells including

but not limited to pancreatic stellate cells (PSCs), CTLs, tumor associated macrophages M1

(pro-inflammatory) and M2 (anti-inflammatory), and MDSCs. These cells communicate

with each other through a large array of cytokines and other soluble factors (Fig. 1). For

pancreatic ductal adenocarcinoma, PCCs are epithelial cells that have been documented to

secrete multiple factors including TGFβ which promotes activity and growth of PSCs

(Gaspar et al., 2007; Omary et al., 2007; Apte et al., 1999) and GMCSF which promotes

recruitment of MDSC and induces M2 polarization (Bayne et al., 2012; Pylayeva-Gupta et

al., 2012). PSCs are myofibroblast-like cells that represent a major component of the tumor-

associated stroma. These cells can act to enhance the growth and metastatic properties of

tumor cells, and more recently have been recognized as having an immune modulatory

potential (Bachem et al., 2008; Mace et al., 2013). These direct tumor-promoting properties

may be particularly influenced by the growth factor EGF which promotes the proliferation

of PCCs (Phillips, 2012). They also produce cytokines including TGFβ, IL6, and MCSF

which enhance MDSC function and M2-polarization and promote an immunosuppressive

microenvironment (Shek et al., 2002; Omary et al., 2007; Mace et al., 2013). Tumor-

associated macrophages are also highly relevant within the tumor microenvironment. These

cells can switch type between pro-inflammatory M1 and anti-inflammatory M2 which have

distinct phenotypic characteristics (Kurahara et al., 2011). For example, M1-polarized

macrophages typically produce high levels of cytokines such as IL12 and low levels of IL10,

whereas M2- polarized macrophages produce high levels of IL10 and low levels of IL12.

Together this complex network of cells can act upon CTLs or other cells that elicit cytotoxic

activity against tumors. These anti-tumor immune effectors typically displayed upregulated

cytotoxic activity upon exposure to IL12 which conversely is down-regulated by IL10. For a

recent review see Roshani et al. (2013).
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Recent data indicate that the M1 to M2 transition may be important for the progression and

therapeutic response in patients with pancreatic cancer. Overall, the transition from M1 and

M2 is promoted by the cytokines TGFβ, IL6, M-CSF and GM-CSF secreted by PCCs and

PSCs (Koido et al., 2011; Bayne et al., 2012; Gnerlich et al., 2010). This results in increased

production of cytokines such as IL10, decreased production of IL12, and consequently

decreased CTL activity (Koido et al., 2011) and increased cancer growth or metastasis.

Together, this diverse collection of cells and soluble factors in the tumor microenvironment

can influence the behavior of tumor-associated macrophages (TAMs). In the interaction

network described in Fig. 1, we adopted the simplification where MDSC is included

together with M2 as one compartment. For example, both cell types produce IL10 which

block the activation of CTLs by IL12. However, MDSC can also down-regulate production

of IL12 by macrophages (Bunt et al., 2009), and we account for this implicitly by simply

decreasing the production rate of IL12.

In recent years, many mathematical models have been developed to describe the interaction

between cancer cells and the immune system (de Pillis et al., 2005, 2006, 2013; Galante et

al., 2012; Wilson and Levy, 2012; Radunskaya and Hook, 2012; Robertson-Tessi et al.,

2012). However, no mathematical model has been developed to address how such

interactions lead to cancer growth or regression in the context of pancreatic cancer. In this

paper we develop a mathematical model for pancreatic cancer that incorporates the cancer–

stroma-immune interaction and use it to explain biomedical and clinical data on clinically-

relevant drug treatments that target TGFβ and EGF receptors (Deharvengt et al., 2012;

Ellermeier et al., 2013; Kurahara et al., 2011). The resulting model is based on the network

in Fig. 1 and describes the dynamic interactions among prominent cells and cytokines in

terms of a system of differential equations. The model adequately reproduces multiple

observed immunotherapy treatment experiments, but, more importantly, provides a generic

insight on the effect of such treatments that may also be applied to other tumors.

The organization of the paper is as follows. In Section 2, we introduce the full model and

simplifications of it based on separation of time scales involved in pancreatic cancer growth.

