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Abstract This paper is pertained with the synchroniza-

tion problem for an array of coupled discrete-time complex

networks with the presence of both time-varying delays

and parameter uncertainties. The time-varying delays are

considered both in the network couplings and dynamical

nodes. By constructing suitable Lyapunov–Krasovskii

functional and utilizing convex reciprocal lemma, new

synchronization criteria for the complex networks are

established in terms of linear matrix inequalities. Delay-

partitioning technique is employed to incur less conserva-

tive results. All the results presented here not only depend

upon lower and upper bounds of the time-delay, but also

the number of delay partitions. Numerical simulations are

rendered to exemplify the effectiveness and applicability of

the proposed results.

Keywords Discrete-time � Complex dynamical

networks � Synchronization � Lyapunov–Krasovskii

functional (LKF) � Linear matrix inequality (LMI)

Introduction

Complex networks are composed of a large number of

highly interconnected dynamical units and therefore exhi-

bit very complicate dynamics. Undoubtedly, many systems

in nature can be described by models of complex networks,

which are structures consisting of nodes connected by

links. Examples of complex networks include Internet, a

network of routes and domains; World Wide Web, a net-

work of websites; Brain, a network of neurons; Social

networks, a network of people; Global economy, a network

of national economies, which are themselves networks of

markets; and markets are themselves networks of inter-

acting producers and consumers; electrical power grids and

so on (Wang and Chen 2003; Strogatz 2001; Albert et al.

1999). Since most of the practical systems can be modeled

by complex dynamical networks, it has drawn much

research attention from various fields. In particular, one of

the interesting phenomena in complex networks is the

synchronization, which is an important research area with

rapidly increasing results (Gao et al. 2006; Wang et al.

2008; Balasubramaniam et al. 2011).

In complex dynamical networks, synchronization of all

its dynamical nodes is an important one. Network syn-

chronization phenomena has been found in different forms

both in nature and in man-made systems, such as fireflies in

the forest, applause, description of hearts, distributed

computing systems, routing messages in the internet, etc. In

recent years, many researchers develop various efficient

synchronization techniques for complex networks, and

many profound results are established (Li and Chen 2004;

Cao et al. 2006; Delellis et al. 2009).

The characteristic of time-delayed coupling is very

common in biological and physical systems, etc, see (Martı̀

and Masoller 2003; Atay et al. 2004; Boccaletti et al. 2006;

Wu et al. 2012; Balasubramaniam and Jarina Banu 2013),

some of time-delays are trivial so which can be ignored,

while some others cannot be ignored. Time-delays occur in

complex networks because of the network traffic conges-

tions as well as the finite speed of signal transmission over

the links. And it should be pointed out that time-varying
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delays are more general than the constant ones which are

usual in general complex dynamical network.

One significant recent discovery in the field of complex

networks is the observation that a number of large-scale

and complex networks are scale-free, that is, their con-

nectivity distributions have the power-law form (Barabási

et al. 1999a, b). A scale-free network is inhomogeneous in

nature. Most nodes have very few connections and only a

small number of nodes have many connections. This

inhomogeneous feature makes a scale-free network error

tolerant but vulnerable to attacks. More precisely, the

connectivity of such networks is highly robust. A scale-free

network does not have a fixed size but can grow with time.

The scale-free networks belongs to the family of networks

known as ‘‘small-world’’ networks. The presence of scale-

free emerging properties in many real-world networks

provides initial evidence that the self-organizing (syn-

chronization) phenomena do not only depend on the

characteristics of individual systems, but are general laws

of evolving networks.

Recently, synchronization behavior of delayed complex

networks have been widely studied. For example, a

framework for synchronization of linearly coupled net-

works of both continuous-time and discrete-time have been

investigated in (Gao et al. 2006; Yue and Li 2010; Zhang

et al. 2010), whereas the similar topic was also discussed

by Lu and Chen (2004); Lu and Ho (2010) without

assuming that the coupled configuration matrix is sym-

metric and irreducible. Wang et al. (2012) investigated the

stabilization and synchronization of dynamical networks

with different nodes by using decentralized control. The

problem of synchronization for an array of coupled sto-

chastic discrete-time neural networks with discrete and

distributed time-varying delays have been studied by Wang

and Song (2011). Also Yue and Li (2010) have derived the

synchronization stability criterion for complex dynamical

networks with interval time-varying delays based on a

piecewise analysis method and the convexity of matrix

inequalities. Fei et al. (2009) revisited the synchronization

stability problem for discrete complex dynamical networks

with time-varying delay and constructed a new Lyapunov

functional by dividing the time-varying delay into a con-

stant part and a variant part. Moreover, the synchronization

and state estimation problems for discrete-time complex

network by utilizing a time-varying real-valued function

and the Kronecker product are investigated by Shen et al.

(2011) and the authors provided a novel concept of boun-

ded H1 synchronization. Synchronization problems have

been intensively studied for delayed complex networks

with stochastic perturbation (Yu and Cao 2007; Liang et al.

2008a). Recently, some interesting results are reported in

the field of synchronization stability. Yang et al. (2013)

concerned with input-to-state stability problems for a class

of recurrent neural networks model with multiple time-

varying delays. Mahdavi and Kurths (2013) studied the

synchronization of dynamical neural networks with a

neuron of logistic map type and self-coupling connections

by utilizing the idea of structured inverse eigen value

problem. The oscillations and synchronization problem of

two different network connectivity patterns based on Iz-

hikevich model has been investigated by Qu et al. (2013).

Most of the existing results have been concerned with

the synchronization problem for continuous-time and

deterministic complex networks with or without delays,

little progress has been made towards discrete-time com-

plex dynamical networks for details, see (Tang et al. 2010;

Park et al. 2009; Cheng and Cao 2011), but discrete-time

networks could be more suitable to model digitally trans-

mitted signals in a dynamical way, which have already

been applied in a wide range of areas, such as image

processing, time series analysis, quadratic optimization

problem and system identification. In reality, however, the

existence of parameter uncertainties is ubiquitous in a

discrete-time fashion. The connection weights of the nodes

of complex networks depend on certain resistance and

capacitance values that include uncertainties or modeling

errors. Motivated by the above discussions, in this paper,

we study the synchronization problem for a class of dis-

crete-time complex networks with time-varying delays and

parameter uncertainties by constructing new set of

Lyapunov functions and employing ‘‘delay-partitioning’’

approach. Therefore, one of the main aims is to reduce the

possible conservatism induced by the Lyapunov functional.

The main contributions of this paper can be highlighted

as follows: (1) Synchronization criteria for discrete-time

complex networks with time-varying delay and parameter

uncertainties are developed in terms of LMIs. (2) Delay

partitioning approach and reciprocal convex lemma are

utilized to reduce possible conservatism. (3) To illustrate

the applicability of the proposed results, synchronization of

BA scale-free networks and chaotic synchronization of

Lorenz system are discussed.

An outline of this paper is as follows. In Sect. 2, the

dynamics of complex networks in a discrete-time domain is

introduced and some necessary preliminaries are given. In

Sect. 3, we establish some synchronization criteria for the

discrete-time complex networks by constructing a set of

Lyapunov functions. Robust synchronization of uncertain

complex dynamical networks are derived in terms of LMIs

in Sect. 4. In Sect. 5, some numerical simulations are given

to illustrate the theoretical ensues. Concluding remarks are

finally stated in Sect. 6.

Notations: Throughout this paper, Rn and R
n�n denote

the n-dimensional Euclidean space and the set of all
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n 9 n real matrices respectively. The superscript T and

(-1) denote the matrix transposition and matrix inverse

respectively. Matrices, if they are not explicitly stated, are

assumed to have compatible dimensions. I is an identity

matrix with appropriate dimension. The notation * always

denotes the symmetric block in one symmetric matrix. N

denotes the set of all positive integers.

