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Abstract Gene regulatory network (GRN) consists of

interactions between transcription factors (TFs) and target

genes (TGs). Recently, it has been observed that micro

RNAs (miRNAs) play a significant part in genetic inter-

actions. However, current microarray technologies do not

capture miRNA expression levels. To overcome this, we

propose a new technique to reverse engineer GRN from the

available partial microarray data which contains expression

levels of TFs and TGs only. Using S-System model, the

approach is adapted to cope with the unavailability of

information about the expression levels of miRNAs. The

versatile Differential Evolutionary algorithm is used for

optimization and parameter estimation. Experimental

studies on four in silico networks, and a real network of

Saccharomyces cerevisiae called IRMA network, show

significant improvement compared to traditional S-System

approach.

Keywords Gene regulatory network � Microarray �
microRNA

Introduction

The increased interest in systems biology, e.g., reverse-

engineering of GRNs, is primarily due to the availability of

genome wide expression data. While static expression data

allows the learning of only the network structure, the time-

course data enables the modeling of intricate system

dynamics over time. The GRN inference methods can be

broadly classified into three major groups, namely co-

expression network, Bayesian network and differential

equation approach. Co-expression network (Butte and

Kohane 2000) are coarse-scale, simplistic models that

employ pairwise association measures for inferring the

interactions between genes. Due to the low computational

complexity these methods can be scaled up to thousand gene

network (Basso et al. 2005), but suffer from their inability of

modeling system dynamics. Bayesian networks (BN), and its

extension, the dynamic Bayesian network (DBN), are more

sophisticated models based on the strong foundations of

probability and statistics. In this model, the dependencies

between nodes are represented using directed edges and

conditional probability distributions. In addition, DBNs

allow the modeling of system dynamics in discrete time.

Amongst the other group of reverse engineering tech-

niques, i.e., co-expression network and Bayesian network,

this paper focuses on differential equation based approa-

ches, which belong to a sophisticated and well established

class of methods for modeling biochemical phenomena,

including GRNs (Gardner et al. 2003). The differential

equation based approach has the ability to accurately model

system dynamics in continuous time. Of several linear and

non-linear types of differential equation models employed

for reconstructing GRNs, the S-System model (Savageau

1976) has gained popularity recently (Chowdhury et al.

2012; Kikuchi et al. 2003; Kimura et al. 2005; Noman and
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Iba 2006, 2007). This model is considered to provide the

necessary balance between model complexity and mathe-

matical tractability: it is complex enough to represent a

wide range of dynamics, yet is simple enough to allow

certain analytical studies. Other than the above mentioned

three major groups, recently proposed approaches for GRN

construction methods deal with either stability of the net-

work or stochastic delayed regulations or both (He and Cao

2008; Luo et al. 2010; Ye and Cui 2010; Wang et al. 2009).

Besides the transcriptional level interactions between

transcription factors (TFs) and target genes (TGs), at the post

transcriptional control, a large and growing class of *22

nucleotide-long non-coding RNAs, namely micro RNA

(miRNA), have been observed to negatively regulate gene

expression and function as repressor in genomes. In brief, we

can state that the gene expression profiles are controlled not

only by TFs but also by miRNAs (He and Hannon 2004;

Chen and Rajapaksy 2007), where miRNAs contribute only

towards gene degradation. In Fig. 1a, we show different

categories of regulations by dividing the possible interac-

tions into 9 regions, while the nature of the regulations

between two genes belonging to any of the 9 regions are

listed in Fig. 1b. Since current microarray technology is

unable to capture miRNA expression level, all the existing

methods for reverse engineering genetic network from

microarray data ignore the presence of miRNAs and only

consider various TF–TG interactions in GRNs to estimate

the model parameters. In this paper, adapting the existing

S-System model for reverse engineering GRN, we propose a

new technique for GRN reconstruction by incorporating the

influence of miRNAs’ regulations on genes. For modeling

the influences of miRNAs’ interactions, the regulations

among genes are restricted to self-inhibition in the degra-

dation phase. This is a biological relevant assumption (Chen

and Rajapaksy 2007) and it helps to reduce the number of

parameters to be estimated. The proposed method iRE-

GARD (improved version of REGARD (Chowdhury et al.

