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with an Auristatin-Based Anti-5T4 Antibody-Drug Conjugate

Dhaval K. Shah,1,5 Lindsay E. King,2 Xiaogang Han,2 Jo-Ann Wentland,2 Yanhua Zhang,2 Judy Lucas,3

Nahor Haddish-Berhane,2 Alison Betts,2 and Mauricio Leal4,5

Received 1 December 2013; accepted 23 January 2014; published online 1 March 2014

Abstract. The objectives of this investigation were as follows: (a) to validate a mechanism-based
pharmacokinetic (PK) model of ADC for its ability to a priori predict tumor concentrations of ADC and
released payload, using anti-5T4 ADC A1mcMMAF, and (b) to analyze the PK model to find out main
pathways and parameters model outputs are most sensitive to. Experiential data containing biomeasures,
and plasma and tumor concentrations of ADC and payload, following A1mcMMAF administration in
two different xenografts, were used to build and validate the model. The model performed reasonably
well in terms of a priori predicting tumor exposure of total antibody, ADC, and released payload, and the
exposure of released payload in plasma. Model predictions were within two fold of the observed
exposures. Pathway analysis and local sensitivity analysis were conducted to investigate main pathways
and set of parameters the model outputs are most sensitive to. It was discovered that payload dissociation
from ADC and tumor size were important determinants of plasma and tumor payload exposure. It was
also found that the sensitivity of the model output to certain parameters is dose-dependent, suggesting
caution before generalizing the results from the sensitivity analysis. Model analysis also revealed the
importance of understanding and quantifying the processes responsible for ADC and payload disposition
within tumor cell, as tumor concentrations were sensitive to these parameters. Proposed ADC PK model
provides a useful tool for a priori predicting tumor payload concentrations of novel ADCs preclinically,
and possibly translating them to the clinic.

KEY WORDS: antibody–drug conjugate; pharmacokinetic modeling; preclinical-to-clinical translation;
sensitivity analysis; tumor drug disposition.

INTRODUCTION

Defining the exposure–response relationship is at the heart
of any drug development process. The accuracy and translatabil-
ity of this relationship depends on the endpoints chosen to
represent the exposure and the pharmacological response.
Usually, the concentration of drug in the plasma/blood is the

preferred exposure endpoint to correlate with efficacy or toxicity.
Mainly because it is an easily accessible biological sample, which
in many cases very well represents the drug concentration at the
site of action (i.e., biophase). However, in many instances, drug
concentration in plasma/blood does not represent drug concen-
tration at the site of action (e.g., solid tumor), necessitating either
direct measurement of the drug concentration at the site of action
or prediction/derivation of the concentration using certain
methodology. Mechanism-based pharmacokinetic (PK) models
represent one such methodology that can be used to characterize
and predict concentration of drug at the site of action, based on
the plasma/blood concentration of the drug (1). This manuscript
investigates application of one such PK model developed for
Antibody–Drug Conjugate (ADC; 2), in terms of its ability to
predict the concentrations of drug in animal tumors based on the
plasma concentrations.

ADCs are a novel class of targeted chemotherapeutic
agents, which consist of a monoclonal antibody (mAb) conju-
gated to one or more very potent drug molecules (payload)
using a chemical linker. Once outside the antigen expressing cell
(e.g., cancer cell), the ADC binds to the targeted receptor via
mAb and internalizes. Once internalized, depending on the
chemical property of the linker, the payload either leaves the
mAb during the endolysosomal process or gets liberated in the
lysosome following digestion of ADC. Once released, the
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payload diffuses within the cell and reaches the site of action
(e.g., microtubules, DNA), where it elicits the pharmacology.
There are more than 30 ADCs currently in the clinical
development for the treatment of various malignant disease (3).
We are developing a novel ADC that targets 5T4, an oncofetal
antigen expressed on tumor initiating cells (TIC), which
comprise the most aggressive cell population in the tumor (4).
The anti-5T4 ADC is termed A1mcMMAF and comprises the
humanized anti-5T4 antibody (A1) linked to the potent
microtubule-disrupting agent monomethylauristatin F (MMAF)
a noncleavable maleimidocaproyl (mc) linker. A1mcMMAF
has been shown to be highly potent in a variety of tumor models
and did not cause any overt toxicity in nonhuman primates at
comparable exposures (4).As such, A1mcMMAF is a promising
clinical candidate that targets TICs, with the goal of providing
long-term therapeutic benefit to patients with cancer.

In order to facilitate the preclinical-to-clinical translation and
clinically efficacious dose prediction of A1mcMMAF, it is impor-
tant to establish the exposure–response relationship for the ADC.
However, because the plasma concentration of released payload is
significantly lower than tumor concentration (5), plasma concen-
trations cannot be used as a surrogate for the payload concentra-
tion at the site of action. Consequently, it becomes necessary to find
out the tumor concentration of released payload (cys-mcMMAF)
following ADC administration, as this concentration is responsible
for eliciting the pharmacological action. Tumor payload concentra-
tions can either be measured directly or can be predicted based on
the plasma ADC concentrations using a PKmodel. And, since the
tumor distribution studies are costly, time-consuming, and not
always feasible, we have developed amechanism-basedmulti-scale
PKmodel for ADCs that can help predict the tumor concentration
of payload based on plasma ADC concentrations (2). Here, we
have presented an investigation where we have evaluated the
validity of using the ADC PK model for prediction of tumor
payload concentration, using two different human tumor xenograft
models, i.e., H1975 (non-small cell lung cancer) and MDA-MB-
361/DYT2 (breast cancer). We have also presented a systematic
investigation of the ADC PK model to better understand the
underlying processes responsible for the disposition of ADCs.

MATERIALS AND METHODS

Preparation of A1mcMMAF

Detailed procedure for the synthesis of ADC is presented
elsewhere (4). Briefly, mAb was pretreated with 3 equivalents of
tris(2-carboxyethyl)phosphine (TCEP) to liberate the thiol resi-
dues, and this partially reduced material was exposed to
approximately 6 equivalents of maleimidocaproyl-MMAF
(mcMMAF). Isolation and purification were accomplished by size
exclusion chromatography, and the material was characterized by
hydrophobic-interaction chromatography and mass spectrometric
analysis under denaturing and non-denaturing conditions.

