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Abstract. The development of individualized therapies poses a major challenge in oncology. Significant
hurdles to overcome include better disease monitoring and early prediction of clinical outcome. Current
clinical practice consists of using Response Evaluation Criteria in Solid Tumors (RECIST) to categorize
response to treatment. However, the utility of RECIST is restricted due to limitations on the frequency of
measurement and its categorical rather than continuous nature. We propose a population modeling
framework that relates circulating biomarkers in plasma, easily obtained from patients, to tumor
progression levels assessed by imaging scans (i.e., RECIST categories). We successfully applied this
framework to data regarding lactate dehydrogenase (LDH) and neuron specific enolase (NSE)
concentrations in patients diagnosed with small cell lung cancer (SCLC). LDH and NSE have been
proposed as independent prognostic factors for SCLC. However, their prognostic and predictive value
has not been demonstrated in the context of standard clinical practice. Our model incorporates an
underlying latent variable (“disease level”) representing (unobserved) tumor size dynamics, which is
assumed to drive biomarker production and to be influenced by exposure to treatment; these
assumptions are in agreement with the known physiology of SCLC and these biomarkers. Our model
predictions of unobserved disease level are strongly correlated with disease progression measured by
RECIST criteria. In conclusion, the proposed framework enables prediction of treatment outcome based on
circulating biomarkers and therefore can be a powerful tool to help clinicians monitor disease in SCLC.

KEY WORDS: biomarkers; lung cancer; mixed-effect model; pharmacodynamics; population model.

INTRODUCTION

The development of individualized therapies is currently a
key objective in oncology, yet it poses significant challenges. An
essential hurdle to overcome is the early prediction of clinical
outcome from a given, newly developed or existing, treatment.
KD_LDH andKD_NSE are the first-order rate constants represent-
ing the synthesis of LDHandNSE, respectively, promoted by the

level of the disease. The difficulty lies in the multitude of factors
influencing outcome (e.g., treatment efficacy, toxicity, and
development of resistance) and the limited predictive ability of
current monitoring techniques.

The Response Evaluation Criteria in Solid Tumors
(RECIST) [1] defines current practice to categorize response
to treatment, which has limited utility for prediction due to its
nonquantitative nature [2, 3]. A proposed solution is the use
of quantitative tumor assessment measure. The sum of
longest diameters (SLD), a continuous tumor size measure-
ment, has been used in drug development to build predictive
models to describe tumor size dynamics [4]; however, despite
being a quantitative measurement, it is not widely used in the
clinic. An alternative proposed approach to predict clinical
outcome is the use of circulating biomarkers. Circulating
biomarkers are easily measured in peripheral blood and can
be used in conjunction to the aforementioned imaging
techniques, which are more limited in their frequency of
measurement. Indeed, the use of biomarkers to obtain proof
of concept is well-established in drug development [5].
However, there are several factors that might explain the
current reluctance to use biomarkers in cancer therapy to
evaluate response to treatment in clinical practice. The
primary reason is lack of validated tumor-specific biomarkers.
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However, most validation attempts have been via empirical
models which may not properly account for time dependen-
cies between biomarker response and outcome, giving the
illusion of poor predictive performance. Proper assessment of
the predictive capacity of biomarkers should be in the context
of mechanistic models linking their observed levels with
clinical outcome. Thus far, there have been few examples
using mechanistic models. Nevertheless, recent models in-
volving circulating biomarkers in cancer show that the (semi-)
mechanistic approach is feasible [6, 7].

The objective of the current work is to investigate the
feasibility of using biomarkers to predict the dynamics of
tumor progression. First, we develop a semi-mechanistic
model that describes the dynamics of biomarker concentra-
tions in plasma over time. Second, we evaluate the predictive
performance of the model by comparing model outcomes
with the observed RECIST categories.

We apply this modeling and prediction strategy to data
obtained from medical records of patients suffering from
small cell lung cancer (SCLC). SCLC, which accounts for 15–
20% of all lung cancer diagnoses, is an aggressive and rapidly
growing neoplasm. It is highly sensitive to chemotherapy and
radiotherapy; however, tumor resistance to these treatments
forms very quickly. Early detection of resistance is therefore a
high priority in the treatment of SCLC. Several molecules
have already been studied as potential tumor markers for
SCLC [8, 9]. Among them, neuron specific enolase (NSE) and
lactate dehydrogenase (LDH), both circulating enzymes
involved in cellular glycolysis processes, appear to be the
most promising biomarkers for our purpose. NSE is the most
accepted tumor marker in diagnosis and monitoring of SCLC
[10, 11]. LDH is a routinely collected biomarker that has been
shown to be correlated with tumor size dynamics in several
solid cancers [12, 13], including SCLC [10].