2012) possesses the following key contributions:

– Developing a method that considers the biological knowl-

edge of Regulatory (i.e., TFs) and Regulated (i.e., TGs)

genes, and miRNAs. Although, the data for miRNA

expression profiles are not available with microarray data,

the expression profiles of TFs and TGs include the influence

of miRNAs. The proposed iREGARD is developed with

the consideration of this biological substantiation by

improving the previously proposed method and fitness

function. While reconstruction is performed using TFs’ and

TGs’ expression data, the biological facts on miRNA

regulations are deemed to be legitimate and optimization is

performed taking into account this consideration.

– The S-System based modeling algorithms (Chowdhury

et al. 2012; Kikuchi et al. 2003; Kimura et al. 2005;

Noman and Iba 2006, 2007) learn the full-set of

S-System parameters (2*N*(N ? 1)) for N genes, which

reduces to 2*(N ? 1) with decoupled equations. The

incorporation of biological knowledge in iREGARD has

greatly reduced the number of parameters further. This is

done by exploiting the fact that, a transcription factor

can regulate itself during the degradation phase, and any

other regulations are considered biologically unrealistic.

Thus we eliminate learning (N - 1) regulatory param-

eters in the degradation phase (represented by h in the

S-System). Hence the total number of parameters to

learn in S-System using the proposed iREGARD

becomes 2*(N ? 1) - (N - 1) = N ? 3.

Preliminaries

The S-System model

For a network of N genes, the existing S-System model is

given by the following set of ordinary differential equa-

tions (ODEs):

dXi

dt
¼ ai

YN

j¼1

X
gij

j � bi

YN

j¼1

X
hij

j ; i ¼ 1. . .N ð1Þ

Here, for any ith gene, Xi is the expression level, fai; big’s
are the rate constants, and {gij, hij}’s being the the kinetic

orders represent the regulations in RNA synthesis/production

and degradation, respectively. To infer a GRN of N genes

using the S-System model, 2N(N ? 1) parameters must be

estimated. To reduce computational complexity, method of

Voit and Almeida (2004) approximated the original problem

as N decoupled sub-problems, each of having 2(N ? 1)

parameters. The canonical S-System model (Eq. 1) requires

enormous computation time to converge properly. However,

decoupled S-System can infer the parameters of the target

network much quickly, albeit with some approximation,

compared to the canonical S-System model.

Fitness criteria

In order to assess the goodness of S-System models, previ-

ous works commonly employed the squared relative error

(SRE) as criterion for model evaluation. As the parameters

for each gene in the decoupled S-System are learned inde-

pendently of the others, the SRE for ith gene is given as:

SRE ¼
XT

t¼1

Xcal
i ðtÞ � X

exp
i ðtÞ

X
exp
i ðtÞ

� �2

ð2Þ

Here t denotes a specific time-stamp (TS) in the

observed time series of T sample points. Xi
cal(t) and
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Xi
exp(t) denote the calculated and observed expression value

of gene-i at time-stamp t respectively. Due to decoupling,

this SRE criterion for each gene can be minimized

independently. The solution for this optimization problem

is normally dense, i.e., it has many non-zero parameter

values corresponding to many regulators for each gene.

However, due to salient features of GRNs, i.e., the sparsity

and following the scale-free topology (Guelzim et al. 2002;

Sheridan et al. 2010), Kimura et al. (2005) added a

regularized penalty term for model complexity intro-

ducing the concept of maximum in-degree (I). Noman

and Iba (2007) improved that regularized term of Kimura

et al. (2005) and obtained good results. However, both the

fitness functions (Kimura et al. 2005; Noman and Iba

2007) apply this I as global parameter while in-degrees

vary from gene to gene. Unlike the previous methods with

fixed I, recently proposed method REGARD (Chowdhury

et al. 2012) introduce the concept of min in-degree and

calculate the error according to the following equation:

RSRE ¼
XT

t¼1

Xcal
i ðtÞ � X

exp
i ðtÞ

X
exp
i ðtÞ

� �2

þCi

2N

ZCount

ð3Þ

Here, ZCount is the total number of non-regulations for

the ith gene (= 2N- total regulations) and, Ci is the scaling

factor for the ith gene defined as:

Ci ¼
1 if Ii� ri� Ji or ri ¼ 0
Ji

ri
2ðJi�riÞ if ri\Ji

ri

Ii
2ðri�IiÞ if ri [ Ii

8
<

: ð4Þ

Here, ri is the number of regulations, and {Ii, Ji} indicate

the in-degrees of gene-i. The values of Ii and Ji are initialized

to N and 0 (in-degrees of the entire network), respectively

and adapt themselves based on population statistics. Details

about this fitness function are available in Chowdhury et al.