Problem description and preliminaries

Consider the discrete-time complex networks (DCN) with

time-varying delays

xiðkþ 1Þ ¼ AxiðkÞ þAdxiðk� sðkÞÞ þBf ðxiðkÞÞ

þCgðxiðk� sðkÞÞÞ þ
XN

j¼1

w1ijC1xjðkÞ

þ
XN

j¼1

w2ijC2xjðk� sðkÞÞ; i¼ 1;2; . . .;N;k 2 N

ð1Þ

where xiðkÞ ¼ ðxi1ðkÞ;xi2ðkÞ; . . .; xinðkÞÞ 2 R
n is the state

vector of the ith node at time k and n denotes the number of

nodes in each subsystem. A, Ad, B, and C are known real

matrices. f ðxiðkÞÞ ¼ ðf1ðxi1ðkÞÞ; f2ðxi2ðkÞÞ; . . .; fnðxinðkÞÞÞ 2
R

n and gðxiðk�sðkÞÞÞ¼ðg1ðxi1ðk�sðkÞÞÞ;g2ðxi2ðk�sðkÞÞÞ;
...;gnðxinðk�sðkÞÞÞÞ2Rn are nonlinear vector-valued func-

tions satisfying certain conditions to be given later.

The term s(k) describes the time-varying delay that

satisfies

0\sm� sðkÞ� sM ð2Þ

where sm and sM are known positive integers representing

the minimum and maximum delays. C1 ¼ ðc1ijÞ 2 R
n�n

and C2 ¼ ðc2ijÞ 2 R
n�n are the inner-coupling matrices. If

some pairs (i, j), 1 B i, j B n with cij = 0, means that

two coupled nodes are linked through their ith and jth

state variables. W1 = (w1ij)N 9 N and W2 = (w2ij)N 9 N

represent the outer-coupling matrices of the networks

in which wsij (s = 1,2) is defined as follows: if

there exists a connection between node i and node

j (j = i), then wsij = wsji = 1, otherwise wsij = wsji = 0

(j = i) and the diagonal elements of the matrices wsii are

defined by,

wsii ¼ �
XN

j¼1;j 6¼i

wsij ¼ �
XN

j¼1;j6¼i

wsji: ð3Þ

Suppose that the network (1) is connected in the sense that

there are no isolated clusters, that is W1 and W2 are

irreducible matrices. For the purpose of simplicity, we

introduce the following notations

xðkÞ ¼ ½xT
1 ðkÞ; xT

2 ðkÞ; . . .; xT
NðkÞ�

T ;

FðxðkÞÞ ¼ ½f Tðx1ðkÞÞ; f Tðx2ðkÞÞ; . . .; f TðxNðkÞÞ�T ;
Gðxðk � sðkÞÞÞ ¼ ½gTðx1ðk � sðkÞÞÞ; gTðx2ðk � sðkÞÞÞ; . . .;

gTðxNðk � sðkÞÞÞ�T :

By utilizing the Kronecker product of matrices, the DCNs

(1) can be written in a more compact form as,

xðk þ 1Þ ¼ ðIN � AÞxðkÞ þ ðIN � AdÞxðk � sðkÞÞ
þ ðIN � BÞFðxðkÞÞ þ ðIN � CÞGðxðk � sðkÞÞÞ
þ ðW1 � C1ÞxðkÞ þ ðW2 � C2Þxðk � sðkÞÞ:

ð4Þ

The initial conditions associated with system (4) are

given by

xðsÞ ¼ /ðsÞ; s ¼ �sM ; �sM þ 1; . . .; 1: ð5Þ

where /(s) is the initial function of the system.

Assumption 1 For 8t; m 2 R
n, the nonlinear functions

f ð�Þ; gð�Þ are continuous and assumed to satisfy the fol-

lowing sector-bounded conditions

ðf ðtÞ � f ðmÞ � F1ðt� mÞÞTðf ðtÞ � f ðmÞ � F2ðt� mÞÞ� 0

ð6Þ

ðgðtÞ � gðmÞ � G1ðt� mÞÞTðgðtÞ � gðmÞ � G2ðt� mÞÞ� 0

ð7Þ

where F1, F2, G1, and G2 are known constant real

matrices.

Remark 1 The description of nonlinear functions in

Assumption 1 are known as the sector-like nonlinearities,

which are more general than the commonly used Lipschitz

conditions. By adopting such a presentation, it would be

possible to reduce the conservatism of the main results.

Before stating the main results, a definition and some

lemmas are introduced here.

Definition 1 The discrete-time complex network (1) or

(4) is said to be globally synchronized if, for all time-

varying delays, the following holds:

lim
k�!þ1

j xiðkÞ � xjðkÞ j¼ 0; 1� i\j�N:

Lemma 1 (Horn and Johnson 2001) Let a 2 R and

A, B, C, D be matrices with appropriate dimensions, the

following properties can be proved

(1) a(A � B) = (aA) � B ? A � (aB)

(2) (A � B)T = AT � BT

(3) (A � B)(C � D) = (AC) � (BD)

(4) A � B � C = (A � B) � C = A � (B � C)

Cogn Neurodyn (2014) 8:199–215 201

123



Lemma 2 (Park et al. 2011) Let f1; f2; . . .; fN : Rm 7!R

have positive values in an open subset D of Rm. Then, the

reciprocally convex combination of fiover D satisfies

min
faijai [ 0;

P
i
ai¼1g

X

i

1

ai

fiðkÞ ¼
X

i

fiðkÞ þmax
gi;jðkÞ

X

i6¼j

gi;jðkÞ

subject to

gi;j : Rm 7!R; gj;iðkÞ,gi;jðkÞ;
fiðkÞ gi;jðkÞ

gi;jðkÞ fjðkÞ

� �
� 0

Lemma 3 (Boyd et al. 1994) (Schur Complement) Given

constant matrices X1; X2 and X3 with appropriate

dimensions, where XT
1 ¼ X1 and XT

2 ¼ X2 [ 0, then

X1 þ XT
3 X�1

2 X3\0;

if and only if

X1 XT
3

	 �X2

� �
\0; or

�X2 X3

	 X1

� �
\0:

Main results

In this section, we deal with the synchronization problem for

discrete time-varying complex networks (4). By utilizing

new Lyapunov–Krasovskii functionals, we develop an LMI

approach to derive sufficient conditions under which the

discrete-time complex network (4) is globally synchronized.

Before giving our main results, for the sake of simplicity

on matrix representation, we define the following notations

~KijðkÞ ¼ ~xT
ijðkÞ ~xT

ij k � 1

d
sm

� �
~xT

ij k � 2

d
sm

� �
. . .

�

~xT
ij k � d � 1

d
sm

� ��T

;

WijðkÞ ¼ ½ ~KT
ijðkÞ ~xT

ijðk � smÞ ~xT
ijðk � sðkÞÞ

~xT
ijðk � sMÞ ~xT

ijðk þ 1Þ
Xk�1

s¼k�sm

~xT
ijðsÞ

Xk�sm�1

s¼k�sðkÞ
~xT

ijðsÞ
Xk�sðkÞ�1

s¼k�sM

~xT
ijðsÞ

Xk

s¼k�sðkÞ
~gT

ijðsÞ f ð~xT
ijðkÞÞ gð~xT

ijðk � sðkÞÞÞ�T ;

#l ¼ ½0n�ðl�1Þn In 0n�ðd�lþ1Þn�; l ¼ 1; 2; . . .; d;

~xijðkÞ ¼ xiðkÞ � xjðkÞ; ~KijðkÞ ¼ KiðkÞ � KjðkÞ;
~gijðkÞ ¼ giðkÞ � gjðkÞ;
f ð~xijðkÞÞ ¼ f ðxiðkÞÞ � f ðxjðkÞÞ;
gð~xijðkÞÞ ¼ gðxiðkÞÞ � gðxjðkÞÞ:

Theorem 1 Under Assumption 1, the system (4) is

globally asymptotically synchronized if there exist

matrices Pst [ 0;Qst [ 0; ðs ¼ 1; 2; 3; t ¼ 1; 2; 3Þ;Ru [ 0;

ðu ¼ 1; 2; . . .; d þ 1Þ; S [ 0 and matrices z1, z2,

Frv, (v = 1, 2, 3, 4) with appropriate dimensions such

that the following LMIs hold

Q2 M1

	 Q2

� �
� 04n; ð9Þ

Rdþ1 N1

	 Rdþ1

� �
� 02n; ð10Þ

where

Xij ¼

Xij
1;1 X1;2 Xij

1;3 X1;4 Xij
1;5 X1;6 X1;7 X1;8 Fr3 X1;10 X1;11

	 X2;2 X2;3 X2;4 X2;5 X2;6 X2;7 X2;8 0 0 0

	 	 X3;3 X3;4 Xij
3;5 0 �M12 X3;8 X3;9 0 X3;11

	 	 	 X4;4 �PT
13 X4;6 X4;7 X4;8 0 0 0

	 	 	 	 X5;5 P12 P13 P13 X5;9 Fr3B X5;11

	 	 	 	 	 X6;6 �QT
31 �QT

31 0 0 0

	 	 	 	 	 	 X7;7 X7;8 0 0 0

	 	 	 	 	 	 	 X8;8 0 0 0

	 	 	 	 	 	 	 	 X9;9 0 X9;11

	 	 	 	 	 	 	 	 	 X10;10 0

	 	 	 	 	 	 	 	 	 	 X11;11

2
666666666666666664

3
777777777777777775

\0; ð8Þ
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Xij
1;1 ¼� #T

1 P11#1 þ #T
1 P22#1 þ s2

m#
T
1 ðQ11 � Q12 þ Q13Þ#1

þ s2
1#

T
1 ðQ21 � Q22 þ Q23Þ#1

þ s2
M#

T
1 ðQ31 � Q32 þ Q33Þ#1 � #T

1 Q13#1

� #T
1 Q33#1 þ ðs2

2 � s2
1Þ#T

1 S#1

� #T
1 R1#1 þ

� sm

d

�2
Xd

s¼1

ð#s � #sþ1ÞTRsð#s � #sþ1Þ

þ #T
1 s2

1Rdþ1#1 � #T
1 z1FT

1 F2#1 � #T
1 z1FT

2 F1#1

þ #T
1 Nw

ð1Þ
ij Fr2C1#1 þ #T

1 Nw
ð1Þ
ij CT

1 FT
r2#1

� #T
1 Fr2A#1 � #T

1 AT FT
r2#1;

X1;2 ¼ �P22 þ P23 þ Q13;

Xij
1;3 ¼ �Fr2Ad þ Nw

ð2Þ
ij Fr2C2 þ Fr3;X1;4 ¼ �P23 þ Q33;

Xij
1;5 ¼ PT

12 þ s2
mðQ12 � QT

13Þ þ s2
1ðQ22 � Q23Þ

þ s2
MðQ32 � Q33Þ �

� sm

d

	2Xd

s¼1

RT
s � s2

1RT
dþ1

� s2
2Sþ AT FT

r1 � Nw
ð1Þ
ij CT

1 FT
r1 þ Fr2 � Fr3;

X1;6 ¼ P22 � P12 � Q12 � QT
32;

X1;7 ¼ P23 � P13 � QT
32 þ s1S;

X1;8 ¼ P23 � P13 � QT
32 þ s1S;

X1;10 ¼ z1FT
1 þ z1FT

2 � Fr2B;

X1;11 ¼ z2GT
1 þ z2GT

2 � Fr2C;

X2;2 ¼ P22 � P23 � PT
23 þ P33 � Q13 � Q23 � Rd;

X2;3 ¼ Q23 �M13 þ Rd � NT
1 ;

X2;4 ¼ P23 � P33 þM13 þ NT
1 ; X2;5 ¼ �PT

12 þ PT
13;

X2;6 ¼ �P22 þ PT
23 þ QT

12;

X2;7 ¼ �P23 þ P33 � QT
22;

X2;8 ¼ �P23 þ P33 �MT
12;

X3;3 ¼ �Q23 � Rdþ1 þM13 þ N1 þ NT
1 � FT

r4

� Fr4 � z2GT
1 G2 � z2GT

2 G1;

X3;4 ¼ Q23 þ Rdþ1 � NT
1 �M13;

Xij
3;5 ¼ AT

d FT
r1 þ Fr4 � Nw

ð2Þ
ij CT

2 FT
r1 � FT

r3;

X3;8 ¼ MT
12 � QT

22;X3;9 ¼ �Fr4 � FT
r4;

X3;11 ¼ z2GT
1 þ z2GT

2 � FT
r3;

X4;4 ¼ P33 � Q33 � QT
33 � Q23 � Rdþ1;

X4;6 ¼ �PT
23 þ QT

32 þMT
12;

X4;7 ¼ �P33 þ QT
32 þ QT

22;

X4;8 ¼ �P33 þ QT
32 þ QT

22;X5;5 ¼ P11 þ s2
mQ13 þ s2

1Q23

þ s2
MQ33 þ

� sm

d

	2Xd

s¼1

Rs þ s2
1Rdþ1 þ s2

2S� Fr1

� FT
r1 þ Fr3 þ FT

r3;

X5;9 ¼ �Fr3 þ Fr4; X5;11 ¼ Fr1C þ FT
r3;

X6;6 ¼ �P23 � Q11 � Q31 � QT
31;

X7;7 ¼ �Q31 � Q21 � S; X7;8 ¼ �QT
31 �M11 þ ST ;

X8;8 ¼ �Q21 � Q31 � S;

X9;9 ¼ �Fr4 � FT
r4;

X9;11 ¼ �FT
r3; X10;10 ¼ �z1 � zT

1 ;

X11;11 ¼ �z2 � zT
2 :

Proof Consider the following Lyapunov functional

candidate

V1ðkÞ ¼ nTðkÞðU � PÞnðkÞ; ð11Þ

V2ðkÞ ¼ sm

X�1

l¼�sm

Xk�1

s¼kþl

fTðsÞðU � Q1ÞfðsÞ

þ s1

X�sm�1

l¼�sM

Xk�1

s¼kþl

fTðsÞðU � Q2ÞfðsÞ

þ sM

X�1

l¼�sM

Xk�1

s¼kþl

fTðsÞðU � Q3ÞfðsÞ;

ð12Þ

V3ðkÞ ¼
sm

d

Xd

m¼1

X�m�1
d

sm�1

l¼�m
d
sm

Xk�1

s¼kþl

gTðsÞðU � RmÞgðsÞ

þ s1

X�sm�1

l¼�sM

Xk�1

s¼kþl

gTðsÞðU � Rdþ1ÞgðsÞ;

ð13Þ

V4ðkÞ ¼ s2

X�sm�1

m¼�sM

X�1

l¼m

Xk�1

s¼kþl

gTðsÞðU � SÞgðsÞ; ð14Þ

where

nTðkÞ ¼ xTðkÞ
Xk�1

s¼k�sm

xTðsÞ
Xk�sm�1

s¼k�sM

xTðsÞ
" #

;

fTðkÞ ¼ ½xTðkÞ gTðkÞ�;

Qt ¼
Qt1 Qt2

	 Qt3

" #
;

U ¼

N � 1 �1 . . . �1

�1 N � 1 . . . �1

. . . . . . . . . . . .