Cancer Cell Lines

Cancer cell lines were chosen that expressed 5T4 and
exhibited reproducible growth curves as tumor xenografts.
MDA-MB-361/DYT2 cells were obtained from Dr. D. Yang

(Georgetown University, Washington, D.C.), and H1975 cell
line was obtained from the American Type Culture Collection
(ATCC). Each cell line was cultured in its standard medium
as recommended by ATCC, and no further cell line authen-
tication was conducted. MDA-MB-435/5T4 cell line was
generated from the control MDA-MB-435/neo cell line after
stable transfection of 5T4, as described in (6).

Affinity and Internalization of A1mcMMAF

Detailed protocols to determine the affinity of mAb A1
towards 5T4 antigen and internalization rate of surface bound
mAb in 5T4 expressing cell is presented in the supplementary
material of (4). Briefly, Biacore® analysis was performed to
determine the binding constants between A1 and 5T4 at pH 7.4.
The 5T4 proteins used for this analysis consisted of the human
5T4 ectodomain fused to the human IgG1-Fc domain, which was
immobilized onto a CM5 chip to measure affinity constants.
Various concentrations of the A1 antibody were injected over
the surface to generate various binding responses, and the
surface was regenerated two times between each injection cycle.

Internalization of surface bound mAb was defined by the
loss over time of surface signal, and measured in plate format.
5T4 expressing cells (MDA-MB-435/5T4) seeded in 96-well
plates were incubated on ice with 1 μg/mL primary antibody,
followed by washes and incubation at 37°C for 0, 1, 4, or 21 h.
Cells were then incubated with peroxidase-conjugated Affinity
Pure Goat Anti-Human IgG Fc (Jackson ImmunoResearch
Labs #109-035-008), washed, and exposed to substrate, Lumiglo
(Kirkegard & Perry Labs #54-61-01). Antibody internalization
at each time point was expressed as ratio of average relative
fluorescence compared to the zero time point.

5T4 Receptor Numbers on Cancer Cells

Antibody binding capacity as a measure of receptor
numbers/cell was determined for H1975 cell line using 5T4
antibody clone A3 that binds to the same epitope as the A1
antibody with similar affinity, which was conjugated at 1:1 ratio
to phycoerythrin (PE) by flow cytometry. Cells were incubated
with increasing concentrations ofA3-PE at 4°C for 1 h, and after
removal of unbound probe, MFI from the live cells was
measured by Flow cytometry using a BD Canto II cytometer.
The maximum specific binding was determined by nonlinear
regression and converted to binding capacity per cell using a
QuantiBRITE bead standard curve generated under the same
acquisition conditions as the samples (7). Saturation binding at a
single high concentration of 20 μg/mLwas used to determine the
antibody binding capacity of the MDA-MB-361/DYT2 cells.

Development of Mouse Xenograft

All procedures using mice were approved by the Pfizer
Institutional Animal Care and Use Committees according to
established guidelines. Athymic female nu/nu mice or SHO
mice (6–8 weeks) were obtained from Charles River Laborato-
ries, Wilmington, MA or Taconic, Oxnard, CA. Mice were
injected subcutaneously with tumor cells (10 millionMDA-MB-
361D/YT2 breast cancer tumor cells in 50% matrigel, 8 million
H1975 tumor cells, and 7 million MDA-MB-435/5T4 tumor
cells), and when animals reached certain pre-determined tumor
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volume they were randomly divided into different groups to
conduct the PK or bio-distribution studies. Tumor size was
calculated as: mm3=0.5 × (tumor width2) × (tumor length).

A1mcMMAF Mouse PK Study

Single 1 and 10 mg/kg intravenous dose of A1mcMMAF
was administered into MDA-MB-435/5T4 tumor (∼300 mm3,
+++ expression) bearing or non-tumor bearing mouse (n=5),
and 10 μL mouse blood was collected serially from mice for
up to 336 h. Plasma concentrations of total mAb and ADC
were quantified using ELISA assay from individual samples,
and LC-MS/MS analysis was performed to quantify the released
cys-mcMMAF concentration from pooled plasma samples.

A1mcMMAF Tumor Disposition Experiment

For the tumor distribution study, female nu/nu mice (n=21)
inoculatedwithMDA-MB-361/DYT2 cells (tumor grown to∼400–
500mg) and female nu/numice (n=21) inoculatedwithH1975 cells
(tumor grown to∼400–500mg) were used. Tumor bearing animals
were dosed with a single intravenous dose of A1mcMMAF at
3 mg/kg, and plasma and tumor samples were collected at
predetermined time points up to 240 h. Plasma and tumor
concentrations of total mAb and ADC were quantified using
ELISA assay, and LC-MS/MS analysis was performed to quantify
the released cys-mcMMAF concentration in plasma and tumor.

LC/MS/MS Assay to Quantify Cys-mc-MMAF

Plasma samples were prepared with solid phase extrac-
tion (SPEC 96-well plate C18, Agilent). Tumor tissue samples
were weighted and lysis buffer (Sigma-Aldrich, C3228) was
added at 100 mg:1 mL ratio to the tissue and homogenized.
The supernatants were collected after homogenized samples
were centrifuged at 5,000×g for 10 min. Supernatant was
aliquot for LBA assay, and the remaining sample was further
processed with SPE cartridge for LC/MS/MS analysis.

The LC/MS/MS system consists ofAcquity UPLC (Waters)
and API 5500 Qtrap (AB Sciex). The column used is Kinetex
C18, 2.1×100, 1.7 μM (Phenomenex) with 0.1% Formic Acid as
Mobile Phase A (formic acid from Fluka) and 0.1% Formic
Acid in acetonitrile (Fisher) as mobile phase B. Gradient
applied is as following: 0 min at 5%B, 0.5 min at 5% B,
3.8min at 90%B, 4 min at 90%B, 4.1min at 5%B, and 5 min at
5% B. The MS/MS transition are CysmcMMAF: 1046.200/
428.160, DP=80, CE=52; CXP=22; CysmcMMAD were used
as internal standard: 1085.400/428.200, DP=110, CE=53, CXP=
20. Data were processed and analyzed by Analyst 1.5 (AB
Sciex). The lower limit of quantitation was 0.002 and 0.1 ng/mL
for plasma and tumor samples, respectively.