METHODS

Patients and Data Collection

Historical data were collected from the medical records
of 60 patients diagnosed with SCLC in the University
Hospital of Navarra (Pamplona, Spain). All patients included
in the dataset had histologically proven SCLC and had
received combination therapy of a platinum compound
(cisplatin or carboplatin) and etoposide as a first-line
treatment. The regimen consisted of an intravenous (IV)
infusion of 100 mg/m2 etoposide on days 1–3 concomitantly
with 75 mg/m2 of cisplatin (day 1) or carboplatin AUC 5–
6 mg min/mL IV (day 1) every 21 days for six cycles. Blood
samples for drug quantification were not available. Patients
were staged at diagnosis according to the two-stage system
[14] with imaging techniques. Patients were defined as having
limited disease (LD) if their tumors were confined to a single
hemithorax and regional lymph nodes that could be safely
encompassed within a radiation treatment. Patients with
metastatic sites that were visibly present outside the thorax
were defined as having extensive disease (ED). LD patients
also received conformal three-dimensional thoracic
irradiation concomitantly with the third and the fourth cycle
of chemotherapy. Some ED patients also received thoracic
irradiation either as a consolidation therapy, if they had

achieved a good response with chemotherapy, or as a
palliative treatment for pain or superior cava vein
compression syndrome. In addition, 50% of patients
received complementary granulocyte colony-stimulating
factor (G-CSF). However, data regarding time scheduling
and dose administration of G-CSF were not available.
Supplementary Table I summarizes patient characteristics of
the studied population.

Tumor Assessment

Tumor assessment was performed through computed
tomography (CT) scans (Siemens Sensation 64 or Siemens
Somation Definition) before the commencement of therapy,
between the second and third cycles of chemotherapy, at the
end of the entire course of chemotherapy, and every third
month thereafter, in follow-up exams. From the CT scan, the
calculated sum of the longest diameters was categorized
according to modified RECIST criteria where the patient’s
response was classified according to the change in total tumor
size since the previous CT scan. A detailed description of the
tumor assessments obtained for LD and ED patients is shown
in Supplementary Table I.

Biomarkers Measurements

Blood samples for measurement of LDH and NSE were
collected from each patient before commencement of therapy
and when tumor assessment (through imaging techniques)
was performed. LDH measurements were also made before
the administration of each chemotherapy cycle. For some
patients, additional samples were collected between cycles. A
total of 369 LDH observations were included in the analysis,
where each patient contributed a mean of six samples (range
3–16). A total of 152 NSE concentrations were included in the
dataset, where each patient contributed four samples on
average (range 1–7). A description of the methods used to
quantify LDH and NSE concentrations is provided in the
Supplementary material.

Data Analysis

LDH and NSE concentrations measured in plasma were
analyzed simultaneously by nonlinear mixed effects (NLME)
modeling, also known as the population approach [15].
Tumor assessment measurements were not used for model
development and were only used for external validation. An
NLME model consists of a structural model, a random effects
model, and a covariate model. The structural model describes
typical patient-level kinetics and dynamics. The random
effects model quantifies interpatient variation in underlying
biological processes and also random unexplained variability,
including measurement error. These structural and random
components together comprise the base model. The covariate
model explains interpatient variability, which is quantified by
the random effects model using individual patient character-
istics. During the analysis, the observations were logarithmi-
cally transformed. Interpatient variability was assumed to
follow a log-normal distribution. Residual errors were con-
sidered to be constant on the log scale (i.e., proportional on
the untransformed scale) and were different for each
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biomarker. The SAEM algorithm, implemented in
NONMEM v7.2, was used to estimate model parameters
[16]. To cross-check results, we also used the SAEM
algorithm implemented in MONOLIX v4.2 [17].

Model Selection

Selection among models was based on the following: (i)
log likelihood (denoted −2LL) ratio test (α=0.05); (ii)
precision of parameter estimates; and (iii) visual fit to data,
evaluated according to goodness of fit plots.

Base Population Model

Figure 1 shows a typical LDH profile obtained from a
patient. The figure reflects the main processes involved in
the dynamics of LDH (and in those of NSE): LDH levels
increase following treatment onset (1–4 weeks); this might
be explained by a delayed drug effect on the biomarker,
since the treatment has its effect on the disease rather
than directly on the biomarker (which, in the absence of
treatment, is expected to increase with tumor size). A
subsequent decrease in LDH levels (4–10 weeks) reflects
the treatment-related reduction in tumor size, which leads
to a decrease in the synthesis rate of the disease
biomarkers. Data corresponding to weeks 10–16 show
the resistance effects through a continuous increase in
LDH, despite the fact that the patient is still undergoing
treatment. Finally, the natural disease progression after
completion of six cycles of chemotherapy is reflected in
weeks 16–25.