�1 �1 . . . N � 1

2

66664

3

77775

N�N

; t ¼ 1; 2; 3;

gðkÞ ¼ xðk þ 1Þ � xðkÞ; s1 ¼ sM � sm;

s2 ¼
s1ðsM þ sm þ 1Þ

2
:

Then using the forward difference formula DVðkÞ ¼
Vðk þ 1Þ � VðkÞ along the trajectories of the system (4),

we have
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DV1ðkÞ ¼ nTðk þ 1ÞðU � PÞnðk þ 1Þ � nTðkÞðU � PÞnðkÞ;

¼

xðk þ 1Þ�
xðkÞ � xðk � smÞ þ

Pk�1
s¼k�sm

xðsÞ
	

�
xðk � smÞ � xðk � sMÞ þ

Pk�sðkÞ�1
s¼k�sM

xðsÞ

þ
Pk�sm�1

s¼k�sðkÞ xðsÞ
	

2
66666664

3
77777775

T

�
U � P11 U � P12 U � P13

	 U � P22 U � P23

	 	 U � P33

2
64

3
75

�

xðk þ 1Þ�
xðkÞ � xðk � smÞ þ

Pk�1
s¼k�sm

xðsÞ
	

�
xðk � smÞ � xðk � sMÞ þ

Pk�sðkÞ�1
s¼k�sM

xðsÞ

þ
Pk�sm�1

s¼k�sðkÞ xðsÞ
	

2

66666664

3

77777775

�

xðkÞ
Pk�1

s¼k�sm
xðsÞ

Pk�sðkÞ�1
s¼k�sM

xðsÞ þ
Pk�sm�1

s¼k�sðkÞ xðsÞ

2

664

3

775

T

�
U � P11 U � P12 U � P13

	 U � P22 U � P23

	 	 U � P33

2
64

3
75

�

xðkÞ
Pk�1

s¼k�sm
xðsÞ

Pk�sðkÞ�1
s¼k�sM

xðsÞ þ
Pk�sm�1

s¼k�sðkÞ xðsÞ

2
664

3
775;

ð15Þ

DV2ðkÞ ¼ fTðkÞ½s2
mðU � Q1Þ þ s2

1ðU � Q2Þ
þ s2

MðU � Q3Þ�fðkÞ

� sm

Xk�1

s¼k�sm

fTðsÞðU � Q1ÞfðsÞ

� s1

Xk�sm�1

s¼k�sM

fTðsÞðU � Q2ÞfðsÞ

� sM

Xk�1

s¼k�sM

fTðsÞðU � Q3ÞfðsÞ;

¼ xTðkÞ½s2
mðU � Q11Þ þ s2

1ðU � Q21Þ
þ s2

MðU � Q31Þ�xðkÞ
þ 2xTðkÞ½s2

mðU � Q12Þ þ s2
1ðU � Q22Þ

þ s2
MðU � Q32Þ�gðkÞ

þ gTðkÞ½s2
mðU � Q13Þ þ s2

1ðU � Q23Þ

þ s2
MðU � Q33Þ�gðkÞ

� sm

Xk�1

s¼k�sm

fTðsÞðU � Q1ÞfðsÞ

� s1

Xk�sm�1

s¼k�sM

fTðsÞðU � Q2ÞfðsÞ

� sM

Xk�1

s¼k�sM

fTðsÞðU � Q3ÞfðsÞ;

ð16Þ

DV3ðkÞ ¼
� sm

d

	2Xd

m¼1

gTðkÞðU � RmÞgðkÞ

� sm

d

Xd

m¼1

Xk�m�1
d

sm�1

s¼k�m
d
sm

gTðsÞðU � RmÞgðsÞ

þ s2
1g

TðkÞðU � Rdþ1ÞgðkÞ

� s1

Xk�sm�1

s¼k�sM

gTðsÞðU � Rdþ1ÞgðsÞ;

ð17Þ

DV4ðkÞ ¼ s2
2g

TðkÞðU � SÞgðkÞ � s2

X�sm�1

l¼�sM

Xk�1

s¼kþl

gTðsÞðU � SÞgðsÞ:
ð18Þ

We have �sm

Pk�1
s¼k�sm

fTðsÞðU � Q1ÞfðsÞ

¼ �sm

Xk�1

s¼k�sm

xðsÞ

gðsÞ

" #T

ðU � Q1Þ
xðsÞ

gðsÞ

" #

� �
� Xk�1

s¼k�sm

xðsÞ

gðsÞ

" #	T

ðU � Q1Þ
� Xk�1

s¼k�sm

xðsÞ

gðsÞ

" #	

¼ �
Pk�1

s¼k�sm
xðsÞ

xðkÞ � xðk � smÞ

" #T

ðU � Q1Þ
Pk�1

s¼k�sm
xðsÞ

xðkÞ � xðk � smÞ

" #
:

ð19Þ

Similarly, �sM

Pk�1
s¼k�sM

fTðsÞðU � Q3ÞfðsÞ

� �

�Pk�sðkÞ�1
s¼k�sM

xðsÞ

þ
Pk�sm�1

s¼k�sðkÞ xðsÞ

þ
Pk�1

s¼k�sm
xðsÞ

	

xðkÞ � xðk � sMÞ

2

6666664

3

7777775

T

ðU � Q3Þ

�Pk�sðkÞ�1
s¼k�sM

xðsÞ

þ
Pk�sm�1

s¼k�sðkÞ xðsÞ

þ
Pk�1

s¼k�sm
xðsÞ

	

xðkÞ � xðk � sMÞ

2

6666664

3

7777775
:

ð20Þ

Since time-varying delay satisfies 0\sm� sðkÞ� sM ,

we obtain �s1

Pk�sm�1
s¼k�sM

fTðsÞðU � Q2ÞfðsÞ
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¼�s1

Xk�sðkÞ�1

s¼k�sM

fTðsÞðU�Q2ÞfðsÞþ
Xk�sm�1

s¼k�sðkÞ
fTðsÞðU�Q2ÞfðsÞ

0
@

1
A;

��
Xk�sðkÞ�1

s¼k�sM

xðsÞ
gðsÞ

� � !T

ðU�Q2Þ
Xk�sðkÞ�1

s¼k�sM

xðsÞ
gðsÞ

� � !

�
Xk�sm�1

s¼k�sðkÞ

xðsÞ
gðsÞ

� �0
@

1
A

T

ðU�Q2Þ
Xk�sm�1

s¼k�sðkÞ

xðsÞ
gðsÞ

� �0
@

1
A;

¼�

Pk�sm�1
s¼k�sðkÞxðsÞ

xðk�smÞ�xðk�sðkÞÞ
Pk�sðkÞ�1

s¼k�sM
xðsÞ

xðk�sðkÞÞ�xðk�sMÞ

2
66664

3
77775

T

ðU�Q2Þ
ð1�-Þ 02n

	 ðU�Q2Þ
-

2
4

3
5

Pk�sm�1
s¼k�sðkÞxðsÞ

xðk�smÞ�xðk�sðkÞÞ
Pk�sðkÞ�1

s¼k�sM
xðsÞ

xðk�sðkÞÞ�xðk�sMÞ

2
66664

3
77775
;

where -¼ðsM�sðkÞÞðsM�smÞ�1;0\-\1. By reciprocal

convex Lemma 2, we have �s1

Pk�sm�1
s¼k�sM

fTðsÞðU�
Q2ÞfðsÞ

� �

Pk�sm�1
s¼k�sðkÞ ~xijðsÞ

xðk � smÞ � xðk � sðkÞÞ
Pk�sðkÞ�1

s¼k�sM
xðsÞ

xðk � sðkÞÞ � xðk � sMÞ

2
66664

3
77775

T

U � Q2 U �M1

	 U � Q2

� �

Pk�sm�1
s¼k�sðkÞ ~xijðsÞ

xðk � smÞ � xðk � sðkÞÞ
Pk�sðkÞ�1

s¼k�sM
xðsÞ

xðk � sðkÞÞ � xðk � sMÞ

2

66664

3

77775
:

ð21Þ

where U �M1 ¼
U �M11 U �M12

	 U �M13

� �
:

Similarly, we get �s1

Pk�sm�1
s¼k�sM

gTðsÞðU � Rdþ1ÞgðsÞ

¼ � s1

Xk�sðkÞ�1

s¼k�sM

gTðsÞðU � Rdþ1ÞgðsÞ þ
Xk�sm�1

s¼k�sðkÞ
gTðsÞðU � Rdþ1ÞgðsÞ

0
@

1
A;

� �
xðk � sðkÞÞ � xðk � sMÞ
xðk � smÞ � xðk � sðkÞÞ

� �T
U � Rdþ1 U � N1

	 U � Rdþ1

� �

�
xðk � sðkÞÞ � xðk � sMÞ
xðk � smÞ � xðk � sðkÞÞ

� �
:

ð22Þ

It should be noted that when sðkÞ ¼ sm or sðkÞ ¼ sM , we

get xðk � smÞ � xðk � sðkÞÞ ¼ 0 or xðk � sðkÞÞ � xðk �
sMÞ ¼ 0; respectively. Thus the above inequalities still

hold. Also, from DV4ðkÞ we obtain the following

�s2

P�sm�1
l¼�sM

Pk�1
s¼kþl g

TðsÞðU � SÞgðsÞ

� �
X�sm�1

l¼�sM

Xk�1

s¼kþl

gðsÞ
 !T

ðU� SÞ
X�sm�1

l¼�sM

Xk�1

s¼kþl

gðsÞ
 !

;

¼�
X�sm�1

l¼�sM

ðxðkÞ� xðkþ lÞÞTðU� SÞ
X�sm�1

l¼�sM

ðxðkÞ� xðkþ lÞÞ;

¼� s1xTðkÞ�
Xk�sðkÞ�1

l¼k�sM

xTðlÞ�
Xk�sm�1

l¼k�sðkÞ
xTðlÞ

0

@

1

AðU� SÞ

� s1xðkÞ�
Xk�sðkÞ�1

l¼k�sM

xðlÞ�
Xk�sm�1

l¼k�sðkÞ
xðlÞ

0
@

1
A:

ð23Þ

It follows from (6) and (7), the nonlinear functions

satisfy

~xijðkÞ
f ð~xijðkÞÞ

� �T
z1ðFT

1 F2 þ FT
2 F1Þ z1ð�FT

1 � FT
2 Þ

	 2z1

� �

~xijðkÞ
f ð~xijðkÞÞ

� �
� 0;

ð24Þ

~xijðk � sðkÞÞ
gð~xijðk � sðkÞÞÞ

� �T
z2ðGT

1 G2 þ GT
2 G1Þ z2ð�GT

1 � GT
2 Þ

	 2z2

� �

~xijðk � sðkÞÞ
gð~xijðk � sðkÞÞÞ

� �
� 0:

ð25Þ

In addition for any matrices Fr1 and Fr2, the following

equality is always true

2ðxTðk þ 1ÞðU � Fr1Þ � xTðkÞðU � Fr2ÞÞ � ½ðIN � AÞxðkÞ
þ ðIN � AdÞxðk � sðkÞÞ þ ðIN � BÞFðxðkÞÞ
þ ðIN � CÞGðxðk � sðkÞÞÞ þ ðIN �W1ÞC1xðkÞ
þ ðIN �W2ÞC2xðk � sðkÞÞ � xðk þ 1Þ� ¼ 0:

ð26Þ

Given gðkÞ ¼ xðk þ 1Þ � xðkÞ. Obviously, xðk þ 1Þ�
Pk

s¼k�sðkÞ gðsÞ � xðk � sðkÞÞ ¼ 0, thus, for arbitrary

matrices Fr3 and Fr4 of appropriate dimensions, we can

obtain that

0 ¼ C1
0 U � Fr3

0 U � Fr4

� �
C2; ð27Þ

where C1¼½xTðkþ1Þ�xTðkÞþgTðxðk�sðkÞÞÞ
Pk

s¼k�sðkÞ

gTðsÞþxTðk�sðkÞÞ� and C2¼½xTðkþ1Þ xTðkþ1Þ�
Pk

s¼k�sðkÞ gTðsÞ�xTðk�sðkÞÞ�T . Combining (11)–(27), it

can be concluded that,
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DVðkÞ�
X

1� i\j�N

WT
ijðkÞXijWijðkÞ�

X

1� i\j�N

kmaxðXijÞ

j WijðkÞ j2;
ð28Þ

where Xij is defined as in (8). Noticing that kmaxðXijÞ\0

and letting

k0 ¼ max
1� i\j�N

kmaxðXijÞ\0: ð29Þ

It follows from (28) that

DVðkÞ� k0

X

1� i\j�N

j ~xijðkÞ j2 : ð30Þ

One can easily conclude from the above that

lim
k�!þ1

j xiðkÞ � xjðkÞ j¼ 0: ð31Þ

According to Definition 1, system (4) is stable. This

completes the proof.

Assuming that the network evolves with neither state

delay and the nonlinear part Gðxðk � sðkÞÞÞ, then the net-

works (4) degenerate as

xðk þ 1Þ ¼ ðIN � AÞxðkÞ þ ðIN � BÞFðxðkÞÞ
þ ðW1 � C1ÞxðkÞ þ ðW2 � C2Þxðk � sðkÞÞ: ð32Þ

Similar to Theorem 1, the synchronization criteria can

be derived for the above system.

Corollary 1 Under Assumption 1, the discrete-time

complex network (32) is globally asymptotically synchro-

nized if there exist matrices Pst [ 0;Qst [ 0; ðs ¼
1; 2; 3; t ¼ 1; 2; 3Þ;Ru [ 0; ðu ¼ 1; 2; . . .; d þ 1Þ; S [ 0 and

matrices z1, Frv, (v = 1, 2, 3, 4) with appropriate dimen-

sions such that the following LMIs hold

Q2 M1

	 Q2

� �
� 04n; ð34Þ

Rdþ1 N1

	 Rdþ1

� �
� 02n; ð35Þ

where

X̂ij
1;3 ¼ Xij

1;3 þ Fr2Ad; X̂
ij
3;5 ¼ Xij

3;5 � AT
d FT

r1:

and the other parameters are defined as in Theorem 1.

Case 2 Now, we consider the case when there is neither

state delay and state coupling, the system (4) reduces to the

following

xðk þ 1Þ ¼ ðIN � AÞxðkÞ þ ðIN � BÞFðxðkÞÞ
þ ðIN � CÞGðxðk � sðkÞÞÞ
þ ðW2 � C2Þxðk � sðkÞÞ:

ð36Þ

The synchronization criterion for the above system can

be easily accessible from Corollary 2.

Corollary 2 Under Assumption 1, the discrete-time

complex network (36) is globally asymptotically synchro-

nized if there exist matrices Pst [ 0;Qst [ 0; ðs ¼
1; 2; 3; t ¼ 1; 2; 3Þ;Ru [ 0; ðu ¼ 1; 2; . . .; d þ 1Þ; S [ 0 and

matrices z1, z2, Frv, (v = 1, 2, 3, 4) with appropriate

dimensions such that the following LMIs hold

�Xij\0; ð37Þ

Q2 M1

	 Q2

� �
� 04n; ð38Þ

Rdþ1 N1

	 Rdþ1

� �
� 02n; ð39Þ

where

X̂ij ¼

Xij
1;1 X1;2 X̂ij

1;3 X1;4 Xij
1;5 X1;6 X1;7 X1;8 Fr3 X1;10

	 X2;2 X2;3 X2;4 X2;5 X2;6 X2;7 X2;8 0 0

	 	 X3;3 X3;4 X̂ij
3;5 0 �M12 X3;8 X3;9 0

	 	 	 X4;4 �PT
13 X4;6 X4;7 X4;8 0 0

	 	 	 	 X5;5 P12 P13 P13 X5;9 Fr3B

	 	 	 	 	 X6;6 �QT
31 �QT

31 0 0

	 	 	 	 	 	 X7;7 X7;8 0 0

	 	 	 	 	 	 	 X8;8 0 0

	 	 	 	 	 	 	 	 X9;9 0

	 	 	 	 	 	 	 	 	 X10;10

2
66666666666666666664

3
77777777777777777775

\0; ð33Þ

206 Cogn Neurodyn (2014) 8:199–215

123



�Xij
1;1 ¼ Xij

1;1 � Nw
ð1Þ
ij #

T
1 Fr2C1#1 � Nw

ð1Þ
ij #

T
1 CT

1 FT
r2#1;

�Xij
1;3 ¼ Xij

1;3 þ Fr2Ad; �Xij
1;5 ¼ Xij

1;5 þ Nw
ð1Þ
ij CT

1 FT
r1;

�Xij
3;5 ¼ Xij

3;5 � AT
d FT

r1:

and the other parameters are defined as in Theorem 1.

