Skip to main content
. 2014 Apr 30;2:19. doi: 10.3389/fchem.2014.00019

Table 2.

Summary of analytical performances and experimental conditions obtained for heavy metals detection in French scientific academic community.

Classification References Electrochemical platform Detection medium Technique Analyte(s) LOD Linear concentration range Analyte pretreatment conditions
POLAROGRAPHY
Online monitoring river DPASV Total Zn 2.91 nM 12.4–23.2 nM 30 s at −1.3V
Total Pb 0.03 nM 1.7–3.2 nM 60 s at −0.7V
Magnier et al., 2011 HMDE DPCSV Total Cu 0.6 nM 4.9–7.6 nM 30 s at −1.1 V followed by an adsorption step at −0.25 V during 15 s
Riso et al., 2006 HgFE Water samples (treated) SCP Fe(III) 1.5 nM NC 6 cycles of: 0.04 V (9 s) and −0.4V (1 s)
Tanguy et al., 2010 HgFE Seawater samples (treated) SCP Sb(III) 70 pM depending on sample 300 s at −0.45 V
Sladkov et al., 2003 HgFE 0.1 M HNO3 SWCSV Se(IV) 0.8 nM 1–1000 nM 300 s at −0.45 V
Riso et al., 1997 HgFE Seawater SCP Cu 0.7 nM NC 15 min at −1.1 V
Pb 14 pM
Cd 9 pM
Cugnet et al., 2009 SPμEAs 0.2 M acetate (pH = 4.5) SWASV Cd(II) 11.6 nM 11.6–89 nM 300 s at −1 V
Parat et al., 2011a HMDE 0.1 M KNO3 AGNES-SCP Zn2+ 4 nM at least 25–100 nM 1400 s total with complex procedure
Cd2+ 2.9 nM
Pb2+ 4.1 nM
Parat et al., 2007 Membrane and Hg film SPE 0.2 M acetate (pH = 4–7) SWASV Cd(II) 2 nM 5–100 nM 60 s at −1 V
Munteanu et al., 2009 Mercury monolayer carbon fiber electrode NC SWASV Pb(II) 80 fM 1–10 pM 1 s at −1.2 V
Parat et al., 2011b Hg film SPE 0.2 M acetate (pH = 4.6) SSCP Cd 2.2 nM NC 60 s at −1 V
Zaouak et al., 2010a Hg film SPE 0.2 M acetate (pH = 4.5) SWASV Cd 1.78 nM 1.78–356 nM 60 s at −1 V
Bi FILMS
Guo et al., 2005 GC/BiFE Milk vetch in 0.2 M KSCN ASV Zn(II) 9.6 nM 500–3000 nM 120 s at −1.4 V
Legeai et al., 2005 GC/BiFE 0.125 M HNO3 + 0.04 M H2NSO3H DPASV Cd(II) ~10 nM 20–1000 nM 1200 s at −0.95 V
Legeai et al., 2006 Cu/Bi film electrode 0.01 M ammonia buffer (pH = 9) SWASV Ni2+ NC 10–1000 nM 900 s at −0.7 V
Legeai and Vittori, 2006 Cu/Nafion/Bi electrode 0.01 M NaCl + 0.001 M NaHCO3 DPASV Cd2+ 6.05 nM 17.8–107 nM 300 s at −0.95V
Pb2+ 3 nM 9.65–86.9 nM
Urbanova et al., 2010 Highly porous Bi film electrodes 0.1 M acetate buffer (pH = 4.5) DPASV Cd(II) 5.34 nM 178–1160 nM 90 s at −0.95 V
Pb(II) 6.27 nM 96.5–627 nM
Zaouak et al., 2009 Bi-Coated SPμE 0.2 M acetate buffer (pH = 4.5) SWASV Cd(II) 11.6 nM 45–400 nM 120 s at −1 V
Lu et al., 2010 Bi doped carbon SPE Air SWASV Pb(II) as vapor 1 ng 10–80 ng 120 s at −1.2 V
CARBON ELECTRODE MATERIALS
DLC/GC
Feier et al., 2012 Graphite felt 0.1 M NaBF4 LSASV Zn(II) 50 nM 1–100 μM 300 s at −1.4 V
Nasraoui et al., 2009 Graphite felt 0.1 M LiClO4 LSASV Pb(II) 1 nM 10–500 nM 300 s at −1 V
Khadro et al., 2009 GC electrode 0.1 M HCl DPASV Ni(II) 2.56 nM 8.52–9370 nM 60 s at −1 V
0.1 M acetic buffer Hg(II) 0.15 nM 0.5–1740 nM
Khadro et al., 2011 B-doped DLC Acetate (pH = 4.2) SWASV Cd(II) 4.83 nM 4.83–121 nM 90 s at −1.3 V
Pb(II) 8.9 nM 8.9–222 nM
Ni(II) 34.1 nM 34.1–256 nM
Hg(II) 4.99 nM 5–125 nM
BDD
Le et al., 2012 BDD acetate pH = 5.2 SWASV Pb(II) 19.3 nM 96.5–480 nM 600 s at −1 V
El Tall et al., 2007 BDD 0.01 M acetate DPASV Cu(II) 14.2 nM 47–315 nM 60 s at −1.9 V
Pb(II) 5.55 nM 18–217 nM
Zn(II) 25.5 nM 77–305 nM