Figure 2 shows the schematic representation of the final
population model we selected. The main assumptions of the

model are the following: (i) the progression of the (unob-
served) disease (which can be operationalized, for exam-
ple, as tumor size) promotes the synthesis of LDH and
NSE; (ii) the disease has an inherent progression rate;
(iii) chemotherapy and radiotherapy elicit tumor shrink-
age; and (iv) there is eventual resistance to treatment
effects.

The model consists of two main components (a) turnover
models for biomarkers and (b) a model for a variable we
refer to as “disease level”, representing (unobserved) tumor
size dynamics. The disease level model itself comprises of
four subcomponents: (i) a model for unperturbed disease
level; (ii) a model for drug effects; (iii) a model for the effects
of resistance to chemotherapy; and (iv) a model for the effect
of radiotherapy.

a. Turnover models for biomarkers
LDH and NSE dynamics were described with turnover

models [18]. As already mentioned, a fundamental assump-
tion in our model is that increases in biomarker levels are
associated with tumor progression, as we can observe in Fig. 1
(weeks 1–4), so turnover models for both biomarkers take the
form of Eq. 1:

dLDH tð Þ
dt

¼ Kin LDH þKD LDH �D tð Þ−Kout LDH � LDH tð Þ

dNSE tð Þ
dt

¼ Kin NSE þKD NSE �D tð Þ−Kout NSE �NSE tð Þ
ð1Þ

where LDH(t) and NSE(t) are the biomarker log concen-
trations through time, Kin_LDH and Kin_NSE represent the
zero-order synthesis rates of LDH and NSE, respectively, and
Kout_LDH and Kout_NSE are the first-order rate constants of
degradation for the corresponding biomarkers, D represents

Fig. 1. Example of an individual LDH time profile. Treatment
(etoposide+platinum compound) consisted of six chemotherapy
cycles administered every 3 weeks (i.e., from week 1 (diagnosis) to
week 16). The three features identified in most patients are disease
progression (weeks 1–4 and weeks 16–25), drug effect (weeks 4–10),
and resistance effect (weeks 10–16). Vertical dashed lines represent
time points at which tumor size was assessed through CT scans.
Horizontal dotted lines correspond to the normal range of values of
LDH

Fig. 2. Schematic view of the final model and differential equations
used to describe the model. DISEASE is a latent variable that
represents disease progression and drives LDH and NSE production.
Radiotherapy (RT) and chemotherapy (CT) each affect disease level,
where CT decreases its value and RT slows its linear growth.
Resistance (REST) is modeled by linking cumulative exposure with
a decrease in the drug effect. Granulocyte colony-stimulating factor
(G-CSF) increases the physiological LDH synthesis
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the disease level, and D(t) reflects the assumption that the
disease evolves both in the absence and in the presence of
treatment. The expressions corresponding to the initial
conditions of LDH and NSE are shown in the Supplementary
material.

b. Model for disease level
b.1. Unperturbed model. Equation 2 describes the

dynamics of disease level in the absence of perturbation
(i.e., treatment). The model corresponds to a linear
increase governed by the zero-rate growth constant λ.
This simple choice was driven by the fact that data related
to the disease were not used for model building. The
value of the disease level at diagnosis (D(0)) was
arbitrarily set to 1 in all patients.

dD tð Þ
dt

¼ λ ð2Þ

b.2. Model for drug effects (EDrug). Due to the lack of
pharmacokinetic data, a K-PD approach [19] was used:

dCT tð Þ
dt

¼ −KDE� CT ð3Þ

where CT represents the level of exposure to chemother-
apy, and KDE is the first-order elimination rate constant
corresponding to exposure to the combined chemothera-
peutic compounds (etoposide and platinum). Since the
dose of drug combination was identical across patients, a
normalized dose of 1 was used to describe the chemo-
therapy administration for each cycle. Chemotherapy was
assumed to induce an irreversible reduction of the disease
level, described as a second-order rate process of the
form EDrug=−α×CT(t)×D(t), where α is a second-order
rate parameter accounting for the effectiveness of
treatment.

b.3. Model for resistance effect (EResistance). A drug
resistance term was included in the disease model to account for
the resurgence in biomarker concentrations observed in some
patients during treatment. We assumed that the resistance was
related to the cumulative chemotherapy exposure:
EResistance ¼ e−γ�AUCCT , where γ is a parameter that scales the
cumulative area under the CTcurve (AUCCT ) from zero to each
time point.

b.4. Model for radiotherapy effect (ERadiotherapy).
Radiotherapy works by damaging the DNA of tumor
cells, specifically those that are actively dividing. This
damage causes cell death and may eliminate localized
populations of tumor cells that are resistant to
chemotherapy. Radiotherapy effects were included in
the model as an irreversible effect on the proliferation
rate of the disease of the form ERadiotherapy=1−×RT,
where RT is a binary variable that takes the value of 0
before the beginning of radiotherapy and 1 after-
wards, and the parameter β, constrained between 0
and 1, accounts for the magnitude of the radiotherapy
effects.