ELISA Assay to Quantify Total mAb (A1) and ADC
(A1mcMMAF)

Total mAb and ADC concentrations in mouse plasma and
tumor homogenate were determined using an enzyme-linked
immunosorbant assay (96-well format) with colorimetric detec-
tion. Briefly, the capture protein was recombinant human 5T4
and the detection antibody was a biotinylated goat anti-human
kappa chain IgG (Southern Biotech, Birmingham, AL) for the

total mAb assay and a biotinylated anti-MMAF antibody (Pfizer,
Inc.) for the ADC assay, along with HRP-Streptavidin conjugate
(Jackson ImmunoResearch, West Grove, PA). Optical density
was measured on a spectrophotometer (Molecular Devices).

Characterizing thePlasmaPKof TotalmAb,ADC, andReleased
Payload

Estimating the PK Parameters for Total mAb and Payload
Dissociation Rate

Plasma PK of total mAb (A1) and A1mcMMAF ADC in
tumor bearing and non-tumor bearing mice, after single intrave-
nous dose of 1 and 10 mg/kg, were simultaneously characterized
using a modified 2 compartment model (Fig. 1a) to estimate the
PK parameters of total mAb and the payload dissociation rate
constant (kdis). It was assumed that the dissociation rate constant,
which is an estimate of the rate at which ADC concentrations
drift away from the mAb concentration, will represent the rate of
change in average drug antibody ratio (DAR) over the period of
time. Equations for the model are provided below:

dX1mAb

dt
¼ −

CLmAb

V1mAb ˙
X1mAb −

CLDmAb

V1mAb ˙X1mAb

þ CLDmAb

V2mAb ˙X2mAb; IC ¼ DoseADC

ð1Þ

dX2mAb

dt
¼ CLDmAb

V1mAb ˙X1mAb −
CLDmAb

V2mAb ˙X2mAb; IC ¼ 0 ð2Þ

dX1ADC

dt
¼ −

CLmAb

V1mAb ˙
X1ADC −

CLDmAb

V1mAb ˙X1ADC þ CLDmAb

V2mAb ˙X2ADC

− kdis ˙X1ADC; IC ¼ Dose (3)

dX2ADC

dt
¼ CLDmAb

V1mAb ˙X1ADC −
CLDmAb

V2mAb ˙X2ADC; IC ¼ 0 ð4Þ

Description of the symbols and parameters used in above
equation are provided in Table I. For the estimation of kdis, it
is assumed that conjugated mAb (i.e., ADC) will have similar
clearance and volume of distribution as total mAb, and the
dissociation of the payload from mAb will lead to enhanced
elimination of ADC cf. mAb.

Estimating the PK Parameters for ADC and the Released
Payload

Plasma PK of A1mcMMAF and cys-mcMMAF after 1 and
10 mg/kg intravenous dose, from tumor bearing and non-tumor
bearingmice, were characterized sequentially using the PKmodel
described in Fig. 1b. In the first step, the PK parameters for ADC
were estimated; and in the next step, the PK parameters for cys-
mcMMAF were estimated, while keeping the PK of ADC fixed.
Equations for the model are provided below:

dX1ADC

dt
¼ −

CLADC

V1ADC ˙
X1ADC −

CLDADC

V1ADC ˙X1ADC

þ CLDADC

V2ADC ˙X2ADC; IC ¼ DoseADC (5)
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dX2ADC

dt
¼ CLDADC

V1ADC ˙X1ADC −
CLDADC

V2ADC ˙X2ADC; IC ¼ 0 ð6Þ

dC1PL
dt

¼ −
CLPL

V1PL ˙
C1PL −

CLDPL

V1PL ˙C1PL þ CLDPL

V1PL ˙C2PL

þ
X1ADC ˙DAR˙ kdis

V1PL
þ

CLADC ˙DAR˙
X1ADC

V1ADC

V1PL
; IC ¼ 0

ð7Þ

dC2PL
dt

¼ CLDPL

V2PL ˙C1PL−
CLDPL

V2PL ˙C2PL; IC ¼ 0 ð8Þ

Description of the symbols and parameters used in above
equation are provided in Table I.

Predicting the Tumor PK of Total mAb, ADC, and Released
Payload

Tumor concentrations of mAb, ADC, and the released
payload were predicted a priori, based on the individually
estimated plasma PK of mAb and ADC in each tumor
bearing mice, and other biomeasures and chemomeasures
(e.g., affinity, internalization rate etc.). Figure 1c displays the
diagram of the model that was used to predict the tumor
concentration, detailed description of which is provided in
reference (2). After systemic administration of A1mcMMAF,
it is either allowed to distribute to the peripheral

Fig. 1. Schematics of the PK models used to characterize the disposition of A1mcMMAF ADC. a A modified two
compartment PK model used to characterize the plasma PK of total mAb and ADC simultaneously. b A combined PK
model consisting of 2 integrated two compartment models to characterize the PK of ADC and released payload
simultaneously. c A multi-scale mechanistic ADC tumor disposition PK model, capable of characterizing and predicting the
PK of ADC and released payload in plasma and the tumor compartment. Note: Please refer to the “Materials and Methods”
section and Table I for detailed description of the symbols used in the schematics
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compartment or distribute to the tumor extracellular com-
partment using the parameters calculated based on the ADC
molecular weight and tumor size (8–10). The PK of released
payload in the systemic circulation, which is either generated
via nonspecific shedding from ADC or via ADC metabolism,
or influxed from the tumor, was characterized using the two
compartment model and PK parameters generated for cys-
mcMMAF in the previous section. Within the tumor, the
extracellular ADC is allowed to interact with the cell
surface antigen, and the bound ADC is allowed to
internalize. Once internalized, it is assumed that each
molecule of ADC will generate number of payloads

