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ABSTRACT Models relating phenotype space to fitness (phenotype—fitness landscapes) have seen important developments recently.
They can roughly be divided into mechanistic models (e.g., metabolic networks) and more heuristic models like Fisher's geometrical
model. Each has its own drawbacks, but both yield testable predictions on how the context (genomic background or environment) affects
the distribution of mutation effects on fitness and thus adaptation. Both have received some empirical validation. This article aims at
bridging the gap between these approaches. A derivation of the Fisher model “from first principles” is proposed, where the basic
assumptions emerge from a more general model, inspired by mechanistic networks. | start from a general phenotypic network relating
unspecified phenotypic traits and fitness. A limited set of qualitative assumptions is then imposed, mostly corresponding to known features
of phenotypic networks: a large set of traits is pleiotropically affected by mutations and determines a much smaller set of traits under
optimizing selection. Otherwise, the model remains fairly general regarding the phenotypic processes involved or the distribution of
mutation effects affecting the network. A statistical treatment and a local approximation close to a fitness optimum yield a landscape
that is effectively the isotropic Fisher model or its extension with a single dominant phenotypic direction. The fit of the resulting alternative
distributions is illustrated in an empirical data set. These results bear implications on the validity of Fisher's model’s assumptions and on

which features of mutation fitness effects may vary (or not) across genomic or environmental contexts.

HE distribution of the fitness effects (DFE) of random

mutations is a central determinant of the evolutionary
fate of a population, together with the rate of mutation. Obvi-
ously, it determines the rate of adaptation by de novo muta-
tions, by setting the mutational input of fitness variance.
Furthermore, by setting the distribution of fitness at muta-
tion—-selection balance, the DFE also determines the amount
of standing variance in populations at equilibrium and their
potential for future adaptation. The DFE is therefore central to
evolutionary theory, for both adapting and equilibrium popu-
lations. There is, however, no widely accepted model that pre-
dicts the distribution of fitness effects of random mutations and
how it is affected by various environmental or genetic contexts.
Yet, predicting what happens under changed conditions is
a minimum requirement for many applications of evolutionary
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theory. “Phenotype-fitness landscapes” provide a general tool
for such inference: by defining changed conditions (genetic
background or environment) as explicit alternative “positions”
in the landscape, their effects can be handled quantitatively.

“Mechanistic” landscapes

One such approach has seen considerable development in the
past decade: models that explicitly describe the “direct” mo-
lecular effect of a mutation (on RNA secondary structure, on
metabolic reactions, etc.) and integrate its effect on cellular
yield or growth rate, through a network of phenotypic inter-
action. This approach, which can take various forms, is often
dubbed “systems biology” (reviewed in Papp et al. 2011). It
relies on a phenotype-fitness landscape that is parameterized
from some empirical knowledge of the system, to describe
part of the complex functional effect of given mutations. Prob-
ably the most popular and most advanced example of this
approach is flux balance analysis (FBA). FBA has proved ac-
curate in predicting, from first principles, the fitness effect of
a wide variety of gene deletions (alone or in combination) in
several model microbial species, mostly the bacterium Escher-
ichia coli (Ibarra et al. 2002) and the yeast Saccharomyces
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cerevisiae (Papp et al. 2004; Segré et al. 2005). It relies on
a description of the effect of the removal of a given gene on
the full metabolic network of the cell and ultimately on cell
yield and growth rate. These approaches are powerful in both
predictivity and explanatory potential, as they provide hints
on why a particular genetic change has a given fitness effect.
Other landscape models focus on point mutations affecting
particular metabolic pathways [e.g., the lactose utilization
pathway (Perfeito et al. 2011)]. These studies test whether
given mechanistic models can be accurately fitted to observa-
tions. FBA, on the contrary, seeks to predict, from first princi-
ples and independent calibration data, the effect of a set of
deletions. Finally, a mechanistic approach has recently been
proposed at the scale of multicellular organisms, with a devel-
opmental model (based on tooth morphology) predicting
how mutations affect morphology and subsequently fitness
(Salazar-Ciudad and Jernvall 2010; Salazar-Ciudad and Marin-
Riera 2013). However, this model is intended as illustrative
rather than quantitatively predictive, and it has not been empir-
ically tested.

All these mechanistic approaches come at a cost, almost
by definition: they require more or less extensive empirical
descriptions of the genotype-phenotype-fitness relationship,
and they are bound to describe only the particular mechanism
considered. Therefore, they are mostly applied in species/
strains where this relationship has been characterized empiri-
cally or can be “guessed” (a minimum requirement for FBA is
a full genome sequence plus good knowledge of the growth
medium). Mechanistic models are designed to describe a given
aspect of a mutation’s effect (e.g., metabolic effect, secondary
structure and RNA stability; etc.), typically at a cellular level. It
is challenging to extend these predictions to mutations of un-
known type (indels, gene duplications, transposon inserts, or
single-nucleotide substitutions) that affect various functions
and that modify an unknown aspect of the organism’s fitness
(expression levels, behavior, etc.). The scale of the prediction
also typically limits applications to multicellular organisms
(where the model must be integrated over many differentiated
cells) or viruses (where it is the host phenotype that must be
modeled). Overall, the unprecedented refinement of these
mechanistic models has clearly provided key information, some
of which is used here. However, their very precision limits their
ability to predict the effect of random mutations, in less well-
characterized species and environments, and hence their po-
tential application in medicine, agronomy, or ecology.

“Heuristic” landscapes

A different approach has also been used for decades to
predict the DFE: more heuristic landscapes like Fisher’s
(1930) geometrical model (FGM) (reviewed in Orr 2005).
In this model, which may take various forms according to
the starting assumptions, adaptation is characterized by sta-
bilizing selection (quadratic or Gaussian), on a set of un-
specified traits. Pleiotropic mutations jointly modify these
traits, forming smooth (typically normal) distributions. The
most predictive version is the isotropic FGM, where all traits
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are equivalent with respect to selection or mutation. In prin-
ciple, the FGM can be used to predict how the DFE is affected
by any environmental or genotypic context (epistasis), with any
type of nonsilent mutation. Empirical support of the model’s
predictions has recently accumulated (Martin and Lenormand
2006a,b; Martin et al. 2007; MacLean et al. 2010; Sousa et al.
2011; Weinreich and Knies 2013), although it was sometimes
relatively indirect. The most quantitative tests (Martin et al.
2007; MacLean et al. 2010; Sousa et al. 2011), and hence those
with most statistical power, used the model to predict how the
DFE is affected by epistasis. More generally, the FGM indeed
predicts both the pervasiveness and the diminishing-return
form of epistasis, as documented repeatedly in experimental
evolution (e.g., MacLean et al. 2010; Chou et al. 2011; Khan
et al. 2011; Sousa et al. 2011). A model of pleiotropic mutations
affecting the distance to an optimum is also qualitatively con-
sistent with the prevalence of antagonistic pleiotropic effects
affecting unused functions during long-term adaptation (as ob-
served in Cooper and Lenski 2000). Finally, note that the model
has been applied to various types of mutations (random point
mutations, transposon inserts, and antibiotic resistance muta-
tions) and in several species, although most were model micro-
bial species, for logistic reasons.

