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Abstract.Although both POPPK and physiologically based pharmacokinetic (PBPK) models can account
for age and other covariates within a paediatric population, they generally do not account for real-time
growth and maturation of the individuals through the time course of drug exposure; this may be
significant in prolonged neonatal studies. The major objective of this study was to introduce age
progression into a paediatric PBPK model, to allow for continuous updating of anatomical, physiological
and biological processes in each individual subject over time. The Simcyp paediatric PBPK model
simulator system parameters were reanalysed to assess the impact of re-defining the individual over the
study period. A schedule for re-defining parameters within the Simcyp paediatric simulator, for each
subject, over a prolonged study period, was devised to allow seamless prediction of pharmacokinetics
(PK). The model was applied to predict concentration-time data from multiday studies on sildenafil and
phenytoin performed in neonates. Among PBPK system parameters, CYP3A4 abundance was one of the
fastest changing covariates and a 1-h re-sampling schedule was needed for babies below age 3.5 days in
order to seamlessly predict PK (<5% change in abundance) with subject maturation. The re-sampling
frequency decreased as age increased, reaching biweekly by 6 months of age. The PK of both sildenafil
and phenytoin were predicted better at the end of a prolonged study period using the time varying vs
fixed PBPK models. Paediatric PBPK models which account for time-varying system parameters during
prolonged studies may provide more mechanistic PK predictions in neonates and infants.
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INTRODUCTION

A complex myriad of physiological and biochemical
developmental processes can occur over a period of time,
such as during normal growth (1,2), pregnancy (3), critical
illnesses (4) and disease progression (5–7). Some of these
dynamic changes will have an effect on both the pharmaco-
kinetics and pharmacodynamics (PK/PD) of drugs.

Generally, structural PK models determine concentra-
tions using a function (f) as follows: C(t)=f(dose(t), parame-
ters) where the parameters are usually time-invariant values
such as rate constants, volume of distribution, amount or

activity of an enzyme and so on, that do not change over the
simulation interval. In time-variant PK systems, the parame-
ters change as explicit and/or implicit functions of time, C(t)=
f(dose(t), parameters(t)). More mechanistic time-variant PK
models have the form C(t)=f(dose(t), parameters(g(t),t)),
where g is a model parameter growth function (8). The latter
is probably more mechanistic, where the parameter can vary
explicitly or implicitly as a function of time, an example is the
circadian variation in the PK of 5-fluorouracil due to time-
variant changes in its metabolism (9). More complicated
forms of mechanistic time-variant models include physiolog-
ically based pharmacokinetic (PBPK) models where each
individual subject’s PK/PD is determined by a complex array
of linked covariates that each vary in different ways with
time. The later function can be represented as C(t)=f(dose(t),
parameters(g(COV(t)),t)), where COV(t) is the time-varying
covariates from the baseline covariate defining the PBPK
system parameters over time.

The growth/decay of system parameters with time are
generally non-linear functions, reaching an asymptote at
different points during maturation with a random variability
that increases or decreases with time and size. Paediatric
population pharmacokinetic studies often account for the
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effects of body size and the maturation of elimination
pathways on specific PK parameters, using a combination of
allometric scaling and maturation functions, but these and
other included covariates are usually fixed for the time course
of the study. This is acceptable for studies with a short
duration or where physiological systems have already devel-
oped; however, in relation to prolonged drug therapy in
neonates, many of the underlying parameters driving PK
change drastically during the early stages of life (1,10–12).
This area has attracted more researchers in the last few years
(13–18) as the limitations of the current available data for the
provision of optimal paediatric care have been identified.
This, coupled with the increased emphasis on drug research
and licencing of medicines in children is driving the need for
improved PK/PD models/data in children (14,19–22).