equivalent to the average DAR. The released payload
inside the cell is allowed to bind to the intracellular
target, and the unbound intracellular payload is allowed
to exit the cell. In the extracellular tumor environment,
the payload is generated either from the dissociation
from ADC or via efflux from the cell. The released
payload in the tumor extracellular environment is
allowed to distribute to the systemic circulation using
the parameters calculated based on the released payload
molecular weight and tumor size. Equations for the
integrated ADC and payload tumor disposition model
are provided below:

dX1ADC

dt
¼ −

CLADC

V1ADC ˙
X1ADC −

CLDADC

V1ADC ˙X1ADC þ CLDADC

V2ADC ˙X2ADC −
2˙PADC ˙RCap

RKrogh
2 ˙ εADC ˙

X1ADC

V1ADC
−ADCFree

Tumor ExtraCellular

� �
˙TV

−
6˙DADC

RTumor
2 ˙ εADC ˙

X1ADC

V1ADC
−ADCFree

Tumor ExtraCellular

� �
˙TV; IC¼DoseADC

ð9Þ

Table I. Glossary of the Parameters and Terms Used in Model Equations

Symbol Definition Unit

X1mAb, X1ADC Amount of total mAb and ADC in the central compartment Nanomole
X2mAb, X2ADC Amount of total mAb and ADC in the peripheral compartment Nanomole
CLmAb, CLDmAb Plasma clearance, and distribution clearance of total mAb L/day/kg
V1mAb, V2mAb Total mAb volume of distribution for the central and peripheral compartment L/kg
kdis Dissociation rate of payload from ADC 1/day
DoseADC Dosing amount of ADC Nanomole
CLADC, CLDADC Plasma clearance and distribution clearance of ADC L/day/kg
V1ADC, V2ADC ADC volume of distribution for the central and peripheral compartment L/kg
C1PL, C2PL Concentrations of payload in the central and peripheral compartment nM
CLPL, CLDPL Plasma clearance, and distribution clearance, of cys-mcMMAF L/day/kg
V1PL, V2PL cys-mcMMAF volume of distribution for central, and peripheral,

compartment
L/kg

DAR Drug antibody ratio i.e. # Payload/# Antibody Unitless
RCap, RKrogh Radius of tumor blood capillary, and an average distance between

two capillaries
Μm

PADC, DADC The rate of permeability, and diffusion, of ADC across and around the tumor
blood vessels

μm/day, cm2/day

εADC Tumor void volume for ADC Unitless
ADCTumor_ExtraCellular

Free ,
ADCTumor_ExtraCellular

Bound
Free, and antigen bound, ADC concentrations in tumor extracellular space nM

RTumor Radius of the tumor Cm
konAntigen

ADC , koffAntigen
ADC Association, and dissociation, rate constants between ADC and tumor antigen 1/nM/day, 1/day

AgTotal, ADC_AgBound Total antigen, and ADC bound antigen concentrations nM
kintAg Internalization rate of the antigen inside the cell 1/day
PLIntra_Cellular

Tumor , PLExtra_Cellular
Tumor Payload concentration inside tumor cells, and in tumor extracellular space nM

PLTubulin
Bound Concentration of payload bound inside the cell nM

kintPL Payload nonspecific uptake rate in cancer cell 1/day
konTubulin

PL , koffTubulin
PL Association, and dissociation, rate constants between payload and unknown

cell component
1/nM/day, 1/day

TubulinTotal Total concentration of payload binding intracellular component nM
koutPL Efflux rate of payload from the cell 1/day
PPL, DPL The rate of permeability and diffusion of payload across and around the tumor

blood vessels
μm/day, cm2/day

εPL Tumor void volume for cys-mcMMAF Unitless
DAR0 Drug antibody ratio for the ADC at time = 0 Unitless

456 Shah et al.



dX2ADC

dt
¼ CLDADC

V1ADC ˙ X1ADC −
CLDADC

V2ADC ˙ X2ADC ; IC ¼ 0 ð10Þ

dADCFree
Tumor ExtraCellular

dt
¼

2˙ PADC ˙RCap

RKrogh
2 ˙ εADC ˙

X1ADC

V1ADC
−ADCFree

Tumor ExtraCellular

� �

þ 6⋅DADC

RTumor
2 ˙ εADC ˙

X1ADC

V1ADC
−ADCFree

Tumor ExtraCellular

� �

− kon
ADC
Antigen ˙ADCFree

Tumor ExtraCellular ˙ AgTotal −ADCBound
Tumor ExtraCellular

� �

þ koff
ADC
Antigen ˙ADCBound

Tumor ExtraCellular ; IC ¼ 0 (11)

dADCBound
Tumor ExtraCellular

dt
¼ kon

ADC
Antigen ˙ADC Free

Tumor ExtraCellular ˙ AgTotal − ADCBound
Tumor ExtraCellular

� �

−koff ADC
Antigen ˙ADCBound

Tumor ExtraCellular − kintAg ˙ADCBound
Tumor ExtraCellular ; IC ¼ 0 (12)

dPLTumor
Intra Cellular

dt
¼ kintAg ˙ADCBound

Tumor ExtraCellular ˙DAR þ kintPL ˙ PL
Tumor
Extra Cellular − koutPL ˙ PL

Tumor
Intra Cellular

−konPLTubulin ˙ PL
Tumor
Intra Cellular ˙ TubulinTotal − PLBound

Tubulin

� �þ koff
PL
Tubulin ˙ PL

Bound
Tubulin ; IC ¼ 0 (13)