(2012). We call the Eq. (3) as regularized squared relative

error (RSRE) as it is essentially a regularized version of the

initial proposal (Eq. 2). This fitness function was designed by

ignoring the absence of miRNAs in the network (hence in the

microarray data), that work on large search space during the

optimization. In this paper, we have adapted this fitness

function to fit in the absence of miRNAs and adjusted the

optimization accordingly.

The proposed technique: iREGARD

The model

Among the N genes in a gene regulatory network, let N1 be the

total number of regulatory (TFs) and regulated/target genes

(TGs) which we denote as RRG (regulatory and regulated

genes), while N2 are miRNAs. Here, 0�fN1; N2g�N and

N1 ? N2 = N. We rewrite the S-System model equations

accordingly:

dXi

dt
¼ ai

YN1þN2

j¼1

X
gij

j � bi

YN1þN2

j¼1

X
hij

j ; i ¼ 1. . .N1 þ N2 ð5Þ

Now, we form four groups by combining the regions of

Fig. 1 in order to separate the in-out regulations of

miRNAs. Table 1 shows these four groups along with

corresponding S-System parameters for each group.

However, due to the non-availability of miRNAs’

expression data with the current microarray technology,

only N1 expression profiles (for N1 RRGs) are available for

reverse engineering. As a result, these N1 expression

profiles can only be applied to reconstruct the regulatory

networks having N1 RRGs. Thus, the resulting S-System

parameter model becomes:

(a) (b)

Fig. 1 a Regions of interactions among TFs, TGs, and miRNAs (possible interactions in a GRN). b Classification of parameters related to

interactions among TFs, TGs, and miRNAs
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dXi

dt
¼ ai

YN1

j¼1

X
gij

j � bi

YN1

j¼1

X
hij

j ; i ¼ 1. . .N1 ð6Þ

which represents the interactions in Group A only. Thus, in

the decoupled form for Group A genes (RRGs), we esti-

mate Xi ¼ fai; bi; fgij; hiigj¼1...N1
g parameters (i.e., N ? 3

in total for each gene with decoupled equation) for every

ith gene.

The inference method

In the optimization phase, we use Differential Evolution

(DE), an evolutionary algorithm proposed by Price et al.

(Storn and Price 1997) for learning the S-System parame-

ters. The proposed iREGARD starts with a cardinality

based initial population generation technique that incor-

porates the biological knowledge about the interactions. In

the initial population, 10 % individuals are initialized with

all the g values set to zero, however, initialize the single

h ð¼ hi;jÞ value to a random positive value. For each of the

remaining 90 % individuals, we randomly select I positions

from g vector and initialize them with a random value. The

remaining N - I positions are initialized to 0. This ini-

tialization allows 90 % individuals to start with exactly

I randomly selected regulations. In GRNs, it is well known

that the transcription factors and target genes generally

have effects only on the production of their target genes,

but not their degradation. The messenger RNA (mRNA)

degradation is affected by either a self-degradation rate

specific to each gene, and/or by miRNAs and some proteins

with mRNA degradation functions (Shyu et al. 2008). Thus

we initialize the only h to a positive value (i.e., hi,i for ith

gene), indicating the self-inhibition of the RRGs.

