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Abstract This paper considers the fully complex back-

propagation algorithm (FCBPA) for training the fully

complex-valued neural networks. We prove both the weak

convergence and strong convergence of FCBPA under mild

conditions. The decreasing monotonicity of the error

functions during the training process is also obtained. The

derivation and analysis of the algorithm are under the

framework of Wirtinger calculus, which greatly reduces the

description complexity. The theoretical results are sub-

stantiated by a simulation example.

Keywords Complex-valued neural networks � Fully

complex backpropagation algorithm � Wirtinger calculus �
Convergence

Introduction

The theoretical studies and practical implementations of

complex-valued neural network (CVNN) have attracted

considerable attention in signal processing, pattern recog-

nition, and medical information processing (Fink et al.

2014; Hirose 2012; Nitta 2013). Based on different choices

of the activation function, there are two main CVNN

models: the split CVNN (Nitta 1997) and the fully CVNN

(Kim and Adali 2003). The split CVNN uses a pair of real-

valued functions to separately process the real part and the

imaginary part of the neuron’s input signal. This strategy

can effectively overcome the singularity problem during

the training procedure. In contrast, activation functions of

the fully CVNN are fully complex-valued, which helps the

network make fully use of the phase information and thus

achieve better performance in some applications. As one of

the most popular training methods for neural networks,

backpropagation algorithm (BPA) has been extended from

the real domain to the complex domain in order to train the

CVNN. Accordingly, there are two types of complex BPA:

one is the split-complex BPA (SCBPA) (Nitta 1997) for

split CVNN, and another is the fully complex BPA

(FCBPA) (Li and Adali 2008) for fully CVNN.

Convergence is the precondition for any iteration algo-

rithm to be used in real applications. (Wei et al. 2013;

Osborn 2010) The convergence of the BPA has been

extensively studied in literature (Wu et al. 2005, 2011;

Zhang et al. 2007, 2008, 2009; Shao and Zheng 2011),

where the boundedness and differentiability of the activa-

tion function are usually two necessary conditions for the

convergence analysis. However, as stated by the Liouvilles

theorem (an entire and bounded function in the complex

domain is a constant), the complex activation function can

not be both bounded and analytic. The conflict between the

boundedness and differentiability of the activation function

makes the theoretical convergence analysis for the complex

BPA more difficult than that for the BPA. Fortunately, as

the activation functions of the split CVNN can be split into

two bounded and differential real-valued functions, the

convergence analysis of SCBPA can then be conducted in

the real domain. For the corresponding convergence results,

H. Zhang (&) � Y. Zhang

Department of Mathematics, Dalian Maritime University,

Dalian 116026, People’s Republic of China

e-mail: zhhuisheng@163.com

H. Zhang � X. Liu

Research Center of Information and Control, Dalian University

of Technology, Dalian 116024, People’s Republic of China

D. Xu

College of Science, Harbin Engineering University,

Harbin 150001, People’s Republic of China

123

Cogn Neurodyn (2014) 8:261–266

DOI 10.1007/s11571-013-9276-7



we refer to (Nitta 1997; Zhang et al. 2013; Xu et al. 2010).

However, though FCBPA has been widely used in many

applications and has been experimentally shown to be

convergent for some kinds of activation functions (Kim and

Adali 2003), the theoretical convergence analysis remains

challengeable.

Despite the challenge posed by the Liouville‘s theorem,

another challenge for the theoretical convergence analysis

of FCBPA is that the traditional mean value theorem,

which is vital for the convergence analysis of BPA, dos not

hold in the complex domain. (For example: f ðzÞ ¼ ez

withz2 ¼ z1 þ 2pi. We have f(z2) - f(z1) = 0 but

ðz2 � z1Þf 0ðwÞ ¼ 2piew 6¼ 0 for all w.) By expanding the

analytic function with Taylor series and omitting the high

order terms, some local stability results for complex ICA

are obtained (Adali et al. 2008). Under the assumption that

the activation function is a contraction, the convergence of

the complex nonlinear adaptive filters is proved (Mandic

and Goh 2009). However, to the best of our knowledge, the

theoretical convergence results of the FCBPA has not yet

been established. This becomes the main concern of this

paper. Specifically, we make the following contributions:

• By introducing a mean value theorem for a holomor-

phic function (Mcleod 1965), we will prove both the

weak convergence and the strong convergence of

FCBPA.

• Instead of dropping the high order terms of the Taylor

series (Adali et al. 2008), we give an accurate estima-

tion for the difference of the error function between two

iterations using the mean value theorem. As a result,

our results are of global nature in that they are valid for

arbitrarily given initial values of the weights.