In Section 3, we show that our model can explain experimental data on TGFβ silencing

therapy and EGFR blocking therapy (Ellermeier et al., 2013; Deharvengt et al., 2012). In

Section 4, we show that the model suggests differential responses to drug treatment given

different parameters of the immune response. Finally, we discuss our results and open

problems in Section 5.

2. The mathematical model

The simplest mathematical model for pancreatic cancer must include PCCs, PSCs,

macrophages and T cells. This is so because cancer cells and PSCs affect the phenotype of

macrophages (M1→M2), and T cells must be introduced because they are the cells that kill

cancer cells and their activation depends on M1 cells. However, in order to understand the

underlying biology, we first develop a more detailed model, “the full model”, that also

includes primary cytokines by which the above five types of cells communicate with each

other. Then we use quasi-steady-state approximation to simplify the full model to the
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“reduced model” consisting of four ODEs with variables PCCs, PSCs, T, and the ratio of

M1 to M2.

2.1. Variables and notations

Based on the interaction network in Fig. 1, we include the following variables for cells and

cytokines in the model:

• Density of cancer cells: C

• Density of pancreatic stellate cells (PSC): P

• Density of M1 cells: M1

• Density of M2 cells: M2

• Density of CTL: T

• Concentration of TGFβ: Tβ

• Concentration of IL6: I6

• Concentration of IL10: I10

• Concentration of IL12: I12

• Concentration of MCSF: S

• Concentration of GMCSF: G

The variables for cells have the unit of number per mL, and the variables for cytokines have

the unit of mM.

2.2. The full model

We start by introducing the equations for the tumor cells. Growth of many organisms under

normal conditions follows the “universal law”, that is, the total body mass m grows with a

rate amp(1−(m/M0)1−p), where the exponent p ≈ 3/4, a is the growth rate and M0 is the

maximum size of the organism (West et al., 2001). Recently it was shown that cancer tissue

growth can be described similarly, with the exponent p ranges from 2/3 to 1, depending on

the growth conditions and the fractal topology of the neoplastic vascular system (Guiot et

al., 2006). In this model, we adopt this description and choose p = 3/4 to model the growth

of cancer cells; choosing slightly different values of p had no significant effect on the

results. In addition, PSC promotes cancer growth through various cytokines, thus we

represent the cancer growth rate as the sum of the basal growth rate, kc, and the

enhancement by PSC, μcP. We further denote the maximum cancer density by C0. Since

IL10 can reduce the ability of CTLs in killing cancer cells (Wang et al., 2011; Itakura et al.,

2011), we assume the rate of removal of cancer cells to be a decreasing function of IL10.

Based on these considerations, the evolution of the cancer cell density can be described by

the following equation:

(1)
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The first term on the right-hand side (RHS) models cancer growth, and the second term

models the removal of cancer cells by T cells.

Pancreatic stellate cells (PSCs) are the resident myofibroblast-like cells in pancreas ducts.

PSCs can be activated by cytokines such as TGFβ, and activated PSCs can secrete more

TGFβ. Compared to cancer cells, PSCs are more sparse in the pancreas ducts, thus we

model their growth using a logistic function. The equation for PSCs is

(2)

where kpP(1−P/P0) is the basal growth rate in the absence of TGFβ,

(μpTβ/(Kp+Tβ))P(1−P/P0) is the TGFβ induced growth rate, and λp is the death rate of the

PSC. The term μpTβ/(Kp+Tβ) is used here to model the saturation limited effect of TGFβ.

The pro-inflammatory and anti-inflammatory macrophages M1 and M2 can be attracted to

the site of pancreatic cancer, undergo apoptosis, and switch type. The transition from M1 to

M2 is mediated by cytokines such as TGFβ (Tβ), IL6 (I6), MCSF (S), and GMCSF (G). The

equations for M1 and M2 are

(3)

(4)

Here k1 and k2 are the influx rates, λ1 and λ2 are the death rates of M1 and M2 respectively,

the transition rate α from M2 to M1 is assumed to be constant, and the transition rate from

M1 to M2 is assumed to depend on TGFβ, IL6, MCSF, and GMCSF linearly.