Studying time-based changes in physiology and biochem-
istry on a mechanistic level through the time course of a
prolonged PK/PD study is a complex problem. This is not
only because of the non-linearity of the relationship between
the data and the PK/PD parameter of interest but also the
complexity of the structural model and the interaction
between the model parameters and system components such
as covariates, the inter- and intra-individual variability, inter-
occasional variability and their overall interactions with the
study design. Over the last few years, there has been an
increasing interest in understanding the covariate–parameter
relationship with respect to time over the duration of study.
Examples of where this approach has been adopted and
applied in POPPK/PD analyses can be seen in the literature
for paediatric (23) and adult (24–26) populations. However,
whilst many paediatric PK/PD studies have given careful
consideration to time-varying covariate effects and imple-
mented it in the population model explicitly as the current
age (27), or implicitly as the current weight, these covariates
are usually fixed for each individual for the time course of the
study (28). Some have demonstrated that model predic-
tion cannot rely on the assumption that covariate–param-
eter interactions remain constant in different paediatric
populations (29–31).

Physiologically, the covariate–parameter relationship
depends on age at each point of time and therefore, inclusion
of all quantified covariates in a time-dependent manner is
potentially important especially for predicting PK during
long-term studies performed in neonates. Paediatric PBPK
models are inherently suited for this task as the whole
physiology can be updated during the time course of a
simulation. .

A number of paediatric PBPK models have been
reported in the literature and used to predict PK parameters
(1,14) and drug–drug interactions (14,32) from birth onwards.
Whilst many of these models can predict drug PK over a
prolonged time period, to our knowledge, none of them can
simultaneously account for changes in the whole physiological
parameters over the time course of a simulation. The
development of physiological and biochemical processes
occurs rapidly in the first few months of life (1,13,33,34);
consequently, the pharmacokinetics of drugs may change
rapidly during this time. As a result of these changes,
particularly in neonates, it is necessary to account for the
underlying physiological changes during a prolonged simula-
tion. For instance, a 1-day-old neonate starting on a 28-day

course of drug therapy will be 1 month old at the end of the
treatment and this should be reflected in the underlying
PBPK model. Interestingly, Sharpe et al. showed that twofold
increase in clearance of levetiracetam after intravenous
administration occurs during the first week of life based on
a 7-day study of the pharmacokinetics of the drug in neonates
(35).

Aim

The aims of this study are:
To develop a time-varying paediatric PBPK model to

predict the PK profile considering the underlying systems
parameter that affect PK in paediatrics as ageing occurs
during the time course of a study. The paediatric subjects will
grow at a ‘normal’ physiological rate during the time course
of a clinical trial simulation.

To compare the output of the time-varying paediatric
PBPK model against a conventional ‘fixed’ model using
existing published prolonged neonatal and infant PK studies
to investigate how the PK profiles are affected when the
developmental processes are incorporated in the model.

METHODS

Time-Varying Paediatric PBPK Model Building

To determine how necessary it is to frequently update
physiological and biochemical parameters within a paediatric
PBPK model such that growth and maturation of all system
parameters occurred in a seamless manner, it was necessary
to map the extent to which key parameters were changing
within a given age–time frame. This will determine how often
the re-definition of the most sensitive system parameters has
to take place. For example, for a 2-day-old neonate given a
drug over a 2-week period that is eliminated mainly by
hepatic drug metabolism, the expression of the relevant
enzymes may increase 10-fold over this period and in this
case, it may be necessary to re-define subjects very frequently.
The re-defining of a subject within a paediatric PBPK model
may increase the predictive accuracy, in particular, during the
neonatal and infant period. However, it will also increase the
complexity of the model and the extent of the calculations
resulting in higher computation burden and longer simula-
tion/evaluation times. Thus, one of the initial decisions in
designing the model was to decide on an optimal re-sampling
strategy.

Since the overall plan in this paper is to develop default
settings for re-defining paediatric PBPK subjects based on the
most rapidly changing physiological parameters that may
impact PK or PD parameters or profiles, previously reported
equations for longitudinal changes in paediatric PBPK model
parameters were used (1). For determination of the percent-
age change in the model parameters with age, a list of all age-
related parameters within the Simcyp paediatric PBPK model
that may influence drug pharmacokinetics has been consid-
ered; this did not include detailed absorption parameters as
these are not currently in the model. Equations for many of
these parameters are reported elsewhere (1,36). Where a
parameter is defined by BSA or WT or HT, age-related
equations were substituted into these equations prior to