In spite of this potential, Fisher’s model is typically con-
sidered merely heuristic and too simplified to quantitatively
capture the complex processes relating mutations to fitness
components (growth rate, viability, fertility, etc.). Indeed, to
date, the model has proved to be predictive only in a small
number of tests. Compared to mechanistic models, it also
does not predict the effect of particular mutations or their
functional underpinnings, but only distributions among sets
of mutants (but see Weinreich and Knies 2013). In any case,
it remains unclear why such a simple model should capture
features of highly complex processes. Therefore, even if fur-
ther tests confirmed its quantitative predictivity, we would
still be unable to tell under what conditions it should break
down, which would limit its usefulness in forecasting.

Aim of the article

This study is an attempt to bridge the gap between mechanistic
and heuristic approaches to phenotype-fitness maps. The aim
is to reduce, by a statistical treatment, the complexity of the
process relating mutation to fitness in a mechanistic model,
resulting in a simplified model akin to the FGM. Statistical
physics provides a successful example of such an endeavor:
countless interacting particles generate a group behavior that
is captured by the simple laws of thermodynamics. Given some
assumptions on the microscopic process, this group behavior is
predictable from a few measurable macroscopic quantities like
temperature, volume, pressure, etc. The accuracy of the pre-
diction increases with the number of random particles, namely
with the complexity of the process. Here, I hope to make it
plausible that a very similar argument applies to Fisher’s geo-
metric model, under a few qualitative assumptions on the
genotype—phenotype-fitness map. These assumptions mostly
derive from general features identified by systems biology



Table 1 Glossary of notations

FGM: Fisher's geometrical model of adaptation.

DFE: Distribution of the fitness effects of a set of mutations, among a given set of genotypes (de novo random mutants, standing
variants at equilibrium, etc.), in a given environment and/or genetic background.

LSD: Limit spectral distribution (distribution of eigenvalues) of a matrix as its dimensions get large.

i.i.d: identically and independently distributed (a set of values all drawn independently from the same distribution).

&(.) : Developmental function relating mutable traits (x) and optimized traits (y), see Figure 1.

bj; : Pathway coefficients relating mutable trait j to optimized trait / [the first derivatives of ¢(.) at the parent phenotypic position],

gathered into the n X p matrix B.

M-P law (MP(B, ¢)): Marchenko-Pastur law with ratio index 8 and scale parameter £.

I, with kK € N : Identity matrix in k dimensions.

px(X), x(x) : pdf of the LSD of the matrix X and corresponding Shannon transform, respectively (same conventions for all other

transforms).

regarding the structure of phenotypic networks (Barabasi and
Oltvai 2004) and some observations from experimental evolu-
tion. Provided these assumptions are valid, we will see how
some laws of large numbers yield the isotropic FGM.

I tried, as much as possible, to keep the details of the
phenotypic network and its very nature unspecified, to retain
the generality of heuristic models. The model is intended to
describe the DFE among mutations in a single gene or set of
genes in the same functional complex. I discuss its extension
to mutations scattered across the genome. To obtain the key
results, I used tools from random matrix theory (Bai and
Silverstein 2010), which provides a statistical description of
large matrices whose elements are drawn from random dis-
tributions. Derivations of the results are given in Supporting
Information, File S1 and File S2 and a Mathematica (Wolfram
Research 2012) notebook (File S3) (in freely readable [.cdf]
format). The main text is reserved for assumptions, argu-
ments, and key results, and a glossary of notations is given
in Table 1.

The observed vs. predicted patterns are illustrated on a set
of fitness measurements among random single-nucleotide
substitutions in two ribosomal protein genes of the bacterium
Salmonella typhimurium (Lind et al. 2010). This is more
intended as an illustration than a test of the model, the latter
being tackled in the Discussion.

Methods
Biological and mathematical assumptions

I first describe the key biological features behind the model and
their justification and present a heuristic argument behind the
main results. In all of the following, I use the shortcut “pheno-
type” to mean the genetic value of a lineage for the phenotype
considered (averaged over microenvironmental variation). The
model relies on eight key assumptions: the first five are basic
“biological” assumptions about the relationship between geno-
type, phenotype, and fitness, and the last three are more tech-
nical “mathematical” requirements of the model:

1. There is a fitness optimum for a subset of key traits.
2. The parent phenotype is not too far from the optimum.
3. Mutations have mild effects on phenotype.

4. Each mutation pleiotropically affects many “mutable”
traits (high level of pleiotropy).

5. The large set of mutable traits in turn affects a smaller
subset of key “optimized” traits that determine the opti-
mum (high developmental integration).

These “basic” assumptions are detailed and justified be-
low. Three additional (milder) assumptions bear on the gen-
eral class of distributions that are considered here:

6. The distributions of all random variables considered must
have finite mean and variance and satisfy the “Lindeberg
condition” (see, e.g., Barton and Coe 2009).

7. The covariance between dependent random variables in
the model must satisfy a “weak dependence condition”
for dependent variables (Baxter et al. 2007).

8. The n p coefficients relating mutable to optimized traits
form a multivariate distribution that can be written as a lin-
ear combination of n p independently distributed variables.

Bluntly, assumptions 6 and 7 require that, although un-
specified, the distributions considered in the model behave
“nicely” so that we may use central limit theorems on these
random variables. Assumption 8 ensures that we can transform
the distribution of the coefficients to a canonical form used in
random matrix theory. It still allows for most distributions of
possibly correlated coefficients, but they cannot be fully corre-
lated (which is anyway ensured by assumption 7). We detail
later the implied properties for the variables under study.

Definition of different trait types: It is a tricky exercise to
characterize the traits that are considered in Fisher’s model
(discussed in Orr 2000; Martin and Lenormand 2006b). In-
deed, the focus is on fitness, not on traits of particular in-
terest, and no explicit mechanism relates traits and fitness.
Therefore, one can use an infinite number of trait definitions
(i.e., of coordinate systems in phenotype space). It is not the
case here. Below, three distinct trait types are defined in
a top—down order.