• The restrictive condition that the activation function is

a contraction is not needed in our analysis.

• The derivation and analysis of the algorithm are under

the framework of Wirtinger calculus, which greatly

reduces the description complexity.

The remainder of this paper is organized as follows. The

network structure and the derivation of the FCBPA based

on Wirtinger calculus are described in the next section.

‘‘Main results’’ section presents the main convergence

theorem of the paper. The detailed proof of the theorem is

given in Section Proofs. In ‘‘Simulation result’’ section we

use a simulation example to support our theoretical results.

The paper is concluded in ‘‘Conclusion’’ section.

Network structure and FCBPA based on Wirtinger

calculus

We consider a single hidden layer feedforward network

consisting of p input nodes, q hidden nodes, and 1 output

node. Let w0 ¼ ðw01;w02; � � � ;w0qÞT 2 C
q be the weight

vector between all the hidden units and the output unit, and

wl ¼ ðwl1;wl2; � � � ;wlpÞT 2 C
p be the weight vector between

all the input units and the hidden unit l ðl ¼ 1; 2; � � � ; qÞ. To

simplify the presentation, we write all the weight parameters

in a compact form, i.e., w ¼ ðwT
0 ;w

T
1 ; � � � ;wT

q Þ
T 2 C

qþpq and

we define a matrix V ¼ ðw1;w2; � � � ;wqÞT 2 C
q�p.

Given activation functions f ; g : C! C for the hidden

layer and output layer, respectively, we define a vector func-

tion FðxÞ ¼ ðf ðx1Þ; f ðx2Þ; � � � ; f ðxqÞÞT for x ¼ ðx1; x2; � � � ;
xqÞT 2 C

q. For an input z 2 C
p, the output vector of the hid-

den layer can be written as FðVzÞ and the final output of the

network can be written as

y ¼ gðw0 � FðVzÞÞ; ð1Þ

where w0 � FðVzÞ represents the inner product between the

two vectors w0 and FðVzÞ.
Suppose that fzk; dkgK

k¼1 � C
p � C is a given set of train-

ing samples, where zk is the input, and dk is the desired output.

The aim of the network training is to find the appropriate

network weights wF that can minimize the error function

EðwÞ ¼
XK

k¼1

ðdk � ykÞðdk � ykÞ; ð2Þ

where

yk ¼ gðw0 � FðVzkÞÞ ð3Þ

and the notation - denotes the complex conjugation.

As noted by Adali et al. (2008), any function h(z) that is

analytic in a bounded zone |z| \ R with a Taylor series

expansion with all real coefficients in |z| \ R satisfies the

property hðzÞ ¼ hðzÞ. Examples of such functions include

polynomials and most trigonometric functions and their

hyperbolic counterparts, which are qualified activation

functions of CVNNs (Kim and Adali 2003). As a result, we

suppose both the activation functions f ð�Þ and gð�Þ satisfy

f ðzÞ ¼ f ðzÞ, gðzÞ ¼ gðzÞ. Therefore,

yk ¼ gðw0 � FðVzkÞÞ: ð4Þ

E(w) can be viewed as a function of complex variable

vector w and its conjugate w. According to the Wirtinger

calculus (Brandwood 1983; Bos 1994), we can define two

gradient vectors rwE (by taking partial derivatives with

respect to w at the same time treating w as a constant

vector in E) and rwE (by taking partial derivatives with

respect to w at the same time treating w as a constant

vector). Then the gradient rwE defines the direction of the

maximum rate of change in E(w) with respect to w. As the

output node yk does not explicitly contain the variable

vector w, we can conclude rwyk ¼ 0. Thus, by the chain

rule of the Wirtinger calculus, we have
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oEðwÞ
ow0

¼
XK

k¼1

ðyk � dkÞg0ðw0 � FðVzkÞÞFðVzkÞ; ð5Þ

oEðwÞ
owl

¼
XK

k¼1

ðyk � dkÞg0ðw0 � FðVzkÞÞw0lf
0ðwl � zkÞzk;

l ¼ 1; 2 � � � ; q:
ð6Þ

Obviously,

rwEðwÞ ¼ oEðwÞ
ow0

� �T

;
oEðwÞ
ow1

� �T

; � � � ; oEðwÞ
owq

� �T
 !T

:

ð7Þ

Starting from an arbitrary initial value w0, the BPA based

on Wirtinger calculus updates the weights {wn} iteratively

by

wnþ1 ¼ wn � grwEðwnÞ; ð8Þ

where g[ 0 is the learning rate.

Main results

The following assumptions are needed in our convergence

analysis.