569Accounting for Growth and Maturation in a Paediatric PBPK Model



determining the rate of change with age. The equations were
entered into Microsoft Excel and used to predict the intended
parameter with age. The second stage was then to investigate
the percentage change in the parameter with time. The
arbitrary decision was taken to allow a maximum of 5%
change in prior value before re-defining a subject. The
complete analysis of all age-related paediatric PBPK param-
eters showed the percentage change in a parameter with age
using different frequencies of sampling. To determine the
minimum necessary re-sampling interval, the values from the
fastest changing system parameter were used when evaluating
the time-based changing paediatric PBPK model against the
conventional paediatric PBPK model.

Model Performance

Simulations using the paediatric PBPK Model were
performed when the system parameters were fixed and also
when changing over time. A literature search was undertaken
in PubMed to identify longer duration clinical PK studies
performed over days or week involving neonates and infants.
Only a small number of studies were identified and from
these, it was only possible to simulate the concentration
profiles of a limited number of subjects for sildenafil and
phenytoin. In addition, a case study was developed based on
the standard UK treatment regimen for the treatment of
neonatal apnoea with theophylline.

Theophylline. A simulation exercise for theophylline
plasma concentration after multiple doses was carried out to
show that the impact of development had to be included in order
to achieve concentrations within the therapeutic range. The
British National Formulary for Children standard dosing
regimen for the treatment of neonatal apnoea is 4.8 mg/kg iv
theophylline followed by 2 mg/kg iv every 12 h (37). This dosage
regimen was used in Simcyp paediatric to simulate theophylline
PK in a virtual full-term newborn population (<1 day old) with
and without the time-based changing physiology activated. The
results were output against this therapeutic window for theoph-
ylline in neonatal apnoea of 8–12 μg/ml.

Sildenafil. The time-varying changes in the model were
applied to sildenafil which is predominantly metabolised by
CYP3A4 with a minor role for CYP2C9 to simulate a long-
term clinical study where the drug had been given for many
days to newborn babies (38). Briefly, 36 term neonates with
persistent pulmonary hypertension or hypoxemia were ad-
ministered intravenous sildenafil as a loading and mainte-
nance dose for up to 7 days starting within 72 h of birth. The
dosing regimen consisted of a loading infusion of fixed
duration ranging from 5 min to 3 h among treatment groups,
followed by a continuous maintenance infusion of variable
duration, ranging from 2.6 to 168 h for individual subjects.
Mean duration of maintenance infusion for all treatment
groups was 77 h, and, except for one subject, all subjects
received the maintenance infusion for at least the minimum
duration of 48 h specified in the protocol. One group of four
subjects received the maintenance infusion only. Plasma
concentrations were collected during and after the infusion.

The original study reported only mean loading dose and
mean maintenance dose and did not report individual

demographics with respect to the weight and dose adminis-
tered and infusion duration, making it difficult to replicate the
exact dosing regimen in each individual. Thus, we have
replicated observations from three representative individuals
from three groups (one subject in each) for whom enough
information is available. For individual 1 (group 1), the mean
value for the loading dose was 0.47 mg/h for 0.06 h and the
maintenance dose was 0.01 mg/h for 62.9 h, for individual 2
the mean loading dose was 0.18 mg/h for 0.5 h and the
maintenance dose was 0.02 mg/h for 108 h and for individual
3 (group 7), no loading dose was given but the maintenance
dose was 0.03 mg/h for 163 h. We used this dosing regimen
and the default demographic data from the Simcyp simulator
to run the simulation in the neonatal age range 0 to
0.001 years, 100 subjects and proportion of females was 0.5.
The simulation was run over 8 days to cover the dosing and
plasma sampling period. The results from the paediatric
PBPK simulation with and without time-based changing
physiology were compared to clinical data.