The complete model for disease level, incorporat-
ing chemotherapy, resistance, and radiotherapy effects

was therefore described by the following differential
equation:

dD tð Þ
dt

¼ λ� ERadiotherapy−EDrug � EResistance ð4Þ

The final structural model for disease level comprised four of
the ordinary differential equations defined above (Eqs. 1, 3,
and 4). The model parameters, including those included in
EDrug, EResistance, and ERadiotherapy , were assumed to be the
same for the two biomarkers.

During the development of the base model, we tested all
components of the disease model to identify potential areas of
improvement. Several different relationships between EDrug,
EResistance, and ERadiotherapy and the underlying state variables
were investigated. Intermediate transit compartments to intro-
duce delays between these terms and state variables were also
explored for significance. Different models for disease level
were evaluated (exponential, Gompertz, logistic). In addition,
we examined a simplified version of the model presented above,
which did not include a disease compartment, and in which
EDrug, EResistance, and ERadiotherapy (with proper modifications)
were applied directly to the biomarker parameters.

Covariate Selection

Once the base population model was developed, a
covariate analysis was performed. The following patient
characteristics were considered for inclusion as covariates in
the model: the stage of the disease (i.e., LD or ED), number
of metastases, age, gender, coadministration of G-CSF,
ECOG performance status, and platinum compound received
in chemotherapy combination (cisplatin or carboplatin).
Covariate selection was performed using stepwise covariate
modeling [20], by means of the −2LL ratio test with α=0.05
for forward inclusion and α=0.01 for backward deletion.

Model Evaluation

Prediction- and variability-corrected visual predictive
checks (pvc-VPCs) [21] were conducted using 1,000 simulated
studies to detect notable structural and covariate model
misspecifications. Precision of parameter estimates was
obtained from the analysis of 1,000 bootstrap datasets. We
obtained pvc-VPCs and bootstrap using the software Perl-
speaks-NONMEM (PsN) [20].

Model Predictive Performance

Predicted values of disease level were obtained by
simulation with the individual parameter values at the
exact same times at which CT scans were available
(during treatment and all follow-up CT scans), according
to the following equation:

Dji ¼
Dtjiþ1−Dtji

Dtji
ð5Þ

where Dtji is the predicted disease level for patient j at
observation point (CT scan) i, and Dtjiþ1 is the predicted
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disease level for patient j at the subsequent observation
point (i.e., the following CT scan, approximately 8 weeks
later). Changes in disease level between those CT scan
times (Dji) were used to assess the predictive performance
of the model through a receiver operating characteristic
(ROC) curve [22] and a parametric time-to-progression
model.

ROC Analysis

Predictions of Dji were classified as disease progression
or nondisease progression (either response or stable disease)
based on different chosen cut-off values. Each chosen cut-off
value provides the probability to discriminate disease pro-
gression (sensitivity or true positive rate) from nondisease
progression (specificity or true negative rate). The ROC
curve summarizes the sensitivity and specificity for all
discrimination cutoffs. We evaluate the area under the ROC
curve (AUCROC) as an overall test of the model’s perfor-
mance. An AUCROC value of 0.5 indicates no association
between prediction and true outcome, and a value of 1.0
indicates perfect association. Confidence intervals of the
AUCROC values were computed using 1,000 bootstrap
samples. For comparison purposes, the same ROC analysis
strategy described for the disease was applied to the model-
derived biomarkers and also to LDH and NSE observations
(i.e., raw dataset).

Progression-Free Survival (Time-to-Progression)

Different distributions (exponential, Weibull, log-logistic,
and Gompertz) were assessed to describe the baseline hazard
rate. Changes in the predicted disease level between individ-
ual times of CT scans were introduced as predictors of the
hazard, as shown in Eq. 6:

h tð Þ ¼ h0 tð Þ � eδ�Dji ð6Þ

where h0(t) is the baseline hazard, δ is a parameter to be
estimated, and Dji is the predicted change in individual
disease level, as defined in Eq. 5.

Model parameters were obtained with the Laplacian
method in NONMEM v7.2. This model did not include
random effects; however, we accounted for interpatient
variability by including the biomarker’s individual predictions
regarding changes in disease levels. Model selection and
evaluation were based on −2LL and simulation-based diag-
nostics (i.e. Kaplan-Meier VPC: plots of observed data
overlaid with a 95% prediction interval calculated from
1,000 simulations of new patients).