Case 3 Consider system (4) in the absence of both state

delay and coupling delay. Then (4) becomes

xðk þ 1Þ ¼ðIN � AÞxðkÞ þ ðIN � BÞFðxðkÞÞ
þ ðIN � CÞGðxðk � sðkÞÞÞ
þ ðW1 � C1ÞxðkÞ:

ð40Þ

It is easy to obtain the synchronization criterion for the

above system (40), which is given in the following

corollary.

Corollary 3 Under Assumption 1, the system (40) is

globally asymptotically synchronized if there exist matrices

Pst [ 0;Qst [ 0; ðs ¼ 1; 2; 3; t ¼ 1; 2; 3Þ;Ru [ 0; ðu ¼
1; 2; . . .; d þ 1Þ; S [ 0 and matrices z1, z2, Frv, (v = 1,

2, 3, 4) with appropriate dimensions such that the follow-

ing LMIs hold

~Xij\0; ð41Þ

Q2 M1

	 Q2

� �
� 04n; ð42Þ

Rdþ1 N1

	 Rdþ1

� �
� 02n; ð43Þ

where ~Xij
1;3 ¼ Fr3; ~Xij

3;5 ¼ Fr4 � FT
r3 and other parameters

are defined as in Theorem 1.

Norm-bounded uncertainties

In this section, we will discuss the delay-dependent robust

synchronization criteria for the uncertain system

xiðk þ 1Þ ¼ AðkÞxiðkÞ þ AdðkÞxiðk � sðkÞÞ
þ BðkÞf ðxiðkÞÞ þ CðkÞgðxiðk � sðkÞÞÞ

þ
XN

j¼1

w1ijC1xjðkÞ þ
XN

j¼1

w2ijC2xjðk � sðkÞÞ;

i ¼ 1; 2; . . .;N; k 2 N:

ð44Þ

Here A(k), Ad(k), B(k), and C(k) are time-varying

matrices defined by

AðkÞ ¼ Aþ DAðkÞ; AdðkÞ ¼ Ad þ DAdðkÞ;
BðkÞ ¼ Bþ DBðkÞ; CðkÞ ¼ C þ DCðkÞ;

where the constant matrices A, Ad, B, and C are known and

DAðkÞ;DAdðkÞ;DBðkÞ; and DCðkÞ are unknown matrices

representing the time-varying parameter uncertainties

which are assumed to satisfy the condition

½DAðkÞ DAdðkÞ DBðkÞ DCðkÞ� ¼ LFðkÞ ½Ea Ead Eb Ec�
ð45Þ

where Ea, Ead, Eb, Ec and L are constant matrices of

appropriate dimensions. F(k) is an unknown time-varying

real matrix satisfying

FTðkÞFðkÞ� I; 8k [ 0: ð46Þ

Using Kronecker product, we can rewrite system (44) into

a more compact form as

xðk þ 1Þ ¼ðIN � ðAþ DAðkÞÞÞxðkÞ þ ðIN � ðAd þ DAdðkÞÞÞ
xðk � sðkÞÞ þ ðIN � ðBþ DBðkÞÞÞFðxðkÞÞ
þ ðIN � ðC þ DCðkÞÞÞGðxðk � sðkÞÞÞ
þ ðW1 � C1ÞxðkÞ þ ðW2 � C2Þxðk � sðkÞÞ;
k 2 N: ð47Þ

The initial condition associated with the system (47) is

given by

xðsÞ ¼ /ðsÞ; s ¼ �sM ; �sM þ 1; . . .; 1: ð48Þ

The following lemma can be utilized to derive the results.

Lemma 4 (Petersen 1987) Given matrices

v = vT, G, H with appropriate dimensions, then

vþ GFðkÞH þ HT FTðkÞGT\0

for all F(k) satisfying FT(k)F(k) B I, if and only if there

exists an �[ 0 such that

vþ ��1GGT þ �HT H\0:

Delay-dependent robust stability criterion for the system

(47) is derived in the following theorem.

Theorem 2 Under Assumption 1, the uncertain system

(47) is globally robustly asymptotically synchronized if

there exist matrices Pst [ 0;Qst [ 0; ðs ¼ 1; 2; 3; t ¼
1; 2; 3Þ;Ru [ 0; ðu ¼ 1; 2; . . .; d þ 1Þ; S [ 0, z1, z2, Frv,

(v = 1, 2, 3, 4) with appropriate dimensions and positive

scalars �1; �2 such that the following LMIs hold

Nij ¼

Xij Fr1L1 �1ET
1 Fr2L2 �2ET

2

	 ��1I 0 0 0

	 	 ��1I 0 0

	 	 	 ��2I 0

	 	 	 	 ��2I

2

6666664

3

7777775
\0; ð49Þ

Q2 M1

	 Q2

� �
� 04n; ð50Þ

Rdþ1 N1

	 Rdþ1

� �
� 02n; ð51Þ
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where

L1 ¼ 0 0n�ðl�1Þn 0 LT 0 0 0 0 0 0 0 0

 �T

;

L2 ¼ LT 0n�ðl�1Þn 0 0 0 0 0 0 0 0 0 0

 �T

;

E1 ¼ Ea 0n�ðl�1Þn 0 Ead 0 0 0 0 0 0 Eb Ec


 �T
;

E2 ¼ �Ea 0n�ðl�1Þn 0 Ead 0 0 0 0 0 0 �Eb �Ec


 �T
;

l¼ 1;2; . . .;d:

Remark 2 Li and Chen (2004) have derived both delay-

independent and delay-dependent asymptotic stability

criteria in terms of LMIs for network synchronization in

which the time-delay assumed to be constant.

Synchronization of a linear array of identical logistic

maps have been studied by Martı̀ and Masoller (2003) and

the coupling delay proportional to the distance between the

maps. Park et al. (2013) has proposed some delay-

dependent synchronization criterion for the coupled

discrete-time neural networks with time-varying delays in

network couplings. Finsler’s lemma has been utilized to

derive LMIs. Based on piecewise analysis method and

Lyapunov functional method, authors investigated the

synchronization problem for continuous/discrete complex

dynamical networks with time-varying delays in the

dynamical nodes and the coupling term (Yue and Li

2010). However, these results were restricted to constant

delay or non parameter uncertainties. In this paper, both

time-varying coupling delays and parameter uncertainties

are considered which can describe more realistic complex

networks. By implementing delay-partitioning technique

and reciprocal convex lemma, conservative results are

developed in terms of LMIs. It is noted that the

conservatism of the given condition is reduced as the

number of delay partitioning grows.

Remark 3 In (32), if the parameter uncertainties are taken

into account, then the networks become

xðk þ 1Þ ¼ ðIN � ðAþ DAðkÞÞÞxðkÞ
þ ðIN � ðBþ DBðkÞÞÞFðxðkÞÞ
þ ðW1 � C1ÞxðkÞ þ ðW2 � C2Þxðk � sðkÞÞ:

ð52Þ

The following corollary provides the sufficient condition

for synchronization of the networks (52).