dPLBound
Tubulin

dt
¼ kon

PL
Tubulin ˙ PL

Tumor
Intra Cellular ˙ TubulinTotal − PLBound

Tubulin

� �
− koff

PL
Tubulin ˙ PL

Bound
Tubulin ; IC ¼ 0 ð14Þ

dPLTumor
Extra Cellular

dt
¼

2˙ PPL ˙RCap

RKrogh
2 ˙ εPL ˙C1PL − PLTumor

Extra Cellular

� �
þ

6˙DPL

RTumor
2 ˙ εPL ˙C1PL − PLTumor

Extra Cellular

� �

−kintPL ˙PL
Tumor
Extra Cellular þ koutPL ˙ PL

Tumor
Intra Cellular þDAR˙ kdis ˙ ADCFree

Tumor ExtraCellular þADCBound
Tumor ExtraCellular

� �
; IC ¼ 0

ð15Þ

dC1PL
dt

¼ −
CLPL

V1PL ˙
C1PL −

CLDPL

V1PL ˙C1PL þ CLDPL

V1PL ˙C2PL −
2˙ PPL ˙RCap

RKrogh
2 ˙ εPL ˙C1PL − PLTumor

Extra Cellular

� �
˙ TV

−
6˙DPL

RTumor
2 ˙ εPL ˙C1PL − PLTumor

Extra Cellular

� �
˙ TV þ

X1ADC ˙DAR˙Kdis

V1PL
þ

CLADC ˙DAR˙
X1ADC

V1ADC

V1PL
; IC ¼ 0

ð16Þ

dC2PL
dt

¼ CLDPL

V2PL ˙C1PL −
CLDPL

V2PL ˙C2PL; IC ¼ 0 ð17Þ

dDAR
dt

¼ − kdis ˙DAR; IC ¼ DAR0 ð18Þ
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Description of the symbols and parameters used in above
equation are provided in Table I. Above, Equations 9–10
describe the plasma PK of ADC, Equations 11–12 describe
the tumor PK of ADC, Equations 13–15 describe the
tumor PK of released payload, and Equations 16–17
describe the plasma PK of released payload. Note that
Equations 9–12 can also be used to characterize the plasma
and tumor PK of total mAb.

In order to evaluate the ability of the ADC PK model to
predict the tumor concentrations of total mAb, ADC, and
payload, simulationswere performed for two different xenograft
(MDA-MB-361/DYT2 and H1975) bearing mouse after an
intravenous administration of 3 mg/kg dose of A1mcMMAF.
Predicted tumor concentration-time profiles for A1,
A1mcMMAF, and cys-mcMMAF were compared with experi-
mental data, in the form of area under the curve (AUC), to
evaluate the quality of the prediction. For quantitative compar-
ison, percent predictive error was calculated for all the datasets

using the following formula: %PE ¼ AUCPred−AUCObsj j
AUCObs ˙100

� �
;

where AUCPred is the model predicted AUC and AUCObs is
the observed AUC. To facilitate unit conversion, ADC and
mAb were assumed to be of 150 kDa, and the released payload
was assumed to be of 1 kDa.

Modeling and Simulation

Models were simulated using the software Berkeley
Madonna (University of California at Berkeley, CA) and
were fitted to the data using the maximum likelihood
(ML) estimation methods in ADAPT-5 software (BMSR,
CA). For the model fitting following variance model was
used:

Var tð Þ ¼ σIntercept þ σSlope˙Y tð Þ� �2 ð19Þ

where Y(t) is the model output at a given time t, and Var(t)
is the variance associated with the output. σIntercept and
σSlope are the variance parameters representing a linear
relationship between the standard deviation of the model
output and Y(t).

Pathway Contributions and Sensitivity Analysis

The ADC tumor disposition model was analyzed in
detail to calculate the % contribution of each different
pathways responsible for released payload concentration
in the plasma, tumor interstitial, and tumor intracellular
compartments over the period of time. The % contribu-
tion of each pathway was calculated by dividing the input
from that pathway by the input from all the pathways
involved.

A local sensitivity analysis was performed on the final
model and parameter set to assess the sensitivity of the ADC
tumor disposition model output to key model parameters.
Area under the plasma concentration time curve (AUC)
for released payload in different compartments (i.e.,
plasma, tumor homogenate, tumor interstitial, and tumor
intercellular) was chosen as the model output to represent

drug exposure. The analysis was conducted by evaluating
the percentage change in AUCs with 50% or 200%
alteration in the model parameters

%Change ¼ AUCChange−AUCSIM

AUCSIM ˙ 100 ð20Þ

AUCSIM refers to the AUC obtained with the optimized
set of parameters, and AUCChange is the AUC obtained
following a 50% or 200% change in the parameter value.

RESULTS

Biomeasures and Chemomeasures

Figure 2a shows the internalization profile of A1 antibody
in 5T4 expressing cells, with the half life of internalization ∼4 h.
The association rate constant and dissociation rate constant
between A1 and 5T4 was found to be 0.97 1/nM/h and 0.9 1/h,
leading to a dissociation constant value of 0.93 nM. The Anti-
5T4 antibody binding capacity per cell, as a measure of receptor
number, for MDA-MB-361/DYT2 and H1975 cells were
∼40,000 and ∼62,500, respectively.

PK Parameters for Total mAb and Payload Dissociation Rate

Since the PK of mAb, ADC, and released payload was
not remarkably different between the tumor bearing and non-
tumor bearing mice, they were pooled together to perform
the parameter estimation. Figure 2b shows the pooled
observed PK of total mAb, ADC, and released payload,
after 1 and 10 mg/kg dose of A1mcMMAF, superimposed on
each other. The PK of total mAb and ADC were dose
proportional, and were fit simultaneously (Fig. 2c) using the
model shown in Fig. 1a, to estimate the PK parameter for
total mAb, and the payload dissociation rate constant. The
parameter estimated are provided in Table II.

PK Parameters for ADC and the Released Payload

The plasma concentration-time profiles for ADC obtained
after 1 and 10 mg/kg dose of A1mcMMAF in tumor bearing and
non-tumor bearing mouse (Fig. 2b), were fitted simultaneously
using a two compartment model. The estimated model param-
eters are provided in the Table II. Subsequently, the plasma
concentration-time profiles for ADC and the released payload
were characterized simultaneously (Fig. 2d) using the model
shown in the Fig. 1b, to estimate the plasma PK parameter for
cys-mcMMAF, which are presented in Table II.