Once the initialization is completed, we start the itera-

tion of the evolutionary algorithm. In each generation, we

apply mutation, crossover and selection operations to

produce the individuals for next generation. Once the

individuals for the next generation are created, we apply

hill-climbing local search algorithm (Noman and Iba 2007)

over the fittest individual. Further, in each Lth iteration, we

update the cardinality parameters Ii (max in-degree) and Ji

(min in-degree) for ith gene (as we are using decoupled

S-System) based on papulation statistics. Details about

this adaptation algorithm, known as Adaptive Regulatory

Genes Cardinality (ARGC), can be found in Chowdhury

et al. (2012). These two parameters Ii and Ji are initialized

to I and 1, respectively, where I is the maximum in-degree

for the network. Finally, we apply the multistage refine-

ment algorithm (MRA) for pruning the low-weighted reg-

ulations that are less than the predefined threshold (w).

It should be noted that, due to the absence of miRNA data

in the reverse engineering process, the effects of miRNA

regulations (to and from) have to be treated as noise in the

expression profiles of given microarray data (only for

RRGs’ regulations). Hence, we lowered this threshold from

REGARD to avoid pruning the true regulations that are

inferred with relatively low values than target values. The

inference method of the proposed iREGARD is shown as a

flow-chart in Fig. 2.

Experimental results and discussions

The performance of iREGARD is studied by investigating

four synthetic networks and a real network of Saccharo-

myces cerevisiae (yeast) called IRMA (Cantone et al.

2009). The proposed algorithm is implemented in C??

using a 2.16 GHz Dual-core CPU PC with 3 GB of RAM.

This code and data for all the networks can be made

available upon request. The parameter values for the DE

algorithm were set as follows: Mutation Rate F = 0.5,

Crossover Factor CF = 0.8, population size Pop= 5*

(number of parameters), which is 5*(N ? 3), where N is

the size of the network. The maximum in-degree (I) for the

network were set to N, while the cardinality parameters for

each genes ðIi; JiÞ are updated in every Lth = 50th gen-

eration. We have executed the proposed iREGARD for 850

generations in the first phase while in the second phase,

MRA is executed for 250 generations. Finally, the pruning

factor w = 0.10 was used for the multi-stage refinement

algorithm. For each of the four synthetic networks, M = 10

datasets are generated from 10 different initial conditions.

The four in silico GRNs are designed taking into

account the presence of miRNA in various ratio with

respect to regulatory and regulated genes (RRGs). The

proposed technique assumes the presence of N2 miRNAs

(=N1 ? N2 genes in total) in the GRNs, while the recon-

struction will estimate the parameters for N1 RRGs,

Table 1 Possible groups, with regulations, in the S-System model along with corresponding parameter values

Groups Regions Possible regulations Parameter values

Group A (1), (2), (4), (5) Regulations among RRGs jgijj � 3:0; 0\hii� 3:0; 8 i; j ¼ 1; . . .;N1; hij ¼ 0; for other i; j

Group B (7), (8) Regulations on RRGs from miRNAs jgijj � 3:0; jhijj � 3:0; 8 i ¼ 1; . . .;N1; j ¼ N1 þ 1; . . .;N1 þ N2

Group C (9) Regulations among miRNAs jgiij � 3:0; jhijj � 3:0; 8 i; j ¼ N1 þ 1; . . .;N1 þ N2; gij ¼ 0; for other i; j

Group D (3), (6) Regulations on miRNAs from RRGs fgij; hijg ¼ 0; 8i ¼ N1 þ 1; . . .;N1 þ N2; 8j ¼ 1; . . .;N1

254 Cogn Neurodyn (2014) 8:251–259
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considering the non-availability of expression profiles for

miRNAs. Since the data are created considering all

N1 ? N2 genes and only N1 RRGs are provided for reverse

engineering, the influences of the N2 genes (miRNAs) on

those N1 RRGs can be considered to be acting as noise. The

first three networks (Net-1, Net-2, and Net-3) are designed

with the inevitable presence of miRNAs in the GRN. On

the other hand, Net-4 is a widely used 20-gene synthetic

network (Noman and Iba 2007) composed of RRGs only,

hence the time-series data for this network does not have

any influence of miRNAs. The number of RRGs and

miRNAs for all four synthetic networks are summarized in

Table 2. For all the synthetic networks, we have compared

the performances of iREGARD with our previously

developed algorithm REGARD (Chowdhury et al. 2012).