Phenytoin. Phenytoin was administered to 30 (pre-term
and term) newborn babies, four of whom were premature
(39). Phenytoin therapy was started as an intravenous loading
dose of 12 mg/kg phenytoin sodium, given over 15–20 min by
syringe driver infusion pump. Twenty-four hours later, the
maintenance therapy was started with an intravenous or oral
suspension dose of about 8 mg/kg per day, given in divided
doses every 12 h for 7–10 days. The duration of the
maintenance therapy differed between individuals (7–
10 days). The original study included a number of subjects
who we had to exclude because they were either pre-term
individuals not covered by the current model, did not report
the full concentration-time profile or the subjects were not
newborn infants. When those individual were excluded, we
were left with usable data to perform simulations in just two
full-term individuals. These two patients received a loading
dose of 12 mg/kg phenytoin given intravenously over 15–
20 min and an oral maintenance dose of 8 mg/kg per 24 h
given in divided doses every 12 h for 7–10 days. These details
were entered into the Simcyp paediatric simulator to match
these subjects and their doses as closely as possible. The
simulation was run over a 15-day period to cover the dosing
and plasma sampling period. The results from the paediatric
PBPK simulation with and without time-based changing
physiology were compared to clinical data.

RESULTS

Optimising Model Building

The default re-sampling schedule to seamlessly describe
the age-related changes in systems parameters was based on
the most rapidly changing age-related parameters; these were
CYP2A6 and CYP3A4 ontogeny parameters (Fig. 1). Be-
cause few drugs are metabolised by CYP2A6 in paediatric
clinical practice, the CYP3A4 ontogeny was used to deter-
mine the re-sampling time intervals necessary at different
ages. The complete summary list of all percentage changes in
parameters with time starting at birth is given in the
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supplementary material (Appendix). For example, there is a
0.02% increase in brain volume from birth to 1 h after birth
and a 71.6% increase in CYP3A4 between the first and
second hours post birth. The suggested re-sampling frequency
based on CYP3A4 is shown in Fig. 2. The graphs of
percentage change in parameter with age were calculated
using different sampling times. A matrix was constructed,
incorporating all parameters, for when it is possible to change
to the next sampling level having only <5% change in the
parameter. In the case of CYP3A4, the cut off points (days)
when the sampling frequency can be reduced to the next level
are shown in Fig. 2. Hence, from 0 to 3.5 days, an hourly re-
sampling frequency and from between 3.5 and 6.5 days a 6-
hourly re-sampling frequency is required and so on. The re-
sampling schedule results in all underlying systems parame-
ters being updated to allow for a relatively seamless transition
in PK parameters and profiles with age during a long-term
simulation.

Model Performance

A very small number of publications were found
involving studies of longer duration in neonates with limited
PK information regarding individual demographics and

individual pharmacokinetic profiles. In addition, the duration
of study for each individual was not reported. The reported
mean of population characteristics and study design were
used; however, individual rather than population information
were used where available. The preliminary results reported
below are to illustrate proof of concept for the model and
illustrate how time-based changing physiology may improve
predictions.

Theophylline Case Study

The result from this exercise (Fig. 3) shows that by re-
defining individuals over the simulation study period, the
predicted concentration-time profiles at steady state fall
within the therapeutic concentration range. However, in the
simulation using the baseline characteristics of individuals,
the steady state concentrations are above the maximum
recommended therapeutic level.

Sildenafil Case Study

The result from the sildenafil simulations are given in
Fig. 4. The results for subject 1 show a slight improvement in
describing the elimination phase of sildenafil in the time-

Fig. 1. Relative expression of human drug-metabolising enzymes at different ages. Lines
represent simulated ontogeny profiles based on ‘best fit’ equations to the original data (see
“Discussion”)
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based model. The time-dependent changes in intrinsic
clearance via both CYP3A4 and CYP2C9 pathways due to
the ontogeny of both enzymes during the course of the
simulation can be seen for subject 1 in Fig. 5. The predicted
Cmax values were not well recovered using the time-based
changing physiology simulation and the reasons for this are
unclear. For subjects 2 and 3 in Fig. 4, the overall concentra-
tion-time profile, Cmax and elimination phase for sildenafil
are much better predicted using the time-based changing
physiology-based model compared to the time-fixed model.

Note the steady increase in the concentration with time for
subjects 2 and 3 in the case of baseline physiology as the
elimination and distribution are static. In contrast, the
concentration decreases with time in the time-based model
as the physiology is continuously growing and the elimination
and distribution increase with time.