RESULTS

The selected model represented in Fig. 2 successfully
described the dynamics of LDH and NSE concentrations in
plasma over time. As an example of model fits, Fig. 3a shows the
individual predictions of LDH and NSE dynamics in nine
representative patients. The estimates of the model parameters
are shown in Table I. It is worth noting that in none of the cases,
the 95% confidence intervals include the zero value, indicating

that the parameters listed were estimated with adequate
precision. Data supported the estimation of interpatient vari-
ability with regard to λ, α, LDH, andNSE concentrations at time
zero (LDH0 and NSE0, respectively) which ranged from 53 to
174%, reflecting the high dispersion in the data (Supplementary
Figure S1). The remaining parameters were constrained to have
a small degree of interpatient variability (15%) to facilitate
estimation via the SAEM algorithm. The model seemed to
capture well the overall shape and dispersion of the data, as
reflected in the pvc-VPCs (Fig. 3b); this suggests an absence of
major model misspecification. A low condition number (25.9)
provided further evidence that the model was not over-
parameterized.

Different expressions for disease level provided poorer fit
to the data, in terms of −2LL and goodness of fit plots. Similarly,
attempts to modify EDrug, EResistance , and ERadiotherapy did not
improve the fit. In addition, attempts to simplify the final model
did not succeed. Baseline disease level was set at 1 for all
patients. During model building, we attempted to describe
interpatient variability in baseline disease burden. However, its
inclusion was not statistically significant as determined by −2LL
ratio test. This result suggested that the interpatient variability in
initial disease status was accounted for in other model param-
eters. Amodel in which the disease variable was excluded fit the
data very poorly, yielding a −2LL value that was almost 300
points greater than that obtained with the selected model.
Likewise, when we attempted to fit LDH and NSE separately,
the corresponding parameter estimates were less precise than
those obtained when the two biomarkers were pooled together.

One would expect that the stage of the disease would
influence some model parameters. For example, compared
with patients with LD, patients with ED might be character-
ized by faster disease progression (higher values of λ),
reduced drug effect (lower values of α), or greater resistance
to treatment (higher values of γ). However, the stage of the
disease and radiotherapy were confounding covariates, since
almost 90% of patients with LD underwent radiotherapy.
Separately, each covariate provided a substantial improve-
ment of fit as compared with the base model, as reflected in a
decrease of the −2LL; however, the inclusion of radiotherapy
provided greater improvement than the inclusion of disease
stage. We further evaluated the effects of including the
presence of supplementary G-CSF therapy as a covariate on
γ (resistance parameter) or on Kin_LDH (physiological LDH
synthesis). While inclusion of G-CSF as a covariate on γ did
not significantly influence model fit, inclusion of G-CSF as a
covariate on Kin_LDH reduced the −2LL by more than 30
points, and therefore, this covariate relationship was kept in
the final model. Indeed, among patients who received G-CSF,
Kin_LDH values were 36.9% greater than among patients who
did not receive G-CSF. No other relationships tested in the
covariate analysis showed statistically significant effects.

Given the complexity of the selected model, which involves
several nonlinear functions, we sought to gain intuitive insight
into the behavior of the different model components.
Figure 4a(1–3) shows the drug exposure effect, where typical
profile indicates that drug effect is reduced to 50% of its initial
value after three to four chemotherapy cycles (3). Figure 4b(1–4)
shows that had the model only included terms for drug and/or
radiotherapy effects without resistance effects, we would have
incorrectly predicted a steady monotonic decline in the disease
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level (2 and 3), whereas the incorporation of the resistance effect
enabled the adequate prediction of a disease nadir level, at
approximately the fourth cycle of chemotherapy (4). This tumor
reduction corresponds to amedian time to disease nadir (i.e., time
to the lowest value of predicted disease) of 15.7 weeks (5.02–21.0)
and involves disease reduction of 73.9% (34.9–93.4%) from the
arbitrary baseline value (95% confidence intervals).

ROC Analysis

To create the ROC curve, we used 218 predictions regarding
each of three variables—disease level, LDH, and NSE—together
with the outcomes of 218 CT scans. Figure 5 shows that the three
variables had discriminating ability to differentiate observed
disease progression determined from the CT scans (AUCROC

values are significantly above 0.5), indicating that the disease level
and biomarker variables strongly correlate with actual disease
progression. Youden’s indices (i.e., cutoffs giving maximum
specificity and sensitivity) were +23.5 for disease level, +20.3 for
NSE, and +5.3 for LDH. Note that the Youden’s index obtained
for disease level (23.5%) is very close to the classificatory criteria
of RECIST for disease progression (i.e., 20%) [1].