With the 5-gene real-life network of IRMA, it has time-

responses available for two modes, i.e., ON and OFF. In

the ON dataset, there are 16 time-samples which were

evenly sampled in every 20 min. On the other hand, in the

OFF dataset, there are 21 time-samples which were evenly

sampled in every 10 min. The ON dataset corresponds to

the shifting of the growth medium from glucose to gal-

actose while the OFF dataset corresponds to the shifting of

the growth medium from galactose to glucose. Similar to

Net-4, all five genes (in both ON and OFF modes) are

assumed to be RRGs during the optimization. The perfor-

mances of iREGARD for IRMA are compared with six

state-of-the-art algorithms, where two of them [i.e.,

REGARD (Chowdhury et al. 2012) and ALG (Noman and

Iba 2007)] are S-System based methods and remaining four

are non-S-System based methods [i.e., TDARACNE

(Zoppoli et al. 2010), ARACNE (Margolin et al. 2006),

NIR & TSNI (Della et al. 2008), and BANJO (Yu et al.

2004)]. The uniform parameter values were considered for

REGARD (Chowdhury et al. 2012), ALG (Noman and Iba

2007) and iREGARD, except the pruning factor w in

REGARD was set to 0.25 as proposed in (Chowdhury et al.

2012). On the other hand, ALG (Noman and Iba 2007) was

Fig. 2 The flow-chart of the

proposed iREGARD. I indicates

the maximum in-degree of the

network, where Ii and Ji,

respectively indicate the

maximum and minimum

in-degrees of ith gene. L denotes

the frequency to update the

cardinalities using ARGC

algorithm
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executed for 5 trials in the first phase and the best result

from each trial were used in the second phase. In the

second phase, remaining P-5 individuals were initialized

randomly and a separate trial were performed with the

parameter settings similar to the first phase. In both the

phases, 850 iterations were performed for every single run.

More details about the REGARD and ALG can be found

in Chowdhury et al. (2012) and Noman and Iba (2007),

respectively. Regarding the four non-S-System based

methods: ARACNE (Margolin et al. 2006) is an informa-

tion theoretic approach that calculates the influence of one

gene over other using Mutual Information. Zoppoli et al.

(2010) improved the ARACNE, by incorporating time-

delays, which is also an information theoretic approach that

defines two threshold sup = 1.2 and sdown = 0.83 while

measuring the initial change of expression of a gene.

On the other hand, NRI & TSNI (Della et al. 2008) is an

integrated experimental and computational approach that

uses ordinary differential equation to represent the network

and regulations. Finally, dynamic Bayesian network based

method BANJO (Yu et al. 2004) is developed with prob-

ability equations that measures the performance based on

their developed influence score metric. We have shown the

best case results for all these four methods that are reported

in the original papers (Margolin et al. 2006; Della et al.

2008; Yu et al. 2004; Zoppoli et al. 2010). More about the

above mentioned four methods can be found in the corre-

sponding original papers (Margolin et al. 2006) (ARAC-

NE), (Zoppoli et al. 2010) (TDARACNE), (Della et al.

2008) (NIR & TSNI) and (Yu et al. 2004) (BANJO). We

consider four performance measures i.e., sensitivity (Sn),

specificity (Sp), precision (Pr) and F-score (F - score) for

network evaluation, where best, average (AVG) and stan-

dard deviation (STD) are reported.

Synthetic networks

The evaluation of iREGARD for the 4 synthetic networks

are shown in Table 3, and compared with recently pro-

posed method REGARD (Chowdhury et al. 2012). For all

the four synthetic networks, we observe excellent perfor-

mance of iREGARD in all four performance metrics

(i.e., Sn; Sp; Pr; F � score). On the other hand, although

the performances of the existing method REGARD

(Chowdhury et al. 2012) are satisfactory, yet remarkably

inferior to that of iREGARD. The synthetic networks are

designed for the experiment in such a way that ratio of

RRGs and miRNAs should vary in each network, so that

we can evaluate the influence of miRNAs’ in the learning

process. We observe that, the performance of REGARDS

improves with the increase of ratio between RRGs and

miRNAs Apart from inferring the RRGs with very high

accuracy, the expression profiles for the genes in all four

networks estimated by iREGARD are either closely over-

lapping or completely follow the trends of the target

expression patterns. The expression profiles of four genes,

one from each of the four networks, for the target, iRE-

GARD, and REGARD are shown in Fig. 3.