(A1) There exists a constant c1 [ 0 such that kwn
l k� c1

for all l ¼ 0; 1; � � � ; q, n ¼ 0; 1; � � �;
(A2) The functions f(z) and g(z) are analytic in a bounded

zone |z| \ R with a Taylor series expansion with all real

coefficients in |z| \ R, where R [ max{c2,c3} (c2 and c3

are defined in (17) below).

(A3) The set U1 ¼ fw : rwEðwÞ ¼ 0g contains only

finite points.

Remark 1 Assumption (A1) is the usual condition for

the convergence analysis of the gradient method for both

the real-valued neural networks (Zhang et al. 2007,

2008) and the CVNNs (Xu et al. 2010) in literature. As

noted by Adali et al. (2008), Assumption (A2) is satisfied

by quite a number of functions which are qualified as

activation functions of the fully CVNNs. Assumption

(A3) is used to establish a strong convergence result.

Now we present our convergence results.

Theorem 1 Suppose that the error function is given by

(2), that the weight sequence {wn} is generated by the

algorithm (8) for any initial value w0, that 0\g\ 1
L
, where

L is defined by (27) below, and that Assumptions (A1) and

(A2) are valid. Then we have

(a)

Eðwnþ1Þ�EðwnÞ; n ¼ 0; 1; 2; � � � ; ð9Þ

(b)

There is EF[ 0 such that lim
n!1

EðwnÞ ¼ EF; ð10Þ

(c)

There holds the weak convergence: lim
n!1

rwEðwnÞk k ¼ 0:

ð11Þ

Moreover, if Assumption (A3) is valid, then there holds the

strong convergence: there exists a point wF 2 U such that

(d)

lim
n!1

wn ¼ wF: ð12Þ

Proofs

Lemma 1 [see Theorem 10 in by Mcleod (1965)] Sup-

pose h is a holomorphic function defined on a connected

open set G in the complex plane. If z1 and z2 are points in G

such that the segment joining them is also in G then

hðz2Þ � hðz1Þ ¼ ðz2 � z1Þðk1h0ðn1Þ þ k2h0ðn2ÞÞ ð13Þ

for some n1 and n2 on the segment joining z1 and z2 and

some nonnegative numbers k1 and k2 such that

k1 þ k2 ¼ 1.

Lemma 2 Suppose Assumptions (A1) and (A2) are valid,

then rwEðwÞ satisfies Lipschitz condition, that is, there

exists a positive constant L1, such that

krwEðwnþ1Þ � rwEðwnÞk� L1kwnþ1 � wnk: ð14Þ

Similarly, there exists a positive constant L2, such that

krwEðwnþ1Þ � rwEðwnÞk� L2kwnþ1 � wnk: ð15Þ

Proof For simplicity, we introduce the following notations:

Fn;k ¼ FðVnzkÞ;Fn;k ¼ FðVnzkÞ; ð16Þ

for n ¼ 1; 2; � � � ; k ¼ 1; 2; � � � ;K.

By Assumption (A2), f and g have differentials of any

order in the zone {z: |z| \ R}. In addition, recalling

fzk; dkgK
k¼1 is finite and {wn} is bounded, we can define c2

and c3 such that

c2 ¼ sup
l;n;k
jwn

l � zkj; c3 ¼ sup
n;k
jwn

0 � FðVnzkÞj; ð17Þ

c4 ¼ sup
jzj\ maxfc2;c3g

fjf ðzÞj; jgðzÞj; jf 0ðzÞj; jg0ðzÞj; jg00ðzÞjg:

ð18Þ

Using (18), Lemma 1 and the Cauchy-Schwartz Inequality,

for any 1 B k B K and n ¼ 0; 1; � � �, we have that
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kFnþ1;k � Fn;kk ¼

f ðwnþ1
1 � zkÞ � f ðwn

1 � zkÞ
..
.

f ðwnþ1
q � zkÞ � f ðwn

q � zkÞ

0

BB@

1

CCA

��������

��������

¼

ðwnþ1
1 � zk � wn

1 � zkÞðk11f 0ðn11Þ þ k12f 0ðn12ÞÞ
..
.

ðwnþ1
q � zk � wn

q � zkÞðkq1f 0ðnq1Þ þ kq2f 0ðnq2ÞÞ

0
BB@

1
CCA

��������

��������

� c5

wnþ1
1 � wn

1

..