Finally, CTLs in the lymph nodes travel to the cancer site upon a cue. They are then

activated by CD4+ T cells, which in turn are activated by IL-12 in conjunction with major

histocompatibility complex class II (MHC II) presented on the surface of macrophages, and

the latter process is inhibited by IL-10. For simplicity, we model the dynamics of CTLs (T)

in pancreatic cancer by the following equation:

(5)

We next describe the equations for the cytokines. For simplicity, we assume that the

cytokines are produced by corresponding cells at a constant rate, and they undergo a natural

decay with constant rates. According to Fig. 1, we have
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(6)

(7)

(8)

(9)

(10)

(11)

Here the k’s and μβ are the production rates and the λ’s are the degradation rates. We note

that each cytokine is produced by a single cell type, except for TGF-β which is produced by

both tumor cells and pancreatic cells. Most parameters in (Eqs. (6)–11) are not known

experimentally. However, as we shall see in the next section, these parameters will not

appear in our simplified model, because they will be lumped together.

2.3. The reduced model

Pancreatic cancer growth involves multiple time scales: the growth of cancer cells occurs on

a time scale of months to years in vivo and weeks to months in vitro; the recruitment of

macrophages and T cells occurs on a time scales of days to weeks; and the secretion and

decay of cytokines occur on a time scale of seconds to hours. In order to understand the

dynamics of cancer growth, we simplify the model using quasi-steady-state approximations

for the cytokine concentrations. Under this assumption, Eqs. (6)–(11) become

Substituting these expressions into (Eqs. (1)–5), we obtain the following simplified system

for the cell dynamics:

(12)
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(13)

(14)

(15)

(16)

where

Here the combined parameters νc and νp describe the contribution of cancer cells and the

PSCs to the growth of the PSC population, and γc and γp describe how the transition from

M1 to M2 depends on cancer cells and the PSCs.

We note that the density of PSCs (P) is much smaller than the density of cancer cells (C) in

the duct in pancreatic cancer (Feig et al., 2012). We assume that the secretion rate of TGFβ
by PSC, kβ, is not bigger than that by cancer cells, μβ. Therefore in Eq. (13) the term νpP is

much smaller than νcC and, to simplify the model, we neglect it. By redefining Kp to be

Kp/νc, Eq. (13) can be written as

(17)

The dynamics of pancreatic ductal adenocarcinoma are affected by the macrophage

population types and number. In order to analyze the system, it is more convenient to change

variables to represent this dependence. Specifically, the total number of macrophages M

=M1+M2, and the fraction of pro-inflammatory macrophages R =M1/M are critical markers

of the status of the immune system. Accordingly, we introduce a change of variable from

M1 and M2 to M and R. In these new variables, we have

(18)

Adding (Eqs. (14) and 15)), and using Eq. (18), we obtain
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(19)

For R, we can use the chain rule to obtain

(20)

Since there are no known differences in macrophages death rates, we assume that λ1 = λ2 =

λM and denote kM = k1+k2, then (Eqs. (19) and 20) become

We notice that the total number of macrophages, M, is independent of R and saturates over a

period of weeks, which is set by the parameter λM. However, in pancreatic cancer the

balance between the two types of macrophages can change slowly, as P and C grow. Based

on this observation of separation of time scales, we further simplify the model by

approximating M by its quasi-steady-state kM/λM. Thus Eq. (20) becomes

(21)

We also simplify (Eqs. (12) and 16) using (18). We set

(22)

Using these notations the death term in Eq. (12) becomes

(23)

Similarly, the growth term in (16) becomes

(24)

Substituting these back into (12) and (16) and dropping the primes for simplicity of notation,

the model is then simplified to a system of four ODEs,
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(25)

(26)

(27)

(28)

where kr = k1λM/kM+α and λr = λM+α. We call this system the reduced model for

pancreatic cancer and use it to explain biomedical and clinical data in the next section.

3. Simulation results on drug treatments

In this section, we investigate whether the proposed model shows cancer dynamics that

agree with experimental data on treatments that involve immune activation, TGFβ silencing

and EGFR silencing.