Corollary 4 Under Assumption 1, the uncertain system

(52) is globally robustly asymptotically synchronized if

there exist matrices Pst [ 0; Qst [ 0; ðs ¼ 1; 2; 3; t ¼ 1; 2;

3Þ; Ru [ 0; ðu ¼ 1; 2; . . .; d þ 1Þ; S [ 0, z1, z2, Frv, (v =

1, 2, 3, 4) with appropriate dimensions and positive scalars

�1; �2 such that the following LMIs hold

N̂ij ¼

�Xij Fr1L̂1 �1ÊT
1 Fr2L̂2 �2ÊT

2

	 ��1I 0 0 0

	 	 ��1I 0 0

	 	 	 ��2I 0

	 	 	 	 ��2I

2
6666664

3
7777775
\0; ð53Þ

Q2 M1

	 Q2

� �
� 04n; ð54Þ

Rdþ1 N1

	 Rdþ1

� �
� 02n; ð55Þ

where

L̂1 ¼ 0 0n�ðl�1Þn 0 LT 0 0 0 0 0 0 0

 �T

;

L̂2 ¼ LT 0n�ðl�1Þn 0 0 0 0 0 0 0 0 0

 �T

;

Ê1 ¼ Ea 0n�ðl�1Þn 0 0 0 0 0 0 0 0 Eb


 �T
;

Ê2 ¼ �Ea 0n�ðl�1Þn 0 0 0 0 0 0 0 0 �Eb


 �T
;

l ¼ 1;2; . . .;d:

and �Xij is defined as in Corollary 1.

Remark 4 Consider the networks (36) with parameter

uncertainties, that is

xðk þ 1Þ ¼ðIN � ðAþ DAðkÞÞÞxðkÞ þ ðIN � ðB
þ DBðkÞÞÞFðxðkÞÞ
þ ðIN � ðC þ DCðkÞÞÞGðxðk � sðkÞÞÞ
þ ðW2 � C2Þxðk � sðkÞÞ; k 2 N:

ð56Þ

The following corollary provides the delay-dependent

synchronization criteria for the uncertain discrete-time

complex networks (56).

Corollary 5 Under Assumption 1, the uncertain system

(56) is globally robustly asymptotically synchronized

if there exist matrices Pst [ 0;Qst [ 0; ðs ¼ 1; 2; 3;

t ¼ 1; 2; 3Þ;Ru [ 0; ðu ¼ 1; 2; . . .; d þ 1Þ; S [ 0, z1, z2, Frv,

(v = 1, 2, 3, 4) with appropriate dimensions and positive

scalars �1; �2 such that the following LMIs hold

�Nij ¼

�Xij Fr1L1 �1
�ET

1 Fr2L2 �2
�ET

2

	 ��1I 0 0 0

	 	 ��1I 0 0

	 	 	 ��2I 0

	 	 	 	 ��2I

2

66664

3

77775
\0; ð57Þ

Q2 M1

	 Q2

� �
� 04n; ð58Þ

Rdþ1 N1

	 Rdþ1

� �
� 02n; ð59Þ

where
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�E1 ¼ Ea 0n�ðl�1Þn 0 0 0 0 0 0 0 0 Eb Ec


 �T
;

�E2 ¼ �Ea 0n�ðl�1Þn 0 0 0 0 0 0 0 0 �Eb �Ec


 �T
;

l¼ 1;2; . . .;d:

and �Xij is defined as in Corollary 2.

Remark 5 If parameter uncertainties are considered in the

system (40), the system becomes

xiðk þ 1Þ ¼ ðAþ DAðkÞÞxðkÞ þ ðBþ DBðkÞÞFðxðkÞÞ
þ ðC þ DCðkÞÞGðxðk � sðkÞÞÞ
þ ðW1 � C1ÞxðkÞ; k 2 N: ð60Þ

The following corollary provides sufficient

synchronization criteria for the uncertain discrete-time

complex networks (60).

Corollary 6 Under Assumption 1, the uncertain discrete-

time complex network (60) is globally robustly asymptoti-

cally synchronized if there exist matrices Pst [
0;Qst [ 0; ðs ¼ 1; 2; 3; t ¼ 1; 2; 3Þ; Ru [ 0; ðu ¼ 1; 2; . . .;

d þ 1Þ; S [ 0, z1, z2, Frv, (v = 1, 2, 3, 4) with appropriate

dimensions and positive scalars �1; �2 such that the fol-

lowing LMIs hold

~Nij ¼

~Xij Fr1L1 �1
�ET

1 Fr2L2 �2
�ET

2

	 ��1I 0 0 0

	 	 ��1I 0 0

	 	 	 ��2I 0

	 	 	 	 ��2I

2
6666664

3
7777775
\0; ð61Þ

Q2 M1

	 Q2

� �
� 04n; ð62Þ

Rdþ1 N1

	 Rdþ1

� �
� 02n; ð63Þ

where ~Xij is given in Corollary 3.

Remark 6 Park et al. (2009, 2013) considered the syn-

chronization problem of discrete-time delayed complex

networks. In both papers, the parameter uncertainties have

not been taken into consideration. Since the connection

weights of the nodes of complex networks depend on

certain resistance and capacitance values, it includes

uncertainties in complex networks. Therefore, it is neces-

sary to analyze the synchronization problem of complex

networks with uncertainties. Corollary 5 and Corollary 6

provide sufficient synchronization criterion for complex

networks with time-varying delay and parameter uncer-

tainties, respectively. Moreover, synchronization for dis-

crete-time complex networks with randomly occurring

information deserves our future investigation.

Numerical examples

In this section, numerical examples are provided to sub-

stantiate the theoretical results.

Example 1 Consider the discrete-time complex networks

with 4-node which is modeled as in Fig. 1. The parameters

are given as

A¼
0:13 �0:26

0:31 0:42

� �
; Ad ¼

0:12 0:15

0:32 0:21

� �
; B¼

0:25 0:75

0:35 0:25

� �
;

C¼
0:14 0:15

0:45 0:23

� �
; C1¼C2¼

0:25 0

0 0:25

� �
:

Let the nonlinear vector-valued functions be given by

f ðxiðkÞÞ¼
�0:2xi1ðkÞþ0:15xi2ðkÞþ0:5tanhð0:3xi1ðkÞÞ
0:24xi2ðkÞ�0:5tanhð0:4xi2ðkÞÞ

� �
;

gðxiðkÞÞ¼
0:08xi2ðkÞ�0:8tanhð0:2xi1ðkÞÞ
0:08xi2ðkÞ

� �
; i¼ 1;2;3;4:

Then, Assumption 1 is satisfied with the matrices

F1 ¼
�0:3 0:4

0 0:8

� �
;F2 ¼

�0:8 0:4
0 0:2

� �
;G1

¼ 0:4 0

0 0:6

� �
;G2 ¼

0:2 0

0 0:3

� �
:

The outer-coupling matrices are described as

W1 ¼ W2 ¼ 0:15 	

�3 1 1 1

1 �3 1 1

1 1 �3 1

1 1 1 �3

2
664

3
775:

Generally, ji 9 Wi (i = 1, 2) describes the coupling

structure and strength information in symmetric networks,

where ji is called the coupling strength. The discrete time-

varying delay is assumed as sðkÞ ¼ 8� 2sinðkp
2
Þ. It can be

verified that, the lower and upper bounds of the time-delay

are sm ¼ 6 and sM ¼ 10, respectively.

Choose d = 3. By using Matlab LMI toolbox, Theorem

1 can be solved with set of feasible solutions given as

Fig. 1 Structure of discrete-

time complex networks with

4-nodes
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P11¼
0:8946 �0:3813

�0:3813 0:1704

� �
; P12¼

0:0118 �0:0038

�0:0038 0:0037

� �
;

P13¼
0:0103 �0:0037

�0:0037 0:0028

� �
;P22¼

0:0187 �0:0072

�0:0072 0:0056

� �
;

P23¼
0:0209 �0:0080

�0:0080 0:0052

� �
; P33¼

0:0131 �0:0053

�0:0053 0:0031

� �
:

Then, it follows from Theorem 1 that the system (1)

with given parameters achieves synchronization, which is

further verified by the simulation results shown in Figs. 2

and 3. Figure 2 provides the state trajectories xi1(k),

xi2(k) of the system (1) and Fig. 3 shows that the error

trajectories ei1(k) = xi1(k) - x11(k), ei2(k) = xi2(k) -

x12(k), (i = 2, 3, 4) of the system (1) which converges

zero asymptotically.