.

wnþ1
q � wn

q

0
BB@

1
CCA

��������

��������
� c5

Xq

l¼1

kwnþ1
l � wn

l k; ð19Þ

where c5 ¼
ffiffiffi
q
p

c4 sup
k

kzkk; kl1� 0; kl2� 0; kl1 þ kl2 ¼
1, nl1 and nl2 lie on the segment joining wnþ1

l � zk and

wn
l � zk, l ¼ 1; � � � ; q.

Similarly, we have

kFnþ1;k � F
n;kk� c5

Xq

l¼1

kwnþ1
l � wn

l k: ð20Þ

By (18), (19), Lemma 1 and the Cauchy-Schwartz

Inequality we have that for any 1 B k B K and n ¼ 0; 1; � � �

kynþ1
k � yn

kk ¼ kgðwnþ1
0 �Fnþ1;kÞ� gðwn

0 �Fn;kÞk

¼ kðwnþ1
0 �Fnþ1;k�wn

0 �Fn;kÞðg1g0ðf1Þþ g2g0ðf2ÞÞk

�c4ðkwnþ1
0 �wn

0kkFnþ1;kkþkwn
0kkFnþ1;k�Fn;kkÞ

� ffiffiffi
q
p

c2
4kwnþ1

0 �wn
0kþ c1c4c5

Xq

l¼1

kwnþ1
l �wn

l k

�c6kwnþ1�wnk; ð21Þ

where c6 ¼
ffiffiffiffiffiffiffiffiffiffiffi
qþ 1
p

maxf ffiffiffi
q
p

c2
4; c1c4c5g, g1� 0; g2�

0; g1 þ g2 ¼ 1, f1 and f2 lie on the segment joining wnþ1
0 �

Fnþ1;k and wn
0 � Fn;k.

In the same way, we can prove that

kg0ðwnþ1
0 � Fnþ1;kÞ � g0ðwn

0 � F
n;kÞk� c6kwnþ1 � wnk:

ð22Þ

With (18), (20), (22), and Cauchy-Schwartz Inequality we

obtain

kg0ðwnþ1
0 � Fnþ1;kÞFnþ1;k � g0ðwn

0 � F
n;kÞFn;kk

¼ kðg0ðwnþ1
0 � Fnþ1;kÞ � g0ðwn

0 � F
n;kÞÞFnþ1;k

þ g0ðwn
0 � F

n;kÞðFnþ1;k � F
n;kÞk

� jg0ðwnþ1
0 � Fnþ1;kÞ � g0ðwn

0 � F
n;kÞjkFnþ1;kk

þ jg0ðwn
0 � F

n;kÞjkðFnþ1;k � F
n;kÞk

� c6
ffiffiffi
q
p

c4kwnþ1 � wnk þ c4c5

Xq

l¼1

kwnþ1
l � wn

l k

� ffiffiffi
q
p

c4ðc5 þ c6Þkwnþ1 � wnk

ð23Þ

Combining (18), (21), (23), and the Cauchy-Schwartz

Inequality we can conclude

k oEðwnþ1Þ
ow0

� oEðwnÞ
ow0

k

¼ k
XK

k¼1

ðynþ1
k � dkÞg0ðwnþ1

0 � Fnþ1;kÞFnþ1;k

�
XK

k¼1

ðyn
k � dkÞg0ðwn

0 � F
n;kÞFn;kk

¼ k
XK

k¼1

ððynþ1
k � yn

kÞg0ðwnþ1
0 � Fnþ1;kÞFnþ1;k

þðyn
k � dkÞðg0ðwnþ1

0 � Fnþ1;kÞFnþ1;k � g0ðwn
0 � F

n;kÞFn;kÞÞk

�
XK

k¼1

ðjðynþ1
k � yn

kÞg0ðwnþ1
0 � Fnþ1;kÞjkFnþ1;kk

þjyn
k � dkjkg0ðwnþ1

0 � Fnþ1;kÞFnþ1;k � g0ðwn
0 � F

n;kÞFn;kkÞ

�
XK

k¼1

ðc2
4

ffiffiffi
q
p jynþ1

k � yn
k j þ ðc4 þ sup dkÞkg0ðwnþ1

0 � Fnþ1;kÞ

F
nþ1;k � g0ðwn

0 � F
n;kÞFn;kkÞ� L3kwnþ1 � wnk ð24Þ

where L3 ¼ K
ffiffiffi
q
p

c4ðc4c6 þ ðc4 þ sup dkÞðc5 þ c6ÞÞ.
Similarly, there exists a Lipschitz constants L4 such that

for l ¼ 1; � � � ; q

k oEðwnþ1Þ
owl

� oEðwnÞ
owl

k� L4kwnþ1 � wnk: ð25Þ

Hence, (7), (24), and (25) validate (14) by setting

L1 = L3 ? qL4.