Fitness m: The obvious first trait to define is fitness or any
fitness component (growth rate per unit time, survival
probability, competitive index over some period of time,
etc.). This is the only quantity that is considered measurable
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empirically, for a given set of genotypes. I refer to “fitness” to
mean any such measurable fitness component and denote
by m (for Malthusian fitness) the breeding value of a lin-
eage for fitness. Malthusian fitness is our landmark fitness
component.

Optimized traits y: A second class of traits is dubbed “op-
timized traits,” whose breeding values for a given genotype
are given by the vector y. These traits are characterized as
follows: (i) there is an optimizing function relating them to
fitness (with a maximal fitness at some value of y) and (ii)
they are not fully correlated by mutation. These traits can be
thought of as the traits defined in the FGM: I denote n (for
consistency with the FGM) the number of optimized traits.
The dimension n counts the number of traits that are jointly
modified by any single mutation, but not fully correlated.
Technically, optimized traits have a mutational covariance
matrix that is of full rank n. A unique and mathematically
justified definition of these traits comes later.

Mutable traits x: Finally, mutation defines another subset
of the organism’s phenotype: the set of traits that is pleio-
tropically affected by mutations in a given genomic target
(gene or set of genes). I call “mutable traits” the traits in x
and denote by p (for “pleiotropy”) their number. As with
optimized traits, mutable traits have a mutational covari-
ance matrix that is of full rank p. We assume that mutation
effects on mutable traits are unbiased (mean is zero).

A larger phenotypic set of n’ >n optimized traits (resp.
p’' >p mutable traits) could always be defined, but then
some n’' —n (resp. p’ —p) traits would be linear combina-
tions of the first n (resp. p) ones.

Developmental function: We must now define arbitrary
functions relating these traits. The function m(y) maps a given
phenotype y to fitness: it is unspecified, but must define an
optimum in y space, which we can set at the origin y = 0,
without loss of generality. There is also a mapping from mu-
table to optimized traits: this integration is mediated by an
unspecified cascade of developmental, physiological, regula-
tory, etc., processes. Following Wagner (1984, 1989) and Rice
(2002, 2004), we can define an arbitrary multivariate function
&(.) relating these phenotypic sets: ¢b(x) = y. We denote this
function “developmental function” in reference to Wagner’s
introduction of the concept: indeed we retrieve his particular
(linear) function in the limit.

Now all the ingredients in the model are defined: Figure 1
illustrates the genotype—phenotype-fitness mapping that is
used in this article. So far, we made no assumption on the
particular properties of these functions or traits, except a causal
relationship and the existence of a phenotypic optimum (as-
sumption 1). We will see below the biological justification
behind the five basic assumptions 1-5 and their implications
for the model.

Practical illustrations: First, let us consider a practical (but
limiting) example with a mutation affecting an enzyme
involved in metabolism, in a unicellular organism. Muta-
tions at the focal gene modify the concentrations of the
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products and substrates of the reaction catalyzed by the
enzyme and in turn modify many other metabolite concen-
trations, via the metabolic network. This in turn alters a set of
key metabolites (ATP, NADPH, etc.) that directly determine
the cellular growth rate via an optimizing function. In the
microbial metabolic network models used in flux balance
analysis (see, e.g., Price et al. 2004), this optimization function
is empirically defined and calibrated. In this example, the con-
centrations of the p metabolites modified by mutations are the
mutable traits (x), and those of the n metabolites determining
cellular growth are the optimized traits (y). The metabolic
network relating these metabolite concentrations determines
the developmental function ¢(x), and the optimizing func-
tion relating the key metabolites to cellular growth is the
fitness function m(y).

In metabolic theory, the optimizing function is constructed to
define an optimum, but not necessarily with respect to all the
factors that enter the function. For example, some metabolite
concentrations may enter the function in a linear fashion but be
determined by other metabolite concentrations via quadratic
functions. In that case, the corresponding optimized traits
would be these lower-level metabolite concentrations that do
not enter the optimizing function explicitly.

In a recent study, Le Nagard et al. (2011) simulated
a phenotype-fitness landscape with underlying phenotypes
encoded by a neural network (mimicking a set of interacting
genes), which itself determines fitness. This is akin to the
type of landscape considered here, and, indeed, the authors
analyzed their results using complexity definitions from the
FGM. However, their approach differs from ours in that their
fitness is a Gaussian function of the distance between a geno-
type’s reaction norm (to some environmental variable) and
some optimal reaction norm. On the contrary, our fitness
function depends on distances from a single phenotypic op-
timum, in fixed conditions.

Existence of a fitness optimum: To define the set of optimized
traits, I assume that there is, at a local scale in phenotype
space, a phenotypic state y = 0 that maximizes fitness. This
idea, initially introduced by Fisher (1930) in his geometrical
model, is the common ground of many evolutionary models
of course, but it is also supported by some observations from
long-term evolution experiments (Elena and Lenski 2003). In
such experiments, the fitness of replicate populations reaches
a plateau [which may sometimes vary (Schoustra et al
2009)] or at least shows a striking deceleration. Consistent
with this finding, negative epistasis among beneficial muta-
tions has been repeatedly reported: beneficial mutations tend
to be less advantageous when arising from fitter parents
(MacLean et al. 2010; Chou et al. 2011 ; Khan et al. 2011;
Sousa et al. 2011). These observations are obviously sugges-
tive of the existence of an optimum for fitness, at some local
scale at least.

Local approximation: Assumptions 2 and 3, respectively,
state that the parental phenotype is not too far from the
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Figure 1 Model of genotype-phenotype-fitness map. This schematic
representation shows the different levels of integration assumed in the
model, from a single genetic change in the DNA (left) to its effect on the
Malthusian fitness of the whole organism. Each mutation pleiotropically
affects a large subset of p “mutable traits” (orange ovals), via a complex
interaction network among proteins. The parent phenotype at all these
traits is represented by the vector x. The effect of a mutation (on the
offspring’s phenotype) is a random small perturbation dx, with mean zero
and arbitrary multivariate distribution (covariance V). These basic muta-
tional changes “percolate” through the network of interactions to induce
changes at a much smaller set of n key integrative traits (“optimized
traits,” green ovals), which are those under stabilizing selection, repre-
sented by the vector y. An arbitrary developmental function y = ¢(x)
relates mutable to optimized traits (developmental integration). The effect
of mutations on y is a perturbation vector dy that is approximately linear
in dx (to leading order), with linear coefficients b; = dy ¢ (y;), arbitrarily
distributed. The optimized traits directly determine fitness via a locally
quadratic function m(y) around some optimum (set at y = 0).

optimum and that mutation effects around this phenotype
are mild. These are justified if we accept that, while there
may be substantial adaptation going on, a genotype cannot
be too far from a local optimum and remain viable. These
ideas can be traced back to Fisher (1930) in the presentation
of his geometrical model; we use them here to allow several
key mathematical approximations.