3.1. Combination of TGFβ silencing and immune activation treatment

Ellermeier et al. (2013) studied the effect of treatments that involve TGFβ silencing and

immune activation through RIG-I pathway on pancreatic cancer, and reported the survival

time distribution for populations of pancreatic cancer patients without treatments and with

different combinations of treatments (see Fig. 2A). For patients without treatments, the mean

survival time (MST) is short, the variance of MST is small (black curve). For patients with

single treatment using TGFβ silencing or immune activation, the MST increases and its

range is broader (orange and green). For patients with both treatments, the MST and its

variance are significantly larger than those of single treatments (red).

To investigate whether our model agrees with these experimental data, we simulated our

model for a population of pancreatic cancer patients and investigated how the survival time

distribution depends on the parameters of the model that correspond to TGFβ and immune

activation treatments. We assume that the main difference among these patients is the

strength of their adaptive immune responses. For each treatment we created a population of

50 patients such that each patient has a different λc which is proportional to the killing rate

of cancer cells by CTLs. Specifically, we took these λc’s to be a geometric sequence

between 10−9 and 10−6.5. Simulations show that using different distributions of λc yields

qualitatively similar results as in Fig. 2B.

For patients without any treatment, we used all parameters as in Table 1; for patients with

TGFβ silencing treatment, we reduced γc, γp and μp to 10% of their values in Table 1; and

for patients with immune activation, we increased kt to be twice of its value in Table 1. In all
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simulations, we set the initial cancer cell density to be 200 cells per mL, and initial values

for the other three variables at their quasi-steady states. We assumed that the survival time

of a patient is the time for the cancer cell density to reach a threshold density and we take

this threshold to be 5000 cells per mL. Fig. 2B demonstrates the simulated survival time

distribution for different cases of treatments, and the results agree with the experimental data

qualitatively.

3.2. Combinations of EGFR silencing and TGFβ sequestration treatments

In the microenvironment of pancreatic cancer, elevated EGF and its receptor and TGFβ have

been observed (Korc, 1998). In a report from Deharvengt et al. (2012) it is shown that

concomitant treatment with EGFR silencing RNAs and TGFβ sequestration molecule sTβ
RII showed enhanced benefit in controlling ASPC-1 pancreatic cancer cell growth in mice

(Fig. 3A). In this section, we use the reduced model to investigate how combinations of

treatments of EGFR knockout and TGFβ silencing affect tumor size. As in Deharvengt et al.

(2012), we compare four different cases. The first is without any treatment, the second is

with EGFR silencing only, the third is with TGFβ sequestration only, and the fourth is with

both treatments. For simulations without treatment, we use parameters specified in Table 1.

To model EGFR silencing treatment, we take μc to be 0.7 times of the value in Table 1 to

take into account the blockage of the enhancement of PCC proliferation by PSC produced

EGF. We did not completely block the influence of PSC to PCC because there exists other

PSC secreted cytokines in the cancer microenvironment that promote cancer cell growth. To

model TGFβ treatment, we set γp = γc = μp = 0 in the reduced model to eliminate the effects

of TGFβ. We plot the evolution of the cancer size in these four different cases in Fig. 3B,

colored as black, blue, red, and green. These simulations show that combinations of

treatment is significantly better than any single treatment and the dynamics of cancer size

resulting from our model is in qualitative agreement with experimental data.

In Deharvengt et al. (2012), it is also reported that for some other cancer cell lines, e.g.,

T3M4, the effect of simultaneously targeting EGFR and TGFβ markedly suppressed HER2,

resulting in actually larger tumor load than in the case of targeting only EGFR or TGFβ
alone. This situation, although not simulated here, can be achieved using our model by

changing corresponding parameters that implicitly relate to HER2 expression.

Since some of the parameters of our model are only estimated up to the order of magnitudes,

we only claim qualitative fit of our model (Figs. 2B and 3B) to the data in Ellermeier et al.

(2013) and Deharvengt et al., 2012 (Figs. 2A and 3A). On the other hand, we shall analyze

in the next section how the model results depend on the parameters.

4. Analysis on the drug efficacy and the immune response

The varied response of patients to drug treatment, as shown, for example, in Section 3.1, is

likely due to the varied immune response of patients. In the model (Eqs. (25)–28), the

immune system response can be characterized by the parameters γp, γc and λc. In this

section, we show that the immune system, characterized by γp, γc, λc is affected by

immunotherapy only when these parameters fall within a specific regime, that is, there is a

specific “window of opportunity” for an effective immune response. Our analysis is based
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on the reduced model (Eqs. (25)–28), which highlights two feedback loops as shown in Fig.