Equation (15) can be proved in a similar way to (14).h

Now, we proceed to the proof of Theorem 2 by dealing

with Equations (9)-(12) separately.

Proof of (9) By the differential mean value theorem,

there exists a constant h 2 ½0; 1�, such that

Eðwnþ1Þ � EðwnÞ
¼ ðrwEðwn þ hDwnÞÞTDwn þ ðrwEðwn þ hDwnÞÞTDwn

¼ ðrwEðwnÞÞTDwn þ ðrwEðwnÞÞTDwn

þ ðrwEðwn þ hDwnÞ � rwEðwnÞÞTDwn

þ ðrwEðwn þ hDwnÞ � rwEðwnÞÞTDwn

� 2ReðrwEðwnÞTDwnÞ
þ ðkrwEðwn þ hDwnÞ � rwEðwnÞk
þ krwEðwn þ hDwnÞ � rwEðwnÞkÞkDwnk
� � 2gReððrwEðwnÞÞHrwEðwnÞÞ
þ ðL1 þ L2ÞhkDwnk2

¼ ð�2gþ ðL1 þ L2Þhg2ÞkrwEðwnÞk2 ð26Þ

To make (9) valid, we only require the learning rate g to

satisfy
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0\g\L; ð27Þ

where L ¼ 2
ðL1þL2Þh. h

Proof of (10) Equation (10) is directly obtained by (9)

and EðwnÞ[ 0ðn ¼ 1; 2; � � �Þ.

Proof of (11) Let b = 2g - (L1 ? L2)hg2. By (26), we

have

Eðwnþ1Þ�EðwnÞ � bkrwEðwnÞk2

� � � � �Eðw0Þ � b
Xn

t¼0

krwEðwtÞk2:
ð28Þ

Considering E(wn?1) [ 0, let n!1, then we have

b
X1

t¼0

krwEðwtÞk2�Eðw0Þ\1: ð29Þ

This immediately gives

lim
n!1
krwEðwnÞk ¼ 0: ð30Þ

h

The following lemma, which will be used in the proof of

(12), is a generalization of Theorem 14.1.5 by Ortega and

Rheinboldt (1970) from the real domain to the complex

domain. The proof of this lemma follows the same route as

(Ortega and Rheinboldt 1970) and we omit it here.

Lemma 3 [22] Let u : U � C
k ! Cðk� 1Þ be continu-

ous for a bounded closed region U, and

U0 ¼ fz 2 U : uðzÞ ¼ 0g.Suppose the set U0 contains only

finite points and the sequence {zn} satisfy:

(i) limn!1 uðznÞ ¼ 0;

(ii) limn!1 kznþ1 � znk ¼ 0.

Then, there exists a unique zF 2 U0 such that

lim
n!1

zn ¼ zF.

Proof of (12) Obviously rwEðwÞ is continuous under the

Assumption (A2). Using (8) and (11), we have

lim
n!1
kwnþ1 � wnk ¼ g lim

n!1
krwEðwnÞk ¼ 0: ð31Þ

Furthermore, the Assumption (A3) is valid. Thus, applying

Lemma 3, there exists a unique wF 2 U such that

lim
n!1

wn ¼ wF. h

Simulation result

In this section we illustrate the convergence behavior of

the FCBPA by the problem of one-step-ahead prediction

of the complex-valued nonlinear signals. The nonlinear

benchmark input signal is given by (Mandic and Goh

2009)

zðtÞ ¼ zðt � 1Þ
1þ z2ðt � 1Þ þ n3ðtÞ; ð32Þ

where n(t) is a complex white Gaussian noise with zero

mean and unit variance.

This example uses a network with one input node, five

hidden nodes, and one output node. We set the activation

function for both the hidden layer and output layer to be

sinð�Þ, which is analytic in the complex domain. The

learning rate g is set to be 0.1. The test is carried out with

the initial weights (both the real part and the imaginary

part) taken as random numbers from the interval [-0.1,

0.1]. The simulation results are presented in Fig. 1, which

shows that the gradient tends to zero and the square error

decreases monotonically as the number of iteration

increases and at last it tends to a constant. This supports our

theoretical findings.

Conclusion

In this paper, under the framework of Wirtinger calculus,

we investigate the FCBPA for fully CVNN. Using a mean

value theorem for holomorphic functions, under mild

conditions we prove the gradient of the error function with

respect to the network weight vector satisfies the Lipschitz

condition. Based on this conclusion, both the weak con-

vergence and strong convergence of the algorithm are

proved. Simulation results substantiate the theoretical

findings.
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