Predicting the Tumor PK of Total mAb, ADC, and Released
Payload

Plasma PK of total mAb and ADC in H1975 and MDA-
MB-361/DYT2 xenograft tumor bearing mice (Fig. 3a, b)
were used to predict the tumor concentrations of total mAb,
ADC, and released payload. Plasma concentrations of
released payload were also simulated for comparison with
the observed data. Figure 3c shows the simulated tumor
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concentrations of mAb, ADC, and released payload, along
with model predicted plasma concentrations of released
payload, superimposed over the observed results, for H1975
xenograft. Similarly, Fig. 3d shows similar graph generated for
MDA-MB-361/DYT2 xenograft. The %PE for tumor mAb
and ADC exposure was 3% and 24% for H1975 xenografts,
and 10% and 30% for MDA-MB-361/DYT2 xenograft,
respectively. The %PE for tumor and plasma payload
exposure was 32% and 26% for H1975 xenografts, and 44%
and 20% for MDA-MB-361/DYT2 xenograft, respectively.
As such, the predictions made by the ADC tumor disposition
model were within twofold (i.e., %PE < 100%) of the
observed values. Thus, the ADC tumor disposition model
was able to a priori predict the tumor concentrations of mAb,
ADC, and the released payload reasonably well.

Pathway Contributions and Sensitivity Analysis

Figure 4a, b, c displays the % contribution of different
pathways responsible for released payload concentration in the
plasma, tumor interstitial, and tumor intracellular compartments
over the period of time. As shown in Fig. 4a, the clearance of
ADC seems like a higher contributor of released payload in
plasma than the payload dissociated from intact ADC. Payload
generated in the tumor does not contribute significantly to the
released payload concentration in plasma. Additionally, over the
period of time, % contribution of the payload distributing back

from the peripheral compartment becomes important. Figure 4b
shows that although the released payload distributing from
plasma to the tumor contributes notably to tumor interstitial
payload concentration at initial time points, the payload gener-
ated within the cancer cells is the most dominant source of
released payload in tumor interstitial space. The analysis also
suggest that the local dissociation of payload fromADC is a very
minute contributor to tumor interstitial payload concentration.
Figure 4c demonstrates % contribution of different pathways
responsible for unbound released payload concentration within
the tumor cell compartment. At the initial times the payload
brought in the cells by ADC is the predominant contributor,
however as the time progress binding of the payload within the
cells seems to be the major contributor for retaining unbound
payload within the cell, due to the equilibrium binding. Passive
influx of the payload within the cell seems to be a very minute
contributor.

Figure 4d displays the results from a local sensitivity
analysis performed on the model to evaluate the effect of
change in various model parameters on the exposure of
payload in plasma, whole tumor, tumor interstitial, and tumor
intracellular compartments. From the analysis, it seems that
the payload dissociation rate (kdis) and tumor size are the
most sensitive parameters for exposure of released payload in
the plasma. Decreasing kdis leads to increased plasma
exposure, whereas increase in tumor size leads to an increase
in plasma payload exposure. Payload exposure in the whole

Fig. 2. a The internalization profile of A1mcMMAF in 5T4 expressing cells. b Observed plasma PK of total mAb, ADC,
and released payload, obtained after 1 and 10 mg/kg dose of A1mcMMAF, superimposed over each other. c Observed and
model described plasma PK of total mAb and ADC, obtained after 1 and 10 mg/kg dose of A1mcMMAF, superimposed
over each other. d Observed and model described plasma PK of ADC and released payload, obtained after 1 and 10 mg/kg
dose of A1mcMMAF, superimposed over each other
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tumor compartment is sensitive to kdis, tumor size, intracel-
lular payload binding capacity, payload affinity to the binding
component, and the influx and efflux of the payload in and
out of the cell. Further analysis of the tumor interstitial and
intracellular payload exposure reveals that these exposures
are sensitive to the same set of parameters to which the
payload exposure in whole tumor compartment was sensitive
to, though the degree and direction of sensitivity were
different. The parameters related to payload binding within
the cell and payload exchange in and out of the cell were not
as important for tumor interstitial payload exposure, as they
were for intracellular payload exposure. In general, decrease in
kdis and tumor size led to increased tumor payload exposure.
Increase in payload biding component, and payload influx rate
within the cell led to increased whole tumor payload exposure;
whereas decrease in payload efflux rate and payload dissociation
from its binding component led to increased whole tumor
payload exposure. It is important to note that the sensitivity of
the parameters is dose-dependent, and the results from the
senility analysis performed at different doses are provided in the
Supplementary Figure 1. Of note, although the antigen expres-
sion and internalization were not sensitive parameters at the

3 mg/kg dose, they became sensitive at the higher dose
(Supplementary Figure 1).

DISCUSSION

An ability to predict the drug concentration in the tumor
remains a challenge for the development and preclinical-to-
clinical translation of small and large molecule drugs. There
are various factors (e.g., nonspecific and specific binding of
small molecule drugs within the plasma and tumor compart-
ments, and target mediated disposition of large molecules),
which makes tumor concentrations notably different than the
plasma drug concentrations, preventing us from using the
plasma drug concentrations as a surrogate for the tumor drug
concentrations. In order to account for the difference
between plasma and tumor drug concentration, and to
generate a descriptive and predictive tool, scientists have
been using PK models that characterizes the tumor drug
concentrations by using the plasma drug concentrations as a
forcing function (11,12). Although these descriptive PKmodels
work for characterizing tumor drug concentrations within the
animal species and dose range that was used to built them, their
value for extrapolation beyond the dose range used to built
them, and for translation of tumor drug concentrations from one
species to the other, is limited. Due to the lack of a mechanistic
and translatable framework to predict tumor drug concentra-
tions, ample consideration is not given to how drug concentra-
tions in preclinical tumor models can be used to aid drug
development by predicting tumor concentrations in patients or
facilitating rational selection of clinical dose and dosing
regimens (1). The lack of translatable framework also makes
many drug fail in the clinical setting despite of their demon-
strated efficacy in preclinical animal models, which in turn
makes the animal tumor models appear not translatable.