Investigating the proposed iREGARD for four synthetic

networks, we observe a reciprocal relationship between the

number of inferred true regulations and the ratio of

Table 2 Summary of four synthetic networks

Net name Total genes RRGs (N1) miRNAs (N2)

Net-1 5 3 2

Net-2 8 5 3

Net-3 12 8 4

Net-4 20 20 0

Table 3 Experimental results for all four synthetic networks

Net-1 Net-2

Sn Sp Pr F - score Sn Sp Pr F - score

iREGARD (Best) 0.89 1.00 1.00 0.94 0.94 0.94 0.88 0.91

iREGARD (AVG ± STD) 0.78 ± 0.11 0.96 ± 0.06 0.94 ± 0.07 0.85 ± 0.09 0.91 ± 0.03 0.93 ± 0.01 0.86 ± 0.03 0.88 ± 0.03

REGARD (Best) 0.56 0.89 0.83 0.67 0.81 0.82 0.68 0.74

REGARD(AVG ± STD) 0.48 ± 0.06 0.85 ± 0.06 0.76 ± 0.06 0.60 ± 0.05 0.71 ± 0.05 0.80 ± 0.01 0.62 ± 0.03 0.69 ± 0.04

Net-3 Net-4

iREGARD (Best) 0.96 0.82 0.59 0.73 1.00 1.00 1.00 1.00

iREGARD (AVG ± STD) 0.89 ± 0.06 0.82 ± 0.01 0.57 ± 0.02 0.69 ± 0.03 0.98 ± 0.01 0.98 ± 0.01 0.83 ± 0.09 0.89 ± 0.06

REGARD (Best) 0.74 0.60 0.28 0.41 0.98 0.90 0.37 0.53

REGARD (AVG ± STD) 0.72 ± 0.02 0.57 ± 0.01 0.31 ± 0.01 0.43 ± 0.01 0.96 ± 0.01 0.90 ± 0.005 0.35 ± 0.01 0.52 ± 0.01
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miRNAs/RRGs. In contrast, the average error (defined in

Chowdhury et al. 2012) is decreased with the decrease of

ratio between regulations from miRNAs and total regula-

tions. The first observation is shown in Fig. 4, where the

increase in inferred true regulations can be represented by a

trendline of increasing linear function. On the other hand,

the observation on average error, shown in Fig. 5, can be

mapped to an approximate logarithmic trendline.

IRMA real network

The proposed technique is next applied to a real-life bio-

logical network of Saccharomyces cerevisiae (yeast) called

IRMA (Cantone et al. 2009). This network is composed of

five genes (CBF1; GAL4; SWI5; GAL80; ASH1), regu-

lating each other. We test both the networks considering

the presence of RRGs by allowing the self-inhibitions only

in the degradation phase during the optimizations. The four

performance measures for iREGARD are compared with

state-of-the-art algorithms, namely ALG (Noman and Iba

2007), REGARD (Chowdhury et al. 2012), TDARACNE

(Zoppoli et al. 2010), ARACNE (Margolin et al. 2006),

NIR and TSNI (Della et al. 2008), and BANJO (Yu et al.

2004). The results are shown in Table 4. It can be observed

that, Sn of iREGARD for ON dataset is best as compared to

other methods, where only the method ALG (Noman and

Iba 2007) reached the same Sn. Although, the specificity

(Sp) is not the best among all, this value is still promising

and close to the so-far best result reported in the table. The

two other performance metrics are also competitive and

better than most of the methods. While investigating the

OFF dataset, it is excellent to observe that, Sn; Pr, and

F - score for iREAGARD obtained the best results among

all other techniques reported in this paper. The other per-

formance measure Sp was also found to be very competi-

tive with other methods.

Fig. 3 Target and inferred

expression profiles (with

iREGARD and REGARD) for

one gene from all four networks.