Under these conditions, the entire population (parent plus
mutants) lies in some vicinity of the optimum and will remain
so over the course of the adaptive process. This allows a key
simplification: we can derive the DFE from only the local
behavior of the fitness function m(y) about its optimum
y = 0. This local behavior is simply given by a Taylor-series
approximation around the optimum. Assume that, in some
local neighborhood, a real function m : R® =R is continuous
and defines a “nondegenerate” optimum (one whose second
derivative is not vanishing, details below). Then, there always
exists a unique set of (Cartesian) coordinates for the y space
such that, in the vicinity of the optimum, the function can be
written as m(y) = m(0) — 1/2|ly||*, where [ly||* = >0, y? is
the squared norm of y. The factor 1/2 is merely for consis-
tency with conventions in the FGM. This statement can be
proved in two steps. First, a second-order Taylor-series
approximation of any smooth fitness function about a (non-
degenerate) optimum yields a quadratic function with
positive-definite selective covariance matrix (Lande 1979).
Second, one can use a linear transformation of this coordinate
system so that the selective covariance matrix in the new
system is equal to identity. The particular linear transforma-
tion is obtained by solving the generalized eigenvalue prob-
lem, (as, e.g., in Martin and Lenormand 2006b; Chevin et al.

2010). Here, the resulting coordinate system has a locally
quadratic and isotropic fitness function; namely, all resulting
phenotypic directions are equivalently selected. The inter-
ested reader can relate this result to the more general “Morse
lemma.” Trait definitions are arbitrary in the FGM (Orr 2000;
Martin and Lenormand 2006b), so we can choose to define y
in those coordinates where, “locally;” the function is isotropic
and quadratic. This is possible because we are not focusing on
particular traits, as typical quantitative genetics does, so the
coordinate system can be arbitrarily “bent” and turned via
this linear transformation. Once the coordinate system has
been set in this manner, the traits in y are fully and uniquely
characterized, contrary to the FGM in its original form. In the
following, all other coefficients are defined in this particular
set of coordinates.

The assumption that the optimum is “nondegenerate”
deserves some development. It means that the function must
be twice differentiable, with zero first derivatives at the
optimum [J,,m(0) =0] and nonzero second derivatives
around this optimum [8}2,l_m(y) <0, to define a maximum].
Most continuous functions have only nondegenerate critical
points (maximum, minimum, or saddle point). However, the
approximation cannot be invoked for some special optimi-
zation functions that happen to have been used in some
previous versions of the FGM. Linear fitness functions of
the form m(y) =m(0)—||y|| (Poon and Otto 2000) or
fitness functions of the form m(y) = exp(—|y||?) where
Q> 2 (Tenaillon et al. 2007; Gros and Tenaillon 2009) have
a “degenerate” optimum at y = 0. The former function is not
differentiable at y = 0, while the latter has vanishing sec-
ond derivatives at y = 0. Note also that even discontinuous
functions relating phenotype to growth rate can yield contin-
uous Malthusian fitness functions once some nonheritable
and continuous microenvironmental random component is
accounted for. Figure 2 illustrates the types of fitness func-
tions where the quadratic approximation does or does not
apply. A wide variety of functions are allowed of course, like
the Gaussian, asymmetric functions, etc.

The local approximation (“vicinity of the optimum”) allows
generalizations but imposes a limit: How close to the optimum
must we remain to apply the approximation? As for any Taylor-
series argument, the answer depends on the fitness func-
tion and cannot be general: the population must remain
close enough to apply the approximation.

Pleiotropy within networks: Assumption 4 requires that the
space of mutable traits has high dimension (high pleiotropy,
p > 1): it allows the use of large-number arguments in the
statistical treatment of the model. Some a priori and a pos-
teriori arguments suggest that these assumptions are biolog-
ically reasonable. Note that I use a particular definition of
pleiotropy relating to the whole set of possible mutants in
a given genetic target; while some define pleiotropy at the
scale of any particular mutation (Wagner and Zhang 2011),
these two definitions should coincide if the distribution of
mutation effects is continuous.
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Figure 2 Applicability of the quadratic approximation around the optimum, for various fitness functions. Different fitness functions m(y) (indicated in
inset) are illustrated in one dimension (y € R). Conditional on the existence of a nonvanishing second derivative at the optimum (m”(0) # 0), the

quadratic approximation (dashed line) applies (A) or does not apply (B).

First, a widely observed feature in most phenotypic
networks [from gene regulation to protein interactions or
metabolism (Barabasi and Oltvai 2004)] is the “small-world”
property. This property implies that every node in the network
is connected to most other nodes via a path of short length.
We can thus expect that any mutation that affects a given
node will in turn modify many other phenotypes through this
set of short paths. This suggests that most mutations should be
highly pleiotropic (p > 1, assumption 4). It does not, how-
ever, imply “universal pleiotropy”: p can still be substantially
smaller than the total number of phenotypes under genetic
control (see the discussion in Wagner and Zhang 2011, 2012;
Hill and Zhang 2012). Note that this small-world property
is a sufficient condition to obtain high pleiotropy, but is not
necessary.

Second, this a priori argument is reinforced by a posteri-
ori empirical observations. The metabolome of the actino-
mycete Nocardiopsis has been shown to be widely modified
by resistance mutations caused by single-nucleotide changes
(Derewacz et al. 2013): more than 300 different metabolites
expressed in the mutants are undetected in the wild type, and
up to 80 metabolites in the wild type are undetected in the
mutants. Note that mere changes in metabolite concentra-
tions are not counted in this picture. RNA-chip studies have
also revealed that the expression of many genes can be
jointly altered by simple genetic changes, e.g., gene dele-
tions (Wagner 2002) or single fixed mutations in experi-
mental evolution (reviewed in Hindré et al. 2012).

Developmental integration: Our last biological assumption 5
requires that the many mutable traits affect a much smaller
subset of optimized traits (n < p). We refer to this assumption
as “developmental integration” (although development may
not be involved), because it refers to integration through the
developmental function, in the sense of Wagner (1984, 1989)
and Rice (2002, 2004). It might be the most difficult assump-
tion to evaluate. It is known that oriented networks (like gene
regulation networks, for example) are highly hierarchical over
several levels, with a few central genes regulating large sets of
other genes (Bhardwaj et al. 2010). This hints at integration
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within biological networks but remains not directly relevant to
our model: what is assumed here is that the set of traits (not
genes) that determine fitness is small and affected by many
underlying traits. More directly, in flux balance analysis (our
example above), the function relating metabolism to growth
rate has typically a few tens of variables, much fewer than the
whole set of metabolites in the system. Also, most of the
metabolites in the system affect the key metabolites more
or less directly. This assumption is also supported, although
indirectly, by the observation that empirical DFEs are not
normally distributed. Indeed, if there are many, not fully de-
pendent, phenotypic traits that both mutate and affect fitness
(via any function), then the resulting distribution should be
close to Gaussian, by the central limit theorem. This is typi-
cally not observed: across several organisms, laboratories,
and methods, empirical DFEs are skewed toward negative
values (reviewed in Martin and Lenormand 2006b; Eyre-
Walker and Keightley 2007). Empirical noise could not cause
this observation because (i) it is fairly limited in several of
these studies and (ii) noise should favor normally distributed
observations, which are not observed.