4. The first is a positive feedback loop that involves mutual enhancement of PCCs (C) and

PSCs (P), and the second is a double negative feedback loop (i.e. a positive feedback loop)

involving mutual inhibition of the cancer and the immune system, i.e., the C and P complex

(top) and the R and T complex (bottom). Specifically, PCCs and PSCs promote M2

polarization and thus reduce R, and R upregulates T, which in turn down-regulate C.

The cancer–immune interaction leads to the sensitive response of the system to the

parameters of γc, γp and λc. The parameters γc and γp represent the effect of PCCs and

PSCs on the polarization of the macrophages, and λc is the killing rate of cancer cells by T

cells. In the absence of the negative feedback from C and P to R, we have γc = γp = 0. In

this case, the steady state cancer size slowly decreases as λc increases (Fig. 5A, red dashed).

However, in the presence of the negative feedback, the steady state cancer size shows a

switch-like behavior as λc increases (Fig. 5A, blue solid): for large λc, the tumor size is

small; for small λc, the cytokines have no effect; for intermediate λc, however, there is a

sharp change in tumor size. Fig. 5B presents another view of this sensitive response. For

small λc = 5e−8, the steady state tumor size remains high regardless of the values of γp and

γc (Fig. 5B, blue solid); but for intermediate λc = 5e−7, a decrease of γc and γp leads to

significant decrease in cancer size (Fig. 5B, red dashed). For very high value of λc, the

tumor size will remain negligible unless γp and γc are unreasonably high (not shown here).

For such patients pancreatic cancer may never be observed, since the cancer size remains

small for a very long period of time. Similar dynamics also occur if we vary the parameters

μc and μp instead of λc.

The sensitive response of the system with respect to γc, γp, and λc shown in Figs. 5 have

the following implications. First, it suggests that treatments which aim to change these

parameters are potentially effective. For example, one can increase λc by boosting the

immune response, decrease γp and γc by blocking TGF-beta or IL6, or decreasing μp and μc

by blocking EGFR or TGFβ. Second, it suggests that such treatments can only be effective if

corresponding parameters are perturbed in the “right” way. For example, if the adaptive

immune response is too weak, with λc values in the regime as the blue solid curve in Fig.

5B, no matter how one perturbs γc and γp with treatment, there is no effective control of the

cancer growth. On the other hand, if the adaptive immune response is strong enough, with

λc in the regime as the red dashed curve in Fig. 5B, a treatment which dramatically

decreases γc and γp will have an observable effect in controlling cancer.

To better understand the “switch-like” behavior, we solve the steady-state equations of the

reduced model. By explicitly solving the steady states of P, R and T from (26)–(28) and

substituting into (25), we obtain that the non-zero steady state cancer size is determined by

the nontrivial solution C of the following equation:

(29)

with .
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Fig. 6A shows the function f (C) given different λc, and Fig. 6B shows the solution C of f

(C) = 0 as a function of λc.

Bifurcation analysis suggests that two saddle node bifurcations occur near two points of λc,

namely, λ1=8.77e−7 and λ2=1.07e−6. For λc < λ1 or λc > λ2, there is only one solution of

C, and for λ1 < λc < λ2, there are three solutions. Furthermore, the upper branch (λc < λ2)

and the lower branch (λc > λ1) are stable, while the middle branch which connects the two

is unstable. The upper branch represents a more aggressive tumor than the lower branch. As

λc increases from small values up to λ2, the tumor will remain in the aggressive state.

However, as soon as λc exceeds λ2, there is a sharp drop in the size of the steady state

cancer, and the system will evolve towards the lower branch. If λc now decreases, the tumor

will remain in the nonaggressive state (the lower branch), until λc becomes smaller than λ1,

in which case the tumor size will jump back to the aggressive state. This suggests that if we

apply a treatment to boost the immune response so that λc increases, the treatment will be

most effective if the patient’s parameter λc is near λ2, i.e., a small increase of the immune

response will sharply reduce the tumor from the aggressive state to the nonaggressive state;

for other values of λc in the upper branch, a small increase in the immune system will

provide only minimal improvement.