In order to develop a physiologically relevant and translat-
able PK model that can characterize and predict the tumor
concentration of drug, it is very important to understand and
quantify the primary mechanisms responsible for the tumor
disposition of drug molecules. Many scientists have spent their
entire careers in deciphering the important elements that
differentiates tumor tissues from normal tissues, and
implementing these differences in a mathematical framework
using the principles of engineering (8,13–18). Here, we have
employed these findings to develop and validate a multi-scale
mechanism-based PK model that can not only help characterize
but also predict the tumor concentrations of ADC and payload,
using A1mcMMAF as a case study.

Characterizing the PK of ADC brings a unique challenge
as one needs to account for the distribution and elimination
of a large and a small molecule simultaneously, while also
accounting for the generation of the small molecule from the
large molecule (5). Since ADC is a heterogeneous molecule
consisting of one to several molecules of payload attached to
a mAb, one also needs to account for the change in average
ratio of the conjugated payload to antibody (i.e., DAR) over
the period of time (19). Since ADCs are designed with a mAb
that targets tumor cell surface antigen with rapid turnover,
one also need to account for degradation of ADC using the
targeted antigen and the generation of payload within the cell
thereafter. It is also important to account for the binding of

Table II. Estimated or Literature Derived Parameter Values
Employed for Simulating the ADC Tumor Disposition PK Model

Parameter Value Unit Source

CLmAb 0.021 L/day/kg Estimated
V1mAb 0.069 L/kg Estimated
CLDmAb 0.089 L/day/kg Estimated
V2mAb 0.085 L/kg Estimated
kdis 0.29 1/day Estimated
CLADC 0.0426 L/day/kg Estimated
V1ADC 0.0666 L/kg Estimated
CLDADC 0.0678 L/day/kg Estimated
V2ADC 0.0918 L/kg Estimated
CLPL 74.8 L/day/kg Estimated
V1PL 2.22 L/kg Estimated
CLDPL 485 L/day/kg Estimated
V2PL 63.83 L/kg Estimated
RCap 8 Μm From Ref (8)
RKrogh 75 Μm From Ref (8)
PADC 334 μm/day From Ref (8)
DADC 0.022 cm2/day From Ref (8)
εADC 0.24 Unitless From Ref (8)
AgTotal 104 (H1975), 66.4

(MDA-MB-361/DYT2)
nM Measured

konAntigen
ADC 23.2 1/nM/day Measured

koffAntigen
ADC 21.6 1/day Measured

kintAg 4.2 1/day Measured
RTumor 0.5 cm Measured
PPL 2.1E + 04 μm/day From Ref (8)
DPL 0.25 cm2/day From Ref (8)
εPL 0.44 Unitless From Ref (8)
kintPL 9.66 1/day From Ref (2)
konTubulin

PL 0.73 1/nM/day Based on Kd
of 18 nM

koffTubulin
PL 13.1 1/day From Ref (2)

koutPL 1.1 1/day Assumed similar
to MMAE,
from Ref (2)

TubulinTotal 65 nM From Ref (2)
DAR0 4.0 Unitless Measured
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Fig. 3. a Observed plasma PK of total mAb and ADC obtained after administration of A1mcMMAF in H1975 tumor bearing mice at 3 mg/kg
dose level. b Observed plasma PK of total mAb and ADC obtained after administration of A1mcMMAF in MDA-MB-361/DYT2 tumor
bearing mice at 3 mg/kg dose level. c Observed and model predicted tumor PK of total mAb, ADC, and released payload, and plasma PK of
released payload, obtained after administration of A1mcMMAF in H1975 tumor bearing mice at 3 mg/kg dose level, superimposed over each
other. d Observed and model predicted tumor PK of total mAb, ADC, and released payload, and plasma PK of released payload, obtained
after administration of A1mcMMAF in MDA-MB-361/DYT2 tumor bearing mice at 3 mg/kg dose level, superimposed over each other

Fig. 4. a Analysis of the % contribution of each different pathways responsible for released payload concentration in the plasma over the
period of time. b Analysis of the % contribution of each different pathways responsible for released payload concentration in the tumor
interstitium over the period of time. c Analysis of the % contribution of each different pathways responsible for unbound released payload
concentration in the tumor cells over the period of time. d A local sensitivity analysis evaluating the effect of 50% and 200% change in various
model parameters, on the % change in plasma payload exposure, total tumor payload exposure, tumor interstitial payload exposure, and
tumor intracellular payload exposure. Here, exposure is measured by calculating the AUC (0-time), and the results are derived after
administration of A1mcMMAF in H1975 tumor bearing mice at 3 mg/kg dose level. Note: the sensitivity of parameters is dose dependent, and
sensitivity analysis obtained at 0.3 and 30 mg/kg doses are presented in the Supplementary Figure 1
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small molecule (i.e., payload) within the cell and its efflux
from the cell to get an idea about the retention ability of the
payload within the cell. Additionally, while accounting for
drug distribution into a tumor one also need to pay attention
to the size of the tumor, as the diffusion from tumor periphery
is the only way for drug entry when tumors are avascular and
small, and the diffusion from vasculature takes over as the
predominant pathway when the tumor grows in size (18).
Considering the high interstitial pressure within the tumor
and absence of lymphatics, convection is absent or minimum
within the solid tumors, making diffusion the predominant
pathway for drug exchange between the tumor and its
surrounding. One also needs to consider the size of the
molecule being exchanged, and the vascular permeability,
tissue diffusion rates, and accessible tissue volume, corre-
sponding to that size (17). All the known mechanisms
mentioned above were accounted for by the model present-
ed here, and the ability of this model to predict the tumor
concentrations of ADC and released payload was evaluated.