Together, assumptions 4 and 5 are summarized in the
notion of high developmental integration: from many traits
connected by the network to fewer key traits selected for
optimal intermediates (p > n>1).

Emergence of the FGM

In all of the following, X.Y denotes a matrix product, X*
denotes the matrix transposition of X, and X'/ denotes the
Cholesky decomposition of X (matrix square root).

Distribution of mutation effects on optimized traits and
fitness: Assumptions 1-4 suffice to obtain a landscape of the
type described by an anisotropic Fisher model. Let us see how.
From their very definition, mutations create a change in the
mutable trait values dx = {dx;};.; . whose multivariate
distribution is unspecified (continuous or discrete, etc.). Yet,
we require that they have zero mean (E(dx) = 0) and non-
zero finite variance-covariance matrix V = E(dx.dx*) and
satisfy the Lindeberg and weak dependence conditions (our



assumptions 6 and 7). The random perturbation dx trans-
lates into dy = {dyi};c; - via the developmental func-
tion: dy = &(x + dx) — ¢(x). Assumption 3 (mild mutation
effects) allows us to take a linear approximation of ¢(.) about
the parent phenotype: dy ~ B.dx, where B = {bj};c(1 n jc1 )
is an n X p matrix containing all the first derivatives of ¢(.) at
the parent position x. We thus retrieve exactly Wagner’s (1984,
1989) linear developmental function, where the n p coefficients
bj in B describe how mutable traits x; integrate into optimized
traits y;. I denote them “pathway coefficients,” as they relate to
functional pathways connecting phenotypes.

Then, from assumptions 4-7, we can invoke a generalized
central limit theorem (CLT). Each dy; is a linear combination
of many, not fully correlated, random variables (the dx;):
under certain conditions on the dependence between dx;
and on the nature of their distributions (which may vary
across index j), these dy; converge to a normal distribution
as p gets large. Assumption 5, not just assumption 4, is re-
quired because it implies that the coefficients in B are not
zero in a large proportion (p times the proportion of zero
coefficients remains large). Assumption 6 applied to the dx;
guarantees that the distributions of the dx; pertain to a class
that does yield convergence to the CLT as p— . Techni-
cally, the Lindeberg condition is required when the dx; are
not all drawn from the same distribution. It is satisfied, e.g.,
by any distribution whose fourth central moment scales with
the squared variance (detailed in theorem 2.35 in Tulino
and Verdu 2004) and more generally requires that higher
moments be bounded (Baxter et al. 2007). This is an appli-
cation of the narrower but simpler “Lyapunov condition.”
Assumption 7 states that the dependence between the dx;
is weak enough that the variance of their mean V(dx) scales
with 1/n as n— . It provides one among various sufficient
conditions for the CLT to apply with dependent variables
(Baxter et al. 2007). The conditions of convergence to the
CLT are a vast and well-studied subject of probability theory
that is obviously beyond the scope of this article. Our
assumptions 6 and 7 thus simply require that we are under
those conditions sufficient to apply the CLT, even to dependent
and not identically distributed variables. This still encompasses
a vast array of situations and distributions.

The CLT then implies that dy converges to a (multivariate)
Gaussian as p gets large, with mean E(dy) = 0 and covari-
ance matrix M = E(dy.dy*) = B.V.B*, which is denoted
dy ~ N(0,M). Note that M may depend on the particular
parent phenotype, because both B and V may depend on a po-
sition in X space, unless phenotype space for x is additive and
the developmental function is linear. I drop the explicit refer-
ence to this fact for notational simplicity, but get back to it in
the Discussion. Note also that this central limit theorem argu-
ment cannot be turned the other way around (from optimized
to mutable traits). First, it is the mutable traits that are caus-
ally affected by mutation, by definition. Second, the develop-
mental function ¢(.) : RP —R" is not a bijection so we cannot
define the inverse relationship x = ¢~ !(y) that might yield
a Gaussian distribution of the dx.

Finally, as assumptions 1-3 yield a simple fitness function
(m(y) ~m(0) — 1/2|ly||*), we can express the change in
fitness induced by mutations as

n d 2
s(dy | y) =m(y +dy) —m(y) ~ - (Zyi dy; +;)
i=1

dy ~ N(0,M),
€3]

for a mutation with effect dy on optimized traits, arising in
a parent with phenotype y. In the special case where our
fitness component is Malthusian fitness itself, s is exactly
the selection coefficient of the mutation. It is also approxi-
mately so if m = log(W), where W is Darwinian fitness with
discrete nonoverlapping generations. Otherwise, it describes
only a linear change in the measured fitness component.
Equation 1 corresponds to an anisotropic FGM (Martin and
Lenormand 2006b): the distribution of the phenotypic effects
of mutations is Gaussian, and the DFE is a quadratic form in
Gaussian vectors, a well-characterized distribution (Mathai
and Provost 1992). The difference is that the normality of
phenotypic effects emerges from assumptions 3-7 and the
central limit theorem, rather than being assumed from the
start. Note also that the local approximation for m has re-
duced anisotropy to the mutational covariance: the selective
covariance is S = I,, the n X n identity matrix (because the
fitness function is isotropic).

The DFE in Equation 1 can be expressed in simpler form
(see, e.g., Jaschke et al. 2004). Let A; be the n eigenvalues
of M = B.V.B*, all strictly positive by construction (since
V and B.B* are positive definite). Let Q be the eigenbasis
of M with column vectors given by the n eigenvectors of M,
such that Q* = Q! and Q*.M.Q = diag();) is diagonal. Let
z = {2} n) = Q*.y be the projection of y in the eigenspace
of M (z is simply y expressed in another basis for phenotype
space). Finally, let x[v] denote a noncentral chi-square de-
viate with k d.f. and noncentrality parameter ». The DFE in
Equation 1 can be written as a function of a set of indepen-
dent known random variables (this is called a stochastic
representation): we have

n Ai 2
s(dyly) ~so=>_ 5 xi H @)

i=1

where s, = S 122/2 = ||z||*/2 = ||y||*/2 is a constant with
lz|[* = ||y||* the distance to the optimum from the parent
position (in any orthonormal basis). The DFE is thus fully
determined by the parental position in y space and the
n eigenvalues A; of M. We thus retrieve a known result from
the FGM (e.g., Martin and Lenormand 2006b), in the sim-
pler case where S.M = M.