Phenytoin Case Study

The results are shown in Fig. 6, although there was some
over-prediction of the concentration-time profile, the simu-
lated concentrations using the re-defined subjects were in
closer agreement with the actual data. This was especially the
case later in the study period when the effects of maturation
of underlying processes that may affect phenytoin PK such as
CYP2C9 ontogeny would be manifested.

DISCUSSION

There are a limited numbers of PK studies reported in
the literature that were performed in the paediatric age range
where a number of covariates were built in the model and
allowed to change with age/time during the course of a study.
In some cases where covariates were allowed to change with
time, the age of the individual subjects was left constant for
modelling purposes. Whilst the assumption of a constant
covariates–parameter model relationship or fixed age at the
start of treatment is probably valid for studies in older
children and adults and for those of very short-term
treatments in neonates, it is unlikely to be so for studies
involving prolonged treatment in the latter group. In general,
models for time-varying covariates can provide more valuable
information than time–constant covariate as they can provide
information leading to a better understanding of the param-
eter–covariate relationships with respect to time (24,25).
Even if the baseline covariate value does not seem important
for explaining the inter-individual variability, the time–change
in each covariate, which is the aim of this work, can explain
the intra-individual or inter-occasion variability terms. In the
latter case, it might be of value to screen for a covariate over
time at each sampling time, especially in routine care or TDM
settings.

Although p-PBPK models are more complex and costly
to build compared to the top-down approaches, the ability to
potentially update the whole physiology during a simulation is
an advantage. During the time course of a simulation, not
only will liver size be increased in an individual but also all
the other covariates such as renal function and expression of
albumin and thus protein binding will also change. This would
be very challenging to achieve using conventional compart-
mental PK analysis.

A time-based PBPK model that accounts for physiolog-
ical growth/decay in its parameters has been developed for
the paediatric population and implemented within the Simcyp
Simulator (V12 Release 1). To our knowledge, this is the first
paediatric PBPK model that accounts for re-defining or re-
sampling the simulated subject’s physiology during the course
of treatment. Within the paediatric PBPK model all individ-
ual characteristics impacting on drug PK will develop as the
individuals’ age/grow and will account for intra-individual
variability, which stems from changes in system parameters.

Fig. 2. Percent change of CYP3A4 for different sampling periods for
different ages and the derived age cut off points for default re-
sampling schedule within Simcyp paediatric

Fig. 3. Simulated profiles for theophylline in a virtual full-term
newborn population after administration of 4.8 mg/kg iv theophylline
followed by 2 mg/kg iv every 12 h. The therapeutic window (8–12 ug/
ml) is bound by the two black lines. The dashed line shows the higher
level predicted when re-defining individuals in the paediatric-PBPK
model was not consider (baseline model) and the solid line shows the
achievement of therapeutic level by using the re-defining approach
(time-changing physiology paediatric-PBPK model)

572 Abduljalil et al.



For example, for a drug metabolised by CYP3A4, a
parameter that has a rapid ontogeny post birth, the PK of a
drug given during the first months of life is likely to change
rapidly due to growth and maturation. The described model
also accounts for inter-individual variability of the simulated
characteristics of individuals at specific time points e.g. where
a parameter such a body surface area changes with age but is
different between males and females,

The main advantage of this approach is that it allows
more realistic modelling of simulated subjects and as a result,
PBPK models may perform better for the prediction of PK
parameters and individualisation of dosage regimens in the
paediatric population. During growth, changes in body
composition, hepatic and renal functions are responsible for
alterations in PK/PD parameters and hence, the therapeutic
outcomes across different ages, which necessitates dose

adjustment in some cases. This is well known in drug
development and clinical arenas and a significant body of
publications address these issues (1,16,21,40–45). For exam-
ple, during growth, the volume of distribution and clearance
of lipid-soluble drugs increase in young adults compared with
infants (46). The benefit from the time-varying PBPK model
is not just in the fact that it accounts for all known interacting
physiological processes, but that it keeps them updated over
time.