Horizontal and vertical axis

indicate time and expression

level, respectively. a Net-1—

Gene 1. b Net-2—Gene 1. c
Net-3—Gene 4. d Net-4—Gene

20

Fig. 4 miRNA/RRG ratio vs inferred true regulations graph

Fig. 5 Total regulations from miRNAs/ total regulations vs average

error graph
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Conclusion

In this paper, a new gene regulatory network (GRN)

modeling technique is proposed to demonstrate the influ-

ence of micro RNAs (miRNAs) in the GRNs. We have

taken into account the non-availability of expression pro-

files for miRNAs and reconstructed the GRN of transcrip-

tion factors (TFs) and target genes (TGs). The proposed

method iREGARD adapts the traditional S-System equa-

tions by grouping its parameters according to the biological

knowledge of interactions among miRNAs, TFs and TGs.

The observation shows that, despite the absence of miRNA

expression profiles in microarray and yet influencing the

other expression profiles, genetic regulatory network of TFs

and TGs can still be reconstructed with reasonable accu-

racy. The investigations carried out on multiple synthetic

networks of varying scale and realistic IRMA network

show that the new approach outperforms the state-of-the-art

methods in well-known performance measures.

Acknowledgments This work is supported in part by NICTA

(National Information and Communication Technology Australia)

research in Systems Biology flagship program.

References

Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R,

Califano A (2005) Reverse engineering of regulatory networks in

human b cells. Nat Genet 37(4):382–390. doi:10.1038/ng1532

Butte AJ, Kohane IS (2000) Mutual information relevance networks:

functional genomic clustering using pairwise entropy measure-

ments. Pac Symp Biocomput 5:415–426

Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M,

Santini S, di Bernardo M, di Bernardo D, Cosma MP (2009)

A yeast synthetic network for in vivo assessment of reverse-

engineering and modeling approaches. Cell 137:172–181

Chen K, Rajapaksy N (2007) The evolution of gene regulation by

transcription factor and micrornas. Nat Rev Genet 8:93–103

Chowdhury AR, Chetty M, Vinh NX (2012) Adaptive regulatory

genes cardinality for reconstructing genetic networks. In: IEEE

congress on evolutionary computation (IEEE CEC), pp 1–8

Della GG, Bansal M, Ambesi-Impiombato A, Antonini D, Missero C,

di Bernardo D (2008) Direct targets of the trp63 transcription

factor revealed by a combination of gene expression profiling

and reverse engineering. Genome Res 18:939–948

Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring

genetic networks and identifying compound mode of action via

expression profiling. Science 301(5629):102–105

Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and

causal structure of the yeast transcriptional regulatory network.

Nat Genet 31(1):60–63. doi:10.1038/ng873

He W, Cao J (2008) Robust stability of genetic regulatory networks

with distributed delay. Cogn Neurodyn 2(4):355–361

He L, Hannon JG (2004) Micrornas:small rnas with a big role in gene

regulation. Nat Rev Genet 5:522–532

Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003)

Dynamic modeling of genetic networks using genetic algorithm

and s-system. Bioinformatics 19(5):643–650T
a

b
le

4
P

er
fo

rm
an

ce
co

m
p

ar
is

o
n

w
it

h
IR

M
A

re
al

n
et

w
o

rk

M
et

h
o

d
s

IR
M

A
O

N
IR

M
A

O
F

F

S
n

S
p

P
r

F
-

sc
o

re
S

n
S

p
P

r
F

-
sc

o
re

iR
E

G
A

R
D

(B
es

t)
0

.7
7

0
.8

6
0

.6
7

0
.7

1
0

.8
5

0
.8

1
0

.6
1

0
.7

1

iR
E

G
A

R
D

(A
V

G
–

S
T

D
)

0
.7

4
±

0
.0

4
0

.8
4

±
0

.0
3

0
.6

2
±

0
.0

4
0

.6
7

±
0

.0
3

0
.7

9
±

0
.0

7
0

.7
7

±
0

.0
2

0
.5

5
±

0
.0

4
0

.6
5

±
0

.0
5

R
E

G
A

R
D

(C
h

o
w

d
h

u
ry

et
al

.
2

0
1

2
)

0
.6

9
0

.8
3

0
.6

0
0

.6
4

0
.7

7
0

.7
6

0
.5

3
0

.6
3

A
L

G
(N

o
m

an
an

d
Ib

a
2

0
0

7
)