5. Conclusions and discussion

In this paper we have developed a mathematical model of pancreatic cancer. The model

involves PCCs, PSCs, immune cells M1, M2, MDSC and CTL, and cytokines EGF, TGFβ,

IL6, MCSF, GMCSF, IL10 and IL12. Although M2 and MDSC are two different types of

cells, both suppress the function of CTLs and NK cells. For simplicity we have combined

M2 and MDSC into one compartment. We have simulated the model in two cases of

treatments, where experimental data were available. We represented the effect of the drug by

a change in some of the rate parameters. For example, in EGFR silencing treatment, taking

account of the blockage of the enhancement of PCC proliferation by PSC produced EGF, we

did not completely block the influence of PSC to PCC because there exist other PSC

secreted cytokines in the cancer environment that promotes cancer cell growth, although

they were not included explicitly in the model. Thus, this treatment is expressed by

decreasing the parameter μc in Eq. (25) to 0.7μc, not by completely eliminating it.

In Section 4 we emphasized the important role of the state of the immune system in drug

treatment. If the immune system is weak (e.g., in the sense that the killing rate of CTLs, λc,

is small), as in the case of a patient with organ transplant or with HIV/AIDs, or if the

immune system is very strong (e.g., λc is very large), then treatment is not effective. Many

papers describe the role of cytotoxic chemotherapy (Burrisrd et al., 1997; Von Hoff et al.,

2011; Heinemann et al., 2013; Hosein et al., 2013). NAB-Paclitaxel–Gemcitabine perhaps is

one of the more promising chemotherapeutic approaches tested to date. Other

chemotherapeutic approaches including an intense FOLFIRINOX regimen has proven

effective at debulking tumors, to make curative resection more likely (Heinemann et al.,

2013; Bekaii-Saab and Goldberg, 2013). As patient data from such treatments become

available, our model could be further refined to reflect the results of these treatments, and

then be used to develop hypotheses on optimal scheduling of treatments.
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The proposed model, as are all such models, is obviously a highly simplified description of

the biological complexity. It does not include the spatial structure of the tumor or the

metabolic elements limiting the tumor growth. It does not include important aspects of

immune response, such as T regulatory cells (Tregs), CD4+ T cells, and the complex

interactions between Th1, Th2 and Th17 cells, which may also be relevant to pancreatic

cancer development and progression (Beatty et al., 2011). It does not account for stromal

cells and hypoxia. We also lumped cytokines into generic groups based on the overall

homology in function. Introducing all these cells and their associated cytokines would

indeed make the model more comprehensive; however, because of the sparsity of

experimental data for pancreatic cancer, not necessarily more useful.

The risk of cancer depends on two factors, growth/proliferation and invasion/metastasis, and

the balance of the two primarily depends on the specific cancer. For example, in cutaneous

melanoma diagnosed at early stages, growth is a major factor for prognosis: if the tumor is

still within the dermis, it can be excised with a reduced chance for relapse; but if the growth

has reached the subcutaneous tissue (5 mm depth) then metastasis is more likely and

survival may be only a matter of months. Typically, in pancreatic cancer, metastasis has

already taken place at the time of diagnosis, and the mean survival time is only a few

months (see Fig. 2). Although our mathematical model is described in terms of tumor cell

proliferation, it represents, to some extent, the total risk associated with pancreatic cancer,

since the more cancer cells there are, the greater the possibility of metastasis is.
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HIGHLIGHTS

• Pancreatic cancer is highly effective in evading the immune response.

• Model simulations qualitatively agree with data in cancer treatments.

• We emphasize the crucial role of the state of the immune system in treatments.

• Immuno-modulatory drugs are effective in a narrow window of immune

responses.
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Fig. 1.
Interaction of cells and cytokines in pancreatic cancer. The model contains cells (shaded ellipses) and cytokines (clear ellipses)

that operate in different time scales (days/years vs. minutes/hours). Arrows represent activation and circle-heads represent

inhibition. Inhibition and activation can have different meanings for different elements. For cytokines, activation represents

cytokine production. For tumor cells, inhibition represents the induction of apoptosis, and activation represents cell division. For

CTLs activation/inhibition represent function increase/decrease of the killing rate. For macrophages, we assume a homing rate

as well as the possibility of switch from one macrophage type to the other. The arrow associated with EGF means that PSCs

increase proliferation of cancer cells by producing EGF. MDSC produces IL10 which inhibits activation of CTL by IL12.
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Fig. 2.
TGFβ silencing and immune activation treatment for pancreatic cancer. (A) Survival data reported in Ellermeier et al. (2013).