Cd(II) 3.2 nM 11–222 nM
Sbartai et al., 2012 BDD Potassium citrate / HCl DPASV Cd(II) 3.29 nM NF 20 s at −1.7 V
Pb(II) 26.5 nM
Ni(II) 116 nM
Hg(II) 11.5 nM
ISEs
CALIXARENE
Yaftian et al., 2006 Calix[4]arene Complex (pH = 3.5–5) SCP Pb(II) 1.4 μM 10μM–10 mM No accumulation and electrolysis
Yaftian et al., 2007 Calix[4]arene Complex (pH = 3–7) SCP Pb(II) 4 nM 10 nM–100 μM No accumulation and electrolysis
CHALCOGENIDE
Cali et al., 2002 Cu-As-S KNO3 SCP Cu(II) 1 μM 2 μM–10 mM No accumulation and electrolysis
Essi and Pradel, 2011a,b Cu-Ag-S Complex (pH = 3–5) SCP Cu(II) 1 μM NC No accumulation and electrolysis
Mear et al., 2005 Ge28Se60Sb12 KNO3 (pH = 3) SCP Cd(II) 1 μM 1 μM–10 mM No accumulation and electrolysis
CMEs
MINERALS
Walcarius et al., 1999a Silica modified CPE 0.2 M HNO3 SWASV Cu(II) 2 nM 5 nM–5 μM 600 s accumulation followed by 30 s at −0.5 V
Walcarius et al., 2000 Silica-modified electrode 0.1 M HNO3 SWASV Hg(II) 50 nM 200 nM–10 μM 600 s accumulation at open circuit followed by 60 s at −0.5 V
Walcarius et al., 1999b Several silica/hybrid CPE with amine functionalization 0.05 M acetic acid + 0.05 M NaNO3 LSASV Cu(II) NC unclear Several accumulation time and 240 s at −0.4 V
Etienne et al., 2001 Organically modified silica 0.1 M sodium acetate SWASV Cu(II) 3 nM 50–200 nM 60 s at −0.5 V
Sayen et al., 2003 Carnosine silica hybrid material modified CPE 0.1 M NaNO3 + 0.01 M HNO3 DPASV Cu(II) 4 nM 50–1000 nM 90 s at −0.5 V
Walcarius and Sibottier, 2005 Amine-functionalized porous silica films on Au 0.1 M HNO3 + 0.1 M NaNO3 in 95% ethanol DPASV Cu(II) 40 nM 0.1–10 μM 600 s accumulation followed by 60 s at −0.4 V
Etienne et al., 2007 Surfactant-templated thiol-functionalized silica thin films 0.5 M HCl DPASV Ag(I) 6 nM 0.2–10 μM 960 s accumulation followed by 60 s at −0.6 V
Sanchez and Walcarius, 2010 GC/MTTZ 0.1 M HCl SWASV Hg(II) 2 nM 50 nM–1 μM 300 s at −0.4 V
Walcarius et al., 1998 Mesoporous pure silica modified carbon paste electrode 0.2 M HNO3 SWASV (or CV for larger amounts) Cu(II) 30 nM NC 300 s accumulation followed by 60 s at −0.5 V
Hg(II) 50 nM NC
Tonle et al., 2005 Clays grafted with organic chelating groups (thiol or amine) modified CPE 0.1 M HNO3 DPASV Hg(II) 68 nM (thiol) 87 nM (amine) 100–700 nM 180 s accumulation followed by 60 s at −0.4 V (or −0.6 V depending on the medium)
Tonle et al., 2011 Thiol-functionalized clay modified CPE 0.2 M HNO3 SWASV Pb(II) 60 nM 0.3–10 μM 600 s accumulation followed by 60 s at −0.9 V
Tchinda et al., 2007 GC/PCH-SH 0.1 M HCl + 5% thiourea DPASV Hg(II) 0.4 nM 4–20 nM and 50–80 nM 1200 s accumulation followed by 180 s at −0.7 V
MACROCYCLIC COMPOUNDS
Rouis et al., 2013 β-ketoimine calix[4]arene on ITO 0.05 M ammonium acetate (pH = 7) Impedance Hg2+ NC 0.1 nM–0.5 μM
Goubert-Renaudin et al., 2009a Cyclam-functionalized silica CPE 3 M HNO3 SWASV Cu(II) 0.8 nM 2–100 μM 1800 s accumulation followed by 60 s at −0.5V
Goubert-Renaudin et al., 2009b (TETAM) grafted to silica gel and ordered mesoporous silica 0.1 M ammonium acetate buffer (pH = 7) SWASV Pb(II) 2.7 nM 10–100 nM 900 s accumulation followed by 60 s at −0.8 V
Nasraoui et al., 2010a TETRAM-modified graphite felt electrode 0.1 M aqueous solution of LiClO4 LSASV Pb(II) 25 nM 100–250 nM around 1800 s accumulation followed by 300 s at −1 V