A short comment on what follows is necessary at this
point. Because the DFE in Equation 2 depends on the
particular set of eigenvalues {A;};c; ), its parameters them-
selves are random: the A;s are inherently random in our
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model, as the matrices B and V are random/unknown. The
distribution of the eigenvalues A; is called the spectral dis-
tribution of M (it is random just as a sample distribution is in
statistics). However, we will see that when n, p > 1, two
simplifications occur. First, the DFE is approximately charac-
terized by an expectation over the spectral distribution (the
expectation is still random if the distribution is not fixed).
Second, the spectral distribution itself proves to converge to
a known limit distribution. Together these two points ensure
that the DFE is well approximated by a deterministic limit
distribution. The following section introduces tools to predict
the spectral distribution of M, based only on assumptions 4
and 5 of developmental integration, plus mild mathematical
conditions (assumptions 6-8) on the general class of distri-
butions considered; most details are given in File S1.

Spectral distribution of M and random matrix theory

Rationale: The key principle behind our “statistical treatment”
of the model is as follows. It seems impossible to make any
a priori statement about the particular values of each pathway
coefficient b; in B or each covariance among mutable traits in
V. Away forward is to consider that these coefficients consist of
a large set of draws from unknown distributions. Then, as we
assume there are many such coefficients (n p > 1), some key
properties of the landscape are approximately given by the
expected outcome, averaged over coefficients. This is similar
to the statistical physics approach and even more closely
related to the infinite-allele approximation of quantitative
genetics (Kimura 1965). From only distributional, not indi-
vidual, properties of the microscopic variables, a resulting
macroscopic quantity can still be predictable. In our case,
the macroscopic variable is the DFE, and the microscopic
variables are the underlying phenotypes, their interactions,
and mutational properties.

The necessary tool is a description of the properties of the
eigenvalues of large random matrices, whose entries are
drawn at random following a given scheme. This is a field of
probability theory of its own, known as random matrix theory
(RMT); see Bai and Silverstein (2010) for a recent review.
Our use of RMT here has its equivalent in wireless commu-
nication (Tulino and Verdu 2004) or the physics of large
nuclei [from which it originates (Forrester et al. 2003)]; the
aim is to model some macroscopic properties of a complex
system with many elements interacting in a poorly known
fashion. The central result from RMT is that the eigenvalues
of many large random matrices, once properly scaled, are
distributed according to simple predictable limits. As with
the central limit theorem (to which RMT is related), these
limits are largely independent of the very nature of the dis-
tribution of the entries, requiring only the same broad con-
ditions to apply (i.e., assumptions 6 and 7). In addition, it is
well established that results from RMT converge quickly
(Tulino and Verdlu 2004): they already show reasonable ac-
curacy with n, p of the order of 10.

Biologically, these statements imply that, even though the
numerous parameters in the model are mostly unspecified
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(microscopic variables), their collective behavior results in
a predictable spectral distribution for M (macroscopic vari-
able); see File S1. This in turn results in a predictable DFE,
as detailed in File S2. An obvious advantage is that this
asymptotic approximation depends on much fewer parame-
ters than the full model and gets more accurate as the sys-
tem gets complex (as n and p get large).

Distribution of pathway coefficients: Let us first character-
ize the randomness in the entries of matrix M = B.V.B*.
Matrix B = {bjj};cp1 nje1p IS an n X p matrix of pathway
coefficients: for a given index i € [1,n], the line vectors of B,
denoted b; = {b; jellp] = &i(x) given by the p derivatives,
with respect to mutable phenotypes x, of the developmental
function &;(.) determining the optimized trait y;. The n vec-
tors b; = {bi1, ..., bjp} can always be seen as n draws from an
unspecified multivariate distribution in RP. The b; have
agiven 1 X p mean vector pg = E(b;) and a given positive def-
inite p X p covariance matrix Cg = E((b; — pg).(bi—pg)*).

The nature of the distribution from which the vectors b;
are “drawn” remains fairly general; they must satisfy only
the mild mathematical assumptions 6-8. This ensures that
central limit arguments may apply (same as discussed
for dx;) and that we can express the b; as a linear combina-
tion of independently distributed variables h;; (assumption 8).
We additionally require that the entries of B do not include
a large class at b; = 0 (this is implicit in assumption 5 of
developmental integration): B is not too “sparse.” The distri-
bution of b; may vary across index j: the sets {by, };c; , and
{Di, }icpr - With j1 # j2, can be drawn from distinct distribu-
tions, provided all distributions satisfy the Lindeberg condi-
tion (assumption 6, as for the dx; above). As we have seen
above for the dx;, a narrower sufficient condition is that the
fourth moment scale with the square of the variance.

By assuming that Cp is positive definite, we ensure that
assumptions 7 and 8 are satisfied: the b; are not fully corre-
lated across columns j. However, I conjecture (see File S1B)
that this entails a somewhat hidden limit: because n < p (as-
sumption 5), the pathway coefficients cannot be too corre-
lated among rows i. There cannot be too much similarity
between the pathways relating various x; to each optimized
trait y;, because this would imply that Cg becomes positive
semidefinite. The effects of such correlations of the b; among
rows i are tackled quickly in the Discussion and File S1B.

Under the broad conditions described above, the matrix
M = B.V.B* has the structure of a “sample covariance ma-
trix” (Bai and Silverstein 2010): it is of the form M = K.K*,
where K has random entries (detailed in File S1B). Note,
however, that there is no form of actual “sampling” going on
here, of course.