Although the AUCROC value obtained with the disease
level variable was slightly higher than the values obtained with

the model-derived LDH and NSE variables (Fig. 5), there was
no statistically significant difference among the three AUCROC

values. To investigate the added value of model-based
approaches, we performed the same ROC analysis using raw
data instead of model-derived predictions. In the case of LDH,
the AUCROC value obtained with model-derived LDH values
was significantly higher than the AUCROC value obtained with
LDHobservations (p=0.026) (Table II). Regarding NSE, where
only eight instances of observed disease progression (“events”)
were included, the AUCROC values for model predicted and
NSE observations were not significantly different (Table II).

Time-to-Progression Model

A log-logistic model best characterized the underlying
baseline hazard distribution of time-to-progression, as follows:

h0 ¼ μ� ψ� t ψ−1ð Þ

1þ μ� tψð Þ2

h tð Þ ¼ h0 � eδ�Dji

ð7Þ

where μ is the hazard coefficient, estimated to be 4.91×
10−6 weeks−1 (CV 14.1%), and ψ is the shape factor,
estimated as 3.66 (CV 2.4%). The inclusion of predicted
disease changes (Dji as defined in Eq. 5) in the base hazard
equation (Eq. 7) decreased the −2LL by 48 points (δ was
estimated to be 0.593, CV 7.04%). Data used to develop the
model included biomarker measurements from diagnosis (i.e.,
time 0) until 25 weeks after diagnosis. Thus, it can be assumed
that the individual parameters from the biomarker model
used to create Dji were not affected by shrinkage [24],
considering that events occurred mostly after 25 weeks.
Median observed time-to-progression was 32.1 weeks (range

Fig. 3. a LDH observations (green circles) with individual predictions
(green lines) on the left y axis and NSE observations (orange squares)
with the individual predictions (orange lines) on the right y axis for
nine selected patients. Observations and predictions for both
biomarkers are log-transformed. b pvc-VPC of LDH (left) and NSE
(right) for the final model against chemotherapy cycles. Cycle 7
corresponds to follow-up measurement. Solid black lines represent
the 5th, 50th, and 95th percentiles of the observed data. Shaded areas
are the 95% confidence intervals based on simulated data (n=1,000)
for the corresponding percentiles

R

Table I. Model Parameter Estimates Describing LDH and NSE Dynamics

Parameter (units) Estimate 95% CI BSV % 95% CI

Mutual λ (U weeks−1) 0.0067 0.0004–0.018 213 96.1–292
ɣ (weeks−1) 0.377 0.294–0.512 15 NE

KDE (weeks−1) 1.16 NE 54.8 NE
α (U−1 weeks−1) 1.32 0.905–1.78 47.5 9.87–73.4

β (weeks−1) 0.831 0.652–0.987 NE NE
Correlation (ηLDH0, ηNSE0) 0.684 0.457–0.782 NA NA

LDH MRTLDH (weeks) 0.311 0.249–0.519 15 NE
Kin_LDH (IU L−1 weeks−1)a 553 NA NA NA

Kin_LDH if GCSF coadministration (IU L−1 weeks−1)a 757 NA NA NA
KD_LDH (IU L−1 weeks−1)a 671 NA NA NA

LDH0 (IU L−1) 352 301–412 61.5 47.3–74.6
Residual error 0.205 0.182–0.229 NA NA

NSE MRTNSE (weeks) 0.301 0.236–0.363 15 NE
Kin_NSE (ng mL−1 weeks−1)a 15.0 NA NA NA
KD_NSE (ng mL−1 weeks−1)a 126 NA NA NA

NSE0 (ng mL−1) 47.7 35.4–62.7 92.1 64.6–120
Residual error 0.402 0.306–0.506 NA NA

Abbreviations: λ linear rate of disease progression, ɣ resistance parameter, KDE first-order elimination constant of chemotherapy exposure (KDE
and its associated interpatient variability were fixed according to the longest real half-life time of the combination drugs administered to patients [23]),
α chemotherapy efficacy parameter, β radiotherapy efficacy parameter,MRTmean residence time (MRT=1/KOUT), LDH0 LDH values at time=0,
Kin_LDH basal (physiological) LDH synthesis,KD_LDH LDH synthesis driven by disease,Kin_NSE basal NSE synthesis,KD_NSE NSE synthesis driven
by disease,NSE0 NSE values at time=0, BSV between-subjects variability expressed in CV%, Residual error constant on logarithmic scale. NE not
estimated, NA not applicable
a Secondary parameters
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13.3–92.0 weeks), and median time-to-progression obtained
from a simulation of 1,000 new individuals was 32 weeks
(95% CI, 14.4–80.0 weeks). The Kaplan-Meier VPC shows
good predictive performance of the time-to-progression
model (Fig. 6).