Nasraoui et al., 2010b Cyclam-modified graphite felt 0.5 M H2SO4 LSASV Pb(II) 25 nM several accumulation time followed by 300 s at −1 V
Parat et al., 2006 Hg film modified SPE 0.1 M KNO3 LSASV Cd(II) 6 nM NC 120 s at −1 V
Pb(II) 8 nM
Betelu et al., 2007 Hg film + membrane modified SPE 0.01 M NaHCO3 LSASV Cd(II) NC NC 120 s at −1 V
Pb(II)
POLYMERS
Heitzmann et al., 2007 Poly(pyrrole-EDTA like) film 0.1 M buffer (pH = 5) SWASV Cd(II), Pb(II) and Cu(II) NC NC 600 s accumulation followed by 40 s at −1.2 V for Pb(II) and −0.9 V for Cu(II)
Hg(II) 0.5 nM NC
Buica et al., 2009a Poly(EDTA-like) Film 0.1 M acetate buffer (pH = 4.5) DPASV Cu(II) 600 s accumulation followed by 60 s at −0.4 V
Buica et al., 2009b Poly(pyrrole-EDTA) modified electrode 0.1 M acetate buffer (pH = 4.5) DPASV Hg(II) 10 nM (imprinted polymers) 10–1000 nM (imprinted polymers) 600 s accumulation followed by 180 s at −1.8 V
Pb(II) 0.5 nM 10–1000 nM 600 s accumulation followed by 40 s at −0.9 V
Cu(II) 5 nM 25–250 nM
Heitzmann et al., 2005 Poly(pyrrole-malonic acid) film modified carbon electrode 0.2 M acetate buffer (pH = 4.4) SWASV Hg(II) 50 nM NC
Cd(II) 0.2 μM 1–10 μM 600 s accumulation followed by 40 s at −1.1 V
Pereira et al., 2011 Complexing polymer films 0.1 M acetate buffer (pH = 4.4) SWASV Pb(II) 0.5 nM 10–1000 nM 600 s accumulation followed by 40 s at −0.9 V or −1.1 V for Cd(II)
Cu(II) 5 nM 25–250 nM
Hg(II) 100 nM 100–1000 nM
Cd(II) 500 nM 100–10000 nM
Rivas et al., 2006 Complexing polymer films 0.1 M acetate buffer (pH = 4.8) SWASV Pb(II) NC 0.01–5 mM 600 s accumulation followed by 40 s at −0.6 V
Bessbousse et al., 2011 Nanoporous β-PVDF membrane electrode 0.1 M sodium acetate SWASV Pb(II) 0.63 nM NC 30 min equilibrium followed by 100 s at −0.8 V
Zejli et al., 2007 Polythiophene film 0.2 M KNO3 (pH = 5) DPASV Ag(I) 0.56 μM 0.65–9.3 μM 120 s at −0.5 V
Yasri et al., 2011 GC/PEDOT:PSS HCl (pH = 2.2) CA Pb(II) 0.19 nM 2–100 nM 30 s at −0.65 V
NPs
Ottakam Thotiyl et al., 2012 Au/MPS-(PDDA-AuNPs) Phosphate buffer (pH = 8) DPASV As(III) 0.48 μM NC
Hezard et al., 2012a GC + AuNPs 0.01 M HCl SWASV Hg(II) 0.42 nM 0.64–4 nM 300 s at 0 V
Hezard et al., 2012b GC + AuNPs 0.01M HCl SWASV Hg(II) 0.4 nM 0.8–9.9 nM 300 s at 0 V
BIOSENSORS
Chouteau et al., 2004 Alkaline phosphatase 10 mM Tris-HCl buffer (pH = 8.5) / 1 mM MgCl2 Conductometry Cd2+ 8.9 nM NC
Chouteau et al., 2005 Alkaline phosphatase Acetylcholinesterase 10 mM Tris-HCl buffer (pH = 8.5) / 1 mM MgCl2 Conductometry Cd2+ 89 nM NC 30 min incubation
Zn2+ 0.15 μM
Tekaya et al., 2013 Alkaline phosphatase 5 mM HEPES buffer (pH = 8.1) Conductometry Cd2+ 10−20 M NC 24 h incubation
Hg2+
Soldatkin et al., 2012 Invertase, mutarotase, glucose oxidase 5 mM phosphate buffer (pH = 6.5) Conductometry Hg2+ 25 nM NC 20 min incubation
Ag+ 100 nM
Mohammadi et al., 2005 Invertase, mutarotase, glucose oxidase 0.1 M phosphate buffer (pH = 6) Amperometry Hg(II) NC 10 nM–1 μM 20 min incubation at pH = 4
Gayet et al., 1993 L-lactate dehydrogenase L-lactate oxidase 0.1 M Tris buffer (pH = 9) Amperometry Hg(II) 1 μM NC 5 min incubation
Ag+ 0.1 μM
Cd2+ 10 μM
Zn2+ 10 μM
Pb2+ 50 μM
Cu2+ 250 μM

*All parameters given are the ones for the best LODs.