Convergence to a limit spectral distribution: The key
insight from RMT is that the spectral distribution of such
a sample covariance matrix M = K.K* is well approximated
by a nonrandom (predictable) limit, when the dimensions
(n,p) are large. This limit is called the limit spectral
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distribution (LSD) of M. We can define the spectral distri-
bution of M by its unknown probability density function
(pdf) denoted py(x),x € RT. The corresponding predict-
able limit when n p— « is the LSD of M, with the pdf
denoted py(x) : pm = Pum-

The Marchenko-Pastur law for standard sample covariance
matrices: Our results rely heavily on a cornerstone of RMT,
known as the Marchenko-Pastur (M-P) law. Mathematical
details can be found in Tulino and Verdu (2004) and Bai
and Silverstein (2010). Let us consider an n X p matrix H
with “standardized” independent entries, namely with real
entries independently drawn from (possibly distinct) distribu-
tions with zero mean and variance 1/n, satisfying the Linde-
berg condition (our assumption 6). Asn p— « withp/n =,
the spectral distribution of H.-H* converges to the M-P law, its
limit spectral distribution. This result is independent of the
nature of the parent distribution from which the entries h;
are drawn (uniform, Gaussian, etc.). The M-P law has a simple
analytic pdf, which depends only on 8 = p/n. The matrix
H.H* may be scaled arbitrarily, by some constant ¢, yielding
a “scaled M-P law,” with two parameters 8 and ¢, which I
refer to as MP(B,¢). A detailed presentation of this distribu-
tion is given in File S1A; I give only its pdf in the case 8 > 1,
which is our focus here:

(b—x)x—a)
2w x '

a=¢(1-yB)* and b=¢(1+ VB>

perm (X) = P (%) = X € [a,b]

€))

The mean of this distribution is E(A) = { B, and its variance
is V(A) = ¢2B. A crucial point is that this distribution is bounded:
£(1—/B)* <A <{(1 + /B)*. This implies that, as 8 gets large
(ie., when p > n), all the eigenvalues of { H.H* converge to
a constant value A = / . This property is the basis of the con-
vergence of the model to the isotropic FGM in the presence of
developmental integration (assumptions 4 and 5).

Figure 3 shows the agreement between the spectral distri-
bution of large simulated random matrices (see File S3) and
the LSD in Equation 3. Note that these are not means over
several simulations; every simulated matrix has spectral distri-
bution approximately given by its LSD. The range of A narrows
as B = p/n increases: this can be intuited by considering sam-
pling covariance matrices. The M-P law describes the limit
distribution, as n,p get large, of the eigenvalues of the covari-
ance matrix from a sample of p random vectors, drawn from
a multivariate distribution in n dimensions, with parent co-
variance proportional to identity. As p gets large (while n
remains finite) the sample covariance converges to the actual
covariance of the parent distribution, which is the identity in n
dimensions: HH* - E(A)L,.

Note that, from theorem 3.6 on p. 47 in Bai and Silverstein
(2010), Equation 3 applies to any distribution of the h;; (with
finite mean and variance) if they are drawn from the same

distribution, without requiring the Lindeberg condition (our
assumption 6). It extends to the case where they are drawn
from distinct distributions, under the additional Lindeberg
condition; see the details in theorem 3.10 on p. 51 in Bai
and Silverstein (2010) and theorem 2.35 on p. 56 in Tulino
and Verdu (2004).

File S1A summarizes a set of known results on the M-P
law (details can be found in Tulino and Verdu 2004). File
S1B applies it to the problem at hand: first, showing that the
mutational covariance matrix M = B.V.B* is a sample co-
variance matrix and then deriving its LSD. In short, M can
be equated to M = K.K*, where K = HW'/2 4 Uk is “line-
arly” related to a standardized random matrix H. This is
ensured by our assumption 8. Matrix H is as described
above: an n X p matrix H with entries independently drawn
from (possibly distinct) distributions with zero mean and
variance 1/n. Matrix W = nClla/ 2.V.C]13/ % is a positive definite
p X p matrix whose eigenvalues are the same as those of
nV.Cp and are finite. Matrix Uk is an n X p matrix of rank
1, with unique singular value equal to 6 = /pg.V.pp. An
approximation for the LSD of M is then obtained as a scaled
M-P law.

Results
Approximation to the spectral distribution of M

This section gives an approximation for the LSD of M and
then moves toward more simplification, looking for situa-
tions where all A; ~ A converge to a single positive constant
(convergence to isotropy).

In the absence of developmental or mutational correlations:
A first simple statement is that the M-P law is exactly the LSD
of M when K =H. This happens whenever the pathway
coefficients are unbiased (g = 0) and both mutation effects
on x and pathway coefficients are independent with equal
variance (V.CgxI,, the identity matrix in p dimensions).
Then M = { H.H*, where { is a scaling constant. Its LSD is
the M-P law A ~ MP(p/n, {), whose pdf is given by Equation
3: pu(X) = pu(x) = pyp:(x), asn,p—oo.

General case with pug = 0: Let us now consider the more
general model, with arbitrary covariance matrices (V,Cg),
but still assuming that the distribution of pathway coeffi-
cients is unbiased, so that pzy =0. Then M = HW.H*
(K = H.W'Y2) and its LSD are no longer an M-P law. Yet,
it is shown in File S1B that, with high developmental in-
tegration (n < p), the LSD of M is still approximately an
M-P law, with coefficients modified to account for mutational/
developmental covariances (V.Cg # I,). The impact of these
covariances on p(A) can be predicted from the sole knowledge
of the mean and coefficient of variation of the eigenvalues
Aw of W. I denote the mean of these eigenvalues E(Aw) = {w
and their coefficient of variation cvg, = V(Aw)/E (/\W)Z. The
LSD of M is approximately
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Figure 3 Convergence of the Marchenko-Pastur law toward isotropy.
The pdf p(x) of the Marchenko-Pastur (M-P) law is illustrated for a set
of values of the shape parameter B = p/n (see inset). The matrices are
scaled to have E(A) =1 ({ = 1/B). The histograms show the spectral
distribution of a simulated Wishart matrix (n = 300,8 = p/n), and the
lines show the limit spectral distribution given by the corresponding Mar-
chenko-Pastur law A ~ MP(B, 1/8) (Equation 3). The spectral distribution
is well captured by the M-P law and becomes narrower as the ratio index
becomes larger (n < p, high integration).

p
Pe=="—5
A~MP (% ge) . where 1+ oviy )
{e = {w P/Pe.

The effective parameters p. and {. account for the effect of
multiplication by W =n Cllg/ 2 .V.Cllg/ % The phenotypic cova-
riances within the network, both among mutable traits (V)
and among pathway coefficients (Cp), jointly affect the sys-
tem but simply by reducing the effective ratio index of the
M-P law, by a factor 1/(1 + cv&,). The effect cvZ, is the same
as that seen in Figure 3 when 8 becomes smaller: a widening
of the spectral distribution, namely an increase in anisotropy
among dimensions. Both V and Cp contribute to increase
this anisotropy through cvZ,.

Full model with arbitrary pg: It remains to state how the
presence of a bias in the distribution of pathway coefficients
b;; affects the LSD of M. This is detailed in File S1B. We have
seen that M = K.K*, where K = HW'/2 1 U, so the only
effect of the bias is to add the rank 1 matrix Uk to the model
described by Equation 4. To gain an intuition for the effect
of this bias, consider an extreme case. If the entries in Uk
are much larger than those in W, then K = Uk. In this sit-
uation, the mutational covariance is driven by the term due
to bias (M = KK* =~ UK.U;E), yielding a covariance matrix
of rank 1 (because U is of rank 1), namely with a single dom-
inant direction. More precisely, this should happen when
Tr(Uk.Uk) = pp.V.pg > Tr(H.W.H *) = Tr(V.Cg ), where Tr(.)
stands for matrix trace.