A detailed tumor penetration study with the ADC
A1mcMMAF was performed in two different murine xeno-
graft models, and a robust set of data consisting of total mAb,
ADC, and released payload concentrations in the plasma and
tumor was generated to build and validate the PK model
(Figs. 2 and 3). As demonstrated in the Fig. 3, and by the
%PE values reported in the results, it is evident that the
model did very well in terms of a priori predicting the
concentrations of total mAb, ADC, and released payload in
the tumor compartment, based on the plasma concentrations
of mAb and ADC. These results along with the results from
our previous report (2) provides confidence in the model’s
ability to predict the tumor concentration of payload follow-
ing ADC administration, based on data collected from an
easily assessable biological matrix, i.e., plasma. In order to
gain further confidence in the model’s ability to predict the
tumor concentrations of other novels ADCs with a diverse set
of target antigens, and to save resources, in the future one can
perform a limited scale tumor penetration study and compare
the model predictions with the observed data to validate the
model. Once validated, the ADC tumor disposition model can
be used to predict the tumor payload concentration for myriad
of ADCs targeting novel antigens, providing a tool to help triage
the ADCs based on the property of the mAb, target antigen, or
linker-payload, at the early drug development stage. Since the
model is mechanistic and based on the known physiological
processes governing the disposition of ADC and payload within
the tumor, it is hypothesized that it can also be used to predict
tumor concentrations of payload within cancer patients, which
will not only aid in the selection of optimum dose and dosing
regimen for ADCs in the clinic but will also provide a tool to
facilitate precision medicine efforts.

The detailed analysis of the model also provides new
insight into the primary factors responsible for the disposition
of ADC and the payload, and the parameters that the model
outputs were most sensitive to (Fig. 4). It was very interesting
to see that the generation of the payload via nonspecific
digestion of the ADC was a bigger contributor the plasma
payload concentration compared the payload dissociated
from the ADC or being generated in the tumor. It was also
suggested by the pathway analysis (Fig. 4a) that the
distribution of the payload to the peripheral compartment

serves as a source for plasma payload concentration once the
ADC concentrations have decreased. A detailed analysis of
the payload concentration in tumor interstitial space (Fig. 4b)
revealed that although initially the payload coming from the
central circulation contributes to this compartment, the
majority of the time it is the payload coming from the tumor
cells (following digestion of ADC) that contributes to the
payload concentration in this compartment. Investigation of
the tumor intracellular payload concentration revealed that
although internalization of the ADC is the primary source of
input for the compartment, biding of the payload within the
cell is the major contributor for retaining the payload within
the cell (Fig. 4c). The local sensitivity analysis conducted at
3 mg/kg dose of A1mcMMAF (Fig. 4d) also provided vital
information regarding the sensitivity of several model outputs
to a few key parameters. It was discovered that the stability of
the payload on the mAb is one of the sensitive parameter,
along with the size of the tumor, in determining the payload
exposure in plasma. Since the plasma PK of payload follows a
formation-rate limited kinetics, the rate of payload formation
through dissociation from mAb (i.e., kdis), and not the
intrinsic clearance of payload, determines the systemic
payload exposure. And, since the tumor has a capacity to
retain ADC within the system, and digest it locally to
generate payload that can diffuse out to the systemic
circulation, changes in tumor size also results in altered
plasma PK of payload. This information is important as it
provides a rationale for increasing the stability of the linker,
and suggests that one needs to consider the difference in the
size of tumor between mouse experimental tumors and
clinical patient tumors while translating from preclinical-to-
clinical setting. It was also found out that the parameters
related to the binding of tubulin within the cell and exchange
of payload between the cell and extracellular space are very
important determinant for tumor payload concentrations.
Surprisingly the antigen expression, antigen internalization,
and binding of ADC to the antigen were not very sensitive
parameters for tumor payload concentrations at 3 mg/kg dose
level, where maximum receptor occupancy for tumor antigen
was ∼14%. However, one should be cautious about general-
izing these results, as it is shown in the supplementary
material that the sensitivity of outputs to the parameters
changes with dose. And antigen expression, antigen internal-
ization, and binding of ADC to the antigen become important
at higher doses (i.e., 30 mg/kg) where the tumor ADC
concentrations are at the saturating level for tumor antigen
(maximum receptor occupancy of 100%).

The analysis of ADC tumor disposition model also
revealed the importance of conducting fundamental experi-
ments to quantify certain model parameters which the model
output is very sensitive to, but we do not have enough
confidence in their assumed values. For example, the capacity
of the binding component (i.e., tubulin) that binds to the
payload, and the affinity of the payload towards the binding
component, is very important for accurately quantifying the
tumor payload concentration; however our understanding of
these basic parameters is very poor. The efflux rate of the
payload out of the cells is another parameter that is very
important in determining the tumor payload concentration,
however our understanding of this parameter is also very
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poor. In fact, in the current model developed for
A1mcMMAF these parameters for the releases payload cys-
mcMMAF were assumed to be similar to that of MMAE
(from Ref (2)), which may be a reason for the observed
deviations between the model predicted and observed PK
profile of payload concentrations in the tumor. As such, the
model necessitates investigating the processes occurring at
the cellular level that may be responsible for the ADC and
payload disposition, and quantifying them, which will in turn
provide confidence in the value of the parameters being used
to drive the PK model, and the predictions made by it.

All in all, this manuscript provides validation for the
ADC tumor disposition model, using a novel 5T4 targeting
ADC (A1mcMMAF) as a case study. Based on the
biomeasures and plasma ADC concentrations, the model
was able to predict the total tumor mAb concentrations,
tumor ADC concentrations, tumor released payload concen-
trations, and plasma released payload concentrations reason-
ably well, in two different xenografts a priori. Thus, taken
together with the previously reported performance of the
model with brentuximab vedotin (2), results from the present
investigation supports the conclusion that the proposed
model is applicable to all the ADCs, irrespective of their
linker–payload combination. The model was also analyzed to
find out the important pathways and parameters that are
responsible for payload concentrations in various compart-
ments. The analysis suggested that the stability of the payload
on mAb and tumor size are important model parameters. It
was also discovered that there is a need to accurately measure
poorly understood parameters pertaining to cellular disposi-
tion of ADC and payload, as the payload tumor concentra-
tions are very sensitive to them. The model presented here
provides a very useful tool for not only predicting the
preclinical tumor payload concentrations of novel ADCs,
but also for triaging these ADCs, and possibly predicting their
concentrations in patient tumors.
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