The results presented here for sildenafil, phenytoin and
theophylline illustrate applications of the age-varying PBPK
model, accounting for the changing physiology over the
course of the prolonged studies. This approach established
the basis of describing the developing disposition kinetics
during the treatment course in a dynamic predictive way.
Although the results are very preliminary and further

Fig. 4. Simulated mean (solid lines) and 95% predictive interval values (dashed lines) of sildenafil plasma
concentration over time for three representative subjects using both baseline and time-based changing
physiology in the p-PBPK model. Filled circles are the observations from each subject as reported in
Mukherjee et al. 2009
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validation is required, the examples show proof of concept,
the theophylline example showing the importance of consid-
ering growth and development when establishing dosage
regimens for drugs with a narrow therapeutic index. The
sildenafil simulations generally show improvements in the
prediction of PK parameters and concentration-time profiles
using the time-based physiology approach. However, these
examples are limited to data from individuals from the
Mukherjee et al. paper (38) as no information was given on
individual subject demographics and this limited our ability to
simulate the data to just three representative subjects, the
limitations are clearly stated in the ‘Methods’ section. The
smooth nature of the intrinsic clearance-time curves (Fig. 5)
shows that the re-sampling frequency in the time-based
changing physiology model is frequent enough to prevent
stepwise changes in these intrinsic clearance values.

One of the limitations of the current model is uncertainty
around the development and ontogeny of some of the
underlying processes governing PK prediction in the

paediatric age range and consequently, a need to refine these
in existing paediatric PBPK models as data become available.
The ontogeny profile for CYP3A4 (Fig. 1) within the Simcyp
paediatric simulator is based on in vitro data which is
expressed relative to adults, data is taken from a number of
sources (47–52) and the ontogeny function derived using non-
linear regression. Overall evidence from the literature from
both in vitro and in vivo data points to a continuous rather
than stepwise change in CYP3A4 expression with age. A
recent study to determine a maturation model for midazolam
clearance (CYP3A) analysed the allometrically scaled age-
related change in midazolam iv clearance using NONMEM,
the best fit model, was a continuous sigmoidal-shaped curve
(53). Reference sources for the other CYP enzyme ontogeny
are published previously (1), the UGT ontogeny profiles are
previously unpublished but a list of references is available
from Simcyp Limited (support@simcyp.com). An additional
limitation in the current re-defined paediatric PBPK popula-
tion model is that it only considers a healthy paediatric

Fig. 5. Hepatic intrinsic clearance of sildenafil over time for CYP3A4 (upper panel) and
CYP2C9 (lower panel) for representative subject 1 in Fig. 4
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population. Disease progression/regression and the effects
these have on drug disposition are not considered. However,
as more information becomes available, a model describing
both age and disease changes can also be developed. Lack of
adequate clinical studies available in the literature, where
long-term studies in young children are conducted, limits the
possibility of assessing the model performance for a bigger
dataset. Such studies may be difficult to achieve due to
logistical and ethical issues, consequently; although the
concept is interesting, at the current time, it is difficult to
extensively validate the model. The use of the model in
clinical study design may allow more validation to be
performed in future. Additional challenges remain to develop
and validate the model for pre-term individuals where post-
natal age range varies from hours to months at the start of
treatment.

CONCLUSION

To account for the time-varying changes in physiological
and biochemical parameters with age, a higher level of
complexity in the PK models are required. PBPK models
are highly suited to this task, as they can be used to account
for all the underlying physiological changes and their impact
on pharmacokinetics to better predict drug disposition and
the effects of new dosage regimens. Although such models
are still evolving and users must appreciate their limitations,
they may help to reduce the number of time- and cost-
intensive long-term clinical trials that need to be performed.
These models can also be considerably useful in designing
clinical studies prospectively and optimising the dosage
regimens and thus, their synergistic use with the conventional
PK approach can be envisaged in decreasing the time and
costs involved in drug development. Together with physico-
chemical properties of the drug, these models may also help

to identify agents with undesirable properties at an early
stage.

The application of the time-based physiological changes
described in the paper for the paediatric population can be
extended to other populations such as cancer patients,
pregnancy and disease progression models where physiology
and biochemistry are changing with time.
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