DISCUSSION AND CONCLUSIONS

The ability to use a biomarker as a surrogate endpoint,
defined as “a substitute for a clinically meaningful endpoint
[that] is expected to predict the effect of a therapeutic
intervention” [25], will potentially benefit oncology practice
and drug development. Since the relations between biomark-
er concentrations and disease progression might not be linear
and straightforward, it is necessary to develop mechanistic
models to characterize them. Currently, there are available
examples of studies that explored the use of biomarkers as
surrogate endpoints using different analytical approaches in
several cancer indications [26].

Our analysis focused on LDH and NSE, which have not
thus far been used extensively to predict clinical outcomes,
despite the fact that pretreatment levels of both molecules
have been proposed as independent prognostic factors for

SCLC. The absence of predictive studies incorporating these
biomarkers may, in part, stem from the fact that several
studies demonstrating the utility of NSE and LDH for SCLC

Fig. 4. Typical simulated profiles (thick black solid lines) and individual simulated profiles (thin gray lines) from a population of 100 virtual
individuals, using the model structure depicted in Fig. 2 and the estimates of model parameters shown in Table I. a Effect of chemotherapy
exposure (1), the level of resistance corresponding to AUCCT (2), and drug effects in the presence of resistance (3). b Predicted disease
dynamics in different scenarios: (1) disease level in the absence of any treatment, (2) disease level in presence of chemotherapy, (3) disease
level under radiotherapy and chemotherapy, and (4) disease progression as it is described in our model (in the presence of radiotherapy,
chemotherapy, and resistance)

Fig. 5. ROC curves (i.e., true positive rate (sensitivity) vs. false
positive rate (100-specificity)) for discriminating observed disease
progression with simulated biomarker changes. Solid lines correspond
to ROC curves, and the shaded area represents the confidence
intervals obtained with bootstrapping
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predictions yielded contradictory conclusions [27–35]. These
contradictions may have resulted from the use of empirical
data analysis. In addition, lack of specificity with LDH is
widely accepted, since variability in circulating LDH can be
explained by multiple causal factors. This was also reflected in
our data by a low AUCROC value (0.676) obtained in the
ROC analysis with LDH observations. The advantage of
using a mixed effect model-based approach is that non-SCLC
related causal factors can be described by random unex-
plained variability. This approach therefore corrects for the
unexplained variation to provide more predictive LDH
values. This was reflected by the much larger AUCROC

(0.822) obtained with model-based individual predictions of
LDH. Recent studies have proposed other biomarkers that
might be more specific for SCLC, including progastrin-
releasing peptide (proGRP) [11, 36] and circulating tumor
cells [8]. Nevertheless, our aim here was to provide an
example in which the combination of suitable and readily
available longitudinal biomarker measurements with model-
ing approaches can be used to describe tumor dynamics for
SCLC.

We have developed a pharmacodynamic model that
successfully describes the dynamics of LDH and NSE
concentrations in plasma over time, in patients with limited

and extensive SCLC disease, treated with first-line chemo-
therapy and radiotherapy. We focused on developing a model
capable of describing our longitudinal data in a biologically
consistent manner to maximize predictive capability. The
result was a semi-mechanistic model, in which an underlying
“disease level” variable was responsible for regulating
biomarker concentrations (through its effect on biomarker
synthesis rates). We assumed that LDH and NSE enzymes
are produced by a constant zero-order rate and cleared at a
first-order elimination rate (i.e., indirect or turnover model) in
healthy individuals. In addition to the physiological biomark-
er production, we assumed that the disease level increases
LDH and NSE levels. This is consistent with the Warburg
effect [37] which is the basis of the use of positron emission
tomography (PET) [38] and states that malignant cells chose
anaerobic glycolysis even in oxygen-rich conditions although
it is less energy efficient [39]. Since both LDH and NSE
are glycolytic enzymes, an increase in their synthesis rate
allows tumor cells to undergo anaerobic glycolysis. We
therefore assumed that the disease level results in an
additional zero-order production of LDH and NSE. In
fact, several studies show how both enzymes are increased
in different cancer cells (for example in [40–42]). Whilst
these assumptions are an approximation of the complex
biological processes, we believe that they are sufficient to
capture the major processes influencing biomarker and
disease time courses.