Reprinted from Cancer Research with permission. Black: no treatments; blue: buffer control; yellow, green, red: immune

activation, TGFβ silencing, and both. (B) Simulation of the model on treatments. From left to right: black: no treatment with

parameters as in Table 1; magenta: ppp-RNA; green: OH-TGFβ; red: both. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)
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Fig. 3.
Comparison of different treatments. From top to bottom: no treatment; EGFR knockout; TGFβ silencing; both treatments. (A)

Reproduced from Deharvengt et al. (2012). (B) Simulations of the model. For the four curves from top to bottom, the following

fold parameters are used: r1 = 1, 0.6, 0.4, 0.3; r2 = 1, 0, 1, 0, where r1 and r2 are fold parameters for γp, γc, μp, and μc. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 4.
Feedback loops of the reduced model (Eqs. (25)–28). C, P, R and T represent the four variables in the model. C and P enhance

each other, and down-regulate R, while R up-regulates T which down-regulates C.
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Fig. 5.
Effect of the immune system on the steady state tumor size. (A) Effect of T cell killing rate λc with (blue solid) and without (red

dashed) tumor-induced effect on macrophage polarization represented by different γp, γc values. (B) Effect of cytokines on

steady state tumor size for λc =5e−8 (blue solid) and λc = 5e−7 (red dashed). Here C is normalized by C0. (For interpretation of

the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 6.
(A) The profile of f(C) as a function of C given different values of λc. Each line represents a different value of λc. The

parameter λc increases from the top curve to the bottom curve, and the ratio of the λc’s of neighboring two curves is 1.25 fold.

The steady state cancer size is where a curve decreases from positive to negative. The two thick blue curves have λc = 8.77e−7

and 1.07e−6 and correspond to λ1 and λ2 in (B). (B) Nonzero solutions of f (C) = 0 as a function of λc. Solid lines: stable

steady states of the model; dashed line and open circles: unstable steady states. The dotted lines indicate the values of λ1 and λ2

where the saddle node bifurcations occur. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
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Table 1

Parameters for the reduced model.

Parameter Value with unit Notes and references

C0 106 cells/mL Maximum PCC density, estimated

P0 105 cells /mL Maximum PSC density, estimated

kc 7.5 × 10−2

cells1/4mL−1/4day−1
Estimated

μc 20kc /P0 Estimated

Kc 0.1 We assume that the killing rate of cancer increases by a factor of 5, when R increases from 0.1
to 0.9.

λc 10−7 mL per cell per day In experiments in Seki et al. (2002), 107 CTL cells were found to kill half of the renal cancer
cells in about 16 hours. Therefore the maximum rate of CTL in killing cancer cells can be
approximated as ln2/16/107 · 24 ≈ 10−7 per cell per day. At the same time, this number is given
by λc/(Kc +(1−R)) in a patient. Assume that R is approximately 0.1 in patients, we obtain λc =
10−7 per cell per day.

kp 0.2 per day Estimated

μp 20 kp Estimated

Kp C0/100 Estimated

λp 0.15 per day The half-life T 1/2 of PSC is 2–5 days. The relation of λp and T1/2 is λp = ln 2/T1/2.

kr 0.2 per day From the full model, we have kr = α + k1λM/kM. Taking the value that α = 0.2/day, k1 = 40
cells/ml/day (Sichert et al., 2007), kM = 228 cells/ml/day (Sichert et al., 2007; Day et al., 2009),
and λM = 0.02/day (Day et al., 2009), we obtain kr ≈ 0.2.

λr 0.22 per day From the full model, we have λr = λM + α.

γp 0.02λr /Ps Ps is the PSC density in a healthy person, which satisfies Ps = P0(1−λp/kp).

γc = γp Estimated

kt 3300 cells per mL per day Estimated

Kt = Kc Estimated

λt 0.3 per day Day et al. (2009)
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