0
.7

7
0

.2
7

0
.2

7
0

.4
0

0
.7

6
0

.5
6

0
.3

8
0

.5
7

T
D

A
R

A
C

N
E

(Z
o

p
p

o
li

et
al

.
2

0
1

0
)

0
.6

3
0

.8
8

0
.7

1
0

.6
7

0
.6

0
–

0
.3

7
0

.4
6

A
R

A
C

N
E

(M
ar

g
o

li
n

et
al

.
2

0
0

6
)

0
.6

0
–

0
.0

5
0

.5
4

0
.3

3
–

0
.2

5
0

.2
8

N
IR

&
T

S
N

I
(D

el
la

et
al

.
2

0
0

8
)

0
.5

0
0

.9
4

0
.8

0
0

.6
3

0
.3

8
0

.8
8

0
.6

0
0

.4
7

B
A

N
JO

(Y
u

et
al

.
2

0
0

4
)

0
.2

4
0

.7
6

0
.3

3
0

.2
9

0
.3

8
0

.8
8

0
.6

0
0

.4
6

258 Cogn Neurodyn (2014) 8:251–259

123

http://dx.doi.org/10.1038/ng1532
http://dx.doi.org/10.1038/ng873


Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R,

Nakagawa N, Yokoyama S, Kuramitsu S, Konagaya A (2005)

Inference of s-system models of genetic networks using a cooper-

ative coevolutionary algorithm. Bioinformatics 21(7):1154–1163

Luo Q, Zhang R, Liao X (2010) Unconditional global exponential

stability in lagrange sense of genetic regulatory networks with

sum regulatory logic. Cogn Neurodyn 4(3):251–261

Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G,

Favera R, Califano A (2006) Aracne: an algorithm for the

reconstruction of gene regulatory networks in a mammalian

cellular context. BMC Bioinformatics 7(Suppl 1):S7

Noman N, Iba H (2006) On the reconstruction of gene regulatory

networks from noisy expression profiles. In: IEEE congress on

evolutionary computation (IEEE CEC), pp 2543–2550

Noman N, Iba H (2007) Inferring gene regulatory networks using

differential evolution with local search heuristics. IEEE Trans

Comput Biol Bioinformatics 4:634–647

Savageau M (1976) Biochemical systems analysis. A study of

function and design in molecular biology. Addison-Wesley

Publishing Company, Massachusetts

Sheridan P, Kamimura T, Shimodaira H (2010) A scale-free structure

prior for graphical models with applications in functional

genomics. PLoS ONE 5(11):e13580, 11

Shyu A-B, Wilkinson MF, van Hoof A (2008) Messenger rna

regulation: to translate or to degrade. EMBO J 27(3):471–481.

doi:10.1038/sj.emboj.7601977

Storn R, Price KV (1997) Differential evolution—a simple and

efficient heuristic for global optimization over continuous

spaces. J Glob Optimization 11:341–359

Voit EO, Almeida J (2004) Decoupling dynamical systems for

pathway identification from metabolic profiles. Bioinformatics

20:1670–1681

Wang Z, Liu G, Sun Y, Wu H (2009) Robust stability of stochastic

delayed genetic regulatory networks. Cogn Neurodyn 3(3):

271–280

Ye Q, Cui B (2010) Mean square exponential and robust stability of

stochastic discrete-time genetic regulatory networks with uncer-

tainties. Cogn Neurodyn 4(2):165–176

Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED (2004)

Advances to bayesian network inference for generating causal

networks from observational biological data. Bioinformatics

20:3594–3603

Zoppoli P, Morganella S, Ceccarelli M (2010) Timedelay-aracne:

reverse engineering of gene networks from time-course data by an

information theoretic approach. BMC Bioinformatics 11(1):154

Cogn Neurodyn (2014) 8:251–259 259

123

http://dx.doi.org/10.1038/sj.emboj.7601977

	Evaluating influence of microRNA in reconstructing gene regulatory networks
	Abstract
	Introduction
	Preliminaries
	The S-System model
	Fitness criteria

	The proposed technique: iREGARD
	The model
	The inference method

	Experimental results and discussions
	Synthetic networks
	IRMA real network

	Conclusion
	Acknowledgments
	References