Example 2 The scale-free networks model is considered

as a significant discovery because it has been successfully

applied to many complex real-world networks. Here, we

consider a scale-free networks with 50 dynamical nodes,

and the coupling matrix W2 of the networks can be ran-

domly generated by BA scale-free model (Fig. 4), where

each node is the discrete-time dynamical delayed system

(36) with the following parameters

A ¼
0:01 0

0 0:02

� �
; B ¼

0:2 �0:1

0:3 �0:2

� �
;

C ¼
0:3 0:1

�0:3 0:2

� �
; C2 ¼

0:003 0

0 0:003

� �
:

The nonlinear vector-valued functions are defined as

f ðxiðkÞÞ ¼ gðxiðkÞÞ ¼ 0:5tanhðxiðkÞÞ:

Then, by using Matlab toolbox, a set of feasible solu-

tions for the LMIs given in Corollary 2 can be obtained as

follows

P11¼
0:0142 �0:0003

�0:0003 0:0081

� �
; P12¼

0:0028 �0:0002

�0:0002 0:0015

� �
;

P13¼
0:0078 �0:0013

�0:0013 0:0044

� �
; P22¼

0:0012 �0:0001

�0:0001 0:0011

� �
;

P23¼
0:0021 �0:0001

�0:0001 0:0019

� �
; P33¼

0:0016 �0:0001

�0:0001 0:0013

� �
:

Figure 5 depicts the synchronization errors for system

(36) with randomly chosen initial conditions. The

maximum upper bound sM of the time-varying delay for

different values of sm are listed in Table 1. Generally, given

the dynamics of an isolate node and the inner linking

structural matrix, synchronization of the dynamical

network with respect to a specific coupling configuration,

is said to be strong if the network can synchronize with a

small value of the coupling strength. From Table 1, it can

be observed that conditions given in Corollary 2 are less

conservative than the results obtained by Park et al. (2013).

Example 3 Consider complex dynamical networks with

three linearly coupled identical nodes which describe the

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2 State responses of

System (1)
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discrete-time version of multiple Lorenz chaos systems

(Lorenz 1963) coupled via complex networks. This chaos

system has quite complex and abundant property, such as

homoclinic bifurcation, period doubling phenomena, pre-

turbulence, intermittent chaos (Chacon 1998; Fradkov and

Pogromsky 1998; Sparrow 1982). The dynamic equation of

such networks is described by (52) with the following

parameters

A ¼
1� ah ah 0

ch 1� h 0

0 0 1� bh

2
64

3
75; B ¼

1 0 0

0 1 0

0 0 1

2
64

3
75;

C1 ¼ C2 ¼
0:3 0 0

0 0:2 0

0 0 0:5

2
64

3
75;

Ea ¼ 0:3I; Eb ¼ 0:4I; M ¼ I; FðkÞ ¼ sinðkÞ;

a ¼ 10; b ¼ 8

3
; c ¼ 28; h ¼ 0:01:

The nonlinear function is defined as

f ¼
0

�hxi1ðkÞxi3ðkÞ
hxi1ðkÞxi2ðkÞ

2
4

3
5:

The outer coupling matrices are of the form

W1 ¼ W1 ¼
�2 1 1

1 �2 1

1 1 �2

2
4

3
5:

For the above system, a set of feasible solutions can be

obtained by solving the LMIs in Corollary 4. Then, it

follows that the system (52) with given parameters

achieves synchronization, which is further verified by the

simulation results shown in Figs. 6, 7 and 8. The chaotic

behavior of the system can be realized from Fig. 6, which

depicts the state trajectories of the system (52). Figure 7

represents that states of the 2nd and 3rd system are

synchronized with states of 1st system and Fig. 8

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

Fig. 3 Synchronization errors

eij(k) of System (1),

i = 2, 3, 4, j = 1, 2

Fig. 4 Structure of BA Scale-free complex networks with dynamical

nodes N = 50
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represents that the synchronization errors approach zero

asymptotically. Thus, the numerical simulation affirms the

theoretical results.

Example 4 Consider an example for the model (60) with

the following parameters

A ¼
0:1 0

0 0:2

� �
; B ¼

0:2 �0:1

0:3 �0:2

� �
;

C ¼
0:01 0:03

�0:03 0:02

� �
; C1 ¼

0:01 0

0 0:01

� �
;

Ea ¼
1 0

0 1

� �
; Eb ¼

1 0

0 1

� �
; Ec ¼

1 0

0 1

� �
;

L ¼
0:05 0

0 0:05

� �
:
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−100
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20

30
40
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Fig. 6 Phase-space trajectories

of Lorenz system (52) with 3

nodes

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

Fig. 5 Error trajectories

eij(k) of System (36),

i ¼ 1; . . .; 50; j ¼ 1; 2:

Table 1 Allowable upper bound sM for different values of lower

bound sm

sm 1 5 10 20

sM 24 45 73 98
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The nonlinear vector-valued functions are defined as

f ðxiðkÞÞ ¼ gðxiðkÞÞ ¼
xi1ðkÞ þ tanhðxi1ðkÞÞ
xi2ðkÞ þ tanhðxi2ðkÞÞ

� �
:

The time-varying delays are assumed to be

sðkÞ ¼ 2� sinðkp
2
Þ, then sm ¼ 1 and sM ¼ 3: If we take

the asymmetric outer coupling matrix as

W1 ¼
�3 1 2

2 �4 2

3 3 �6

2

4

3

5:

Then using Matlab LMI Toolbox, we can obtain the

feasible solution of Corollary 6 which is given by

P11¼
33:9512 �0:4953

�0:4953 24:1615

� �
; P12¼

1:9913 �0:6337

�0:6337 1:8573

� �
;

P13¼
2:8577 �0:3700

�0:3700 1:5548

� �
; P22¼

8:6565 �4:2438

�4:2438 10:2615

� �
;

P23¼
3:1898 �1:4397

�1:4397 4:7923

� �
; P33¼

5:4081 �2:5643

�2:5643 6:4755

� �
;

with scalars �1 ¼ 0:9440 and �2 ¼ 0:5640. Thus, by

assuming d = 1 the maximum delay bound sM is 30

whereas in (Wang and Song 2011) it is 4. This shows the

conservatism of our result. Also, it should be noted that the

criteria proposed by Liang et al. (2008b) fail to solve this
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20

0 10 20 30 40 50 60 70 80 90 100
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Fig. 7 State trajectories of

Lorenz system (52)
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Fig. 8 Synchronization errors
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synchronization problem with the above parameters for

both symmetric and asymmetric coupled matrix.

Conclusions

This paper described the problem of synchronization for

discrete-time complex dynamical networks with time-

varying delays in the dynamical nodes and the coupling

term. The parameter uncertainties are imbedded in the

network state. Rather than the commonly used Lipschitz

condition, a more general sector-like nonlinear condition

has been employed to describe the nonlinearities which

exist in the network. By utilizing Lyapunov–Krasovskii

functional, Kronecker product and free-weighting matrix

approach sufficient delay-dependent synchronization cri-

teria are derived by a set of linear matrix inequalities.

Moreover, delay-partitioning technique and convex reci-

procal lemma are exploited to obtain less conservative

results. Finally, numerical examples are provided to dem-

onstrate the effectiveness of the derived criteria. The

obtained results can lead to less conservative results than

those obtained from the existing methods.
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