The final model separated SCLC-specific (λ in Eq. 2;
KD_LDH and KD_NSE in Eq. 1) and treatment-related param-
eters (KDE in Eq. 3; α, ɣ, and β in Eq. 4). Our success at
describing drug- and system-specific parameters with only
routinely collected medical records suggests that similar
modeling approaches may work with other treatments and/
or cancer types. In our model, a reduction in disease level
(i.e., tumor shrinkage due to chemotherapy and to radiother-
apy) is reflected in a decrease in the biomarker concentration.
Therefore, both chemotherapy and radiation therapy do have
effects on LDH and NSE; however, such effects are not direct
effects. Chemotherapy and radiotherapy are considered to
reduce tumor burden which in turn affects LDH and NSE
production. Our use of the cumulative drug dose to model
resistance to chemotherapy was consistent with the known
pattern of the formation of resistance to platinum compounds
[43]. Finally, published studies show that treatment with G-
CSF enhances LDH concentrations among healthy individu-
als [44], noncancer patients [45] and cancer patients [46]. This
effect is probably related to the expansion of myeloid cell
mass associated with exposure to G-CSF [47]. Our model

Table II. Summary of AUCROC Values (95% CI) Obtained with the ROC Analysis in Different Scenarios

Included data
Number of CT scans
(number of events) Variable

Model-based
(predictions)

Observations
(raw data)

All CT scans 218 (33) LDH 0.856 (0.793–0.920) NA
NSE 0.857 (0.785–0.930) NA

DISEASE 0.867 (0.801–0.934) NA
CT scans when LDH observations were available 154 (22) LDH 0.822 (0.730–0.914) 0.676 (0.548–0.804)

DISEASE 0.829 (0.727–0.931) NA
CT scans when NSE observations were available 63 (8) NSE 0.891 (0.790–0.992) 0.907 (0.760–1.000)

DISEASE 0.904 (0.810–0.999) NA

CT computed tomography, NSE neuron specific enolase, LDH lactate dehydrogenase, NA not applicable

Fig. 6. Kaplan-Meier plot of progression-free survival (black line)
and 95% prediction intervals (gray shaded area) based on 1,000
simulations. The hazard rate is described by a log-logistic distribution.
The baseline hazard is increased by predicted changes in the latent
disease variable between CT scan times (approximately 8 weeks)
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captures this effect and suggests that the increment might be
due to an increase of physiological LDH synthesis.

The model has several limitations. First, the analysis was
restricted to data gathered from patients who received the
described therapy regimen as first-line treatment. Subsequent
treatments administered to patients were much more heteroge-
neous, with low numbers of patients associated with each
treatment and few corresponding LDH and NSE measure-
ments. Nonetheless, further work could expand this model to
include second- and third-line treatment. The relationship
between treatment and drug effects was established through a
K-PD model due to the lack of pharmacokinetic information.
Whereas this approach enables a good description of the data,
the absence of pharmacokinetic profiles may hamper the
interpretation of the variability seen in the response. Although
the K-PD approach is certainly an approximation, the simplified
pharmacokinetic model was sufficient to build a predictive
biomarker and disease model. Another drawback is that
the model could not distinguish pharmacokinetic or
pharmacodynamic differences between cisplatin and carboplatin,
due to lack of data. Similarly, there was insufficient information
to take into account different radiotherapy administration
schedules.

ROC analysis can be only performed for dichotomized
variables. We focused on disease progression, reflecting the
clinical objective to identify tumor relapse early on. This
identification will allow clinicians to optimize treatment
strategy at the individual level. Our model allowed us to
predict biomarker levels at any time of interest (exact times
where CT scan were also available), thereby increasing the
robustness of the ROC analysis (results with small sample
size and small number of events should be interpreted with
caution). As shown in Table II and described in the
“RESULTS” section, in all analyses, the AUCROC value
obtained with the disease level variable was higher than 0.8
and was higher than the AUCROC values obtained with
model predictions of either LDH or NSE. This result supports
our modeling assumption that the disease level variable is
representative of tumor size. This assumption is further
supported by the time-to-progression model, which related
changes in the disease level to observed time to progression,
and allowed us to assess the impact of time on the model’s
predictive performance.

In this case study, NSE concentrations had significant
predictive value per se in the context of SCLC. However,
other biomarkers in SCLC or in other cancer indications
might not have similar predictive power. Our semi-mechanis-
tic modeling approach enables the relationships between
biomarker dynamics and tumor size dynamics to be properly
identified. Our approach highlights the need for proper
quantitative analysis in other cancer types and/or different
biomarkers and should be considered even in the case of lack
of relevant biomarkers, as the building of the current model
using the nonspecific biomarker LDH shows.

In conclusion, we have developed a model for biomarker
dynamics that, without using tumor size data, is capable of
predicting disease progression assessed by CT scans (RECIST
data) in SCLC patients. We believe that the proposed
modeling framework of circulating biomarkers could consti-
tute a powerful additional strategy for disease monitoring in
SCLC patients.
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