This effect of a small rank in the mutational covariance was
described in detail in Chevin et al. (2010). Now the actual
situation is less extreme, because M is positive definite, so that
all eigenvalues are nonzero. The model must therefore behave
in between one in n dimensions and one in one dimension.
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A more explicit treatment of the effect of py on the LSD
of M is given in File S1B, using a recent result by Benaych-
Georges and Nadakuditi (2011). It can be summarized as
follows. The bias affects only the leading eigenvalue Aj,
which shows a phase transition behavior determined by
the ratio

o2 = TV-Cn), ®)

mp-V.up
This corresponds to our intuition: the effect of bias becomes
effective whenever Uy affects K substantially. The parameter
cv is akin to a coefficient of variation of the pathway
coefficients: when the bias is small relative to the variance
in pathway coefficients, pj.pg < Tr(Cg) and cv?— .
The phase transition occurs at cv?> =,/ p.. When
ov? > /I pe, all eigenvalues fall into the M-P law, so that
A1— (1 + /B.)*¢. (the upper bound of the M-P law in Equa-
tion 4). When cv2<\/m, A1 rises above the bulk of
smaller eigenvalues, which remain under the M-P law. This
can be summarized by the relative value of A; = max(A),
over the mean of the bulk (A = E(A;~1) = B.{.). Beyond
this phase transition, A1 > A and there is a favored direction
in the mutant phenotype space (the direction associated
with the first eigenvector). The factor of increase of the
dominant eigenvalue, « = A1 /A satisfies

2
n cv n 2
1+—||1+— 1+— </
( +CV2) < + pe>p;w< +C'V2>7CV npe

(1 + \/Pe/n)zn/pe . LeR > .
(6)

Putting all these results together yields the following spectral
distribution for M in the general case:

i~ MP(%,ge)i € [2,n)
alop (7
A = =222
n
where the effective parameters p. and £, are given by Equa-
tion 4 and the factor « is given by Equation 6.

Equations 4-7 are fairly general as they rely on the gen-
eral results of RMT. They apply for arbitrary distribution(s)
of the pathway coefficients, provided they satisfy the (mild)
assumptions, 6-8. They also make no assumption on the
heterogeneity of the eigenvalues of W, provided it remains
finite, so that p. remains >n in Equation 4 (see File S1B).
They do rely on the key assumptions that n and p are large
enough to apply these asymptotic limits and that devel-
opmental integration is high (8 =p/n > 1), namely on
assumptions 4 and 5.
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Figure 4 shows the accuracy of Equation 7 in approximating
the actual spectral distribution of M in different situations. The
example uses n = 100 for visual clarity of the histograms, but
the convergence is much quicker, e.g., with n of the order of 10
and p of the order of 100. The general spectral distribution
of M is illustrated in Figure 4A, showing that the bulk of the
n—1 lowest eigenvalues (A;~1) converges to the M-P law
approximation, independently of the nature of the distribution
of the by’s and of its mean pg. For this example, I used
a bimodal discrete distribution (b; = +=1/4/n), a normal
(bj ~N(0,1/y/n)), a uniform (b; ~ U(—3/+/n,3/y/n)), or
a mixture of the latter two (with roughly half of the coefficients
drawn from the uniform and the other half into the normal).
The corresponding behavior of the dominant eigenvalue A1, as
a function of cv, is illustrated in Figure 4B. The simulations and
figures were generated in File S3. Different distributions of the
b; do not affect the spectral distribution of M, which is always
well predicted by the M-P law approximation in Equation 7
(bulk by Equation 4 and A; by Equation 6).

Distribution of fitness effects and
isotropic approximations

Isotropic approximation below the phase transition: Let
us assume that cv?>,/n p. (Equation 6), namely that we
are below the phase transition where A rises above the
lower eigenvalues. Once the eigenvalue distribution of M
is worked out, the DFE is obtained by a relatively straightfor-
ward argument, in the limit 8 — o« (high developmental
integration). In this case, the effective ratio index must also
become large (8. =B/(1 + cvZ)— ©, Equation 4). From
the properties of the M-P law (and of the M-P law approx-
imation in Equation 7), all the eigenvalues of M then con-
verge to a single limit: A\;—A = /.8, (see Figure 3). We
denote this result the isotropic approximation because it
boils down to isotropy in the FGM: all directions in y space
become equivalent. This isotropic approximation is detailed
in File S2. Note that, although framed as a simplistic and
extreme limit here, this approximation involves more math-
ematical subtleties than meet the eye. The key quantity to
describe the DFE as a function of the LSD of M happens to be
robust to substantial variation across A;; this key technical
point is illustrated in Figure S1. This is why the simplistic
isotropic approximation ends up being accurate in situations
where anisotropy is in fact substantial.

In the limit of p/n — o, the isotropic approximation is equiv-
alent to replacing A; = A for all i: recalling that s, = ||y||*/2,
the stochastic representation in Equation 2 then reduces to

ov? > /M pe, (8)

namely a constant minus a noncentral chi-square deviate
with n d.f. and noncentrality 2s,/A. This distribution has an
analytical pdf: letting f,(x, v) denote the pdf of the noncen-
tral chi square with n d.f. and noncentrality v, the pdf of the
DFE in Equation 8 is
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Figure 4 Spectral distributions under the random phenotypic network
model. The observed distribution of eigenvalues of M (spectral distribu-
tion) is shown together with the predicted M-P law approximation. In
each case, a single random phenotypic network (matrices H, B, and V)
was drawn and the resulting spectral distribution of H.W.H* is shown.
The n X p matrix of pathway coefficients B= {bj};c 1 nj je[1,5 Was set to
have mean vector pug = {M/}/eﬂ,p] drawn randomly with K ~N(0, o) and
p X p covariance matrix Cg The pathway coefficients b; were drawn from
various alternative distributions: discrete bimodal (+1/+/n), normal, uni-
form, or a mixture of the two. The covariance matrices Cg and V were
drawn independently as Wishart deviates: V, Cg~W,,1(Ap)/(p+ 1),
where A, is a diagonal matrix. The matrix A, has p gamma-distributed
diagonal entries, thus allowing us to set a high coefficient of variation
(cvwy) (A) of the eigenvalues of W (i.e., of n Cg.V). The matrices were
scaled so that E(Ajz1) = 1 in the bulk and the dimensions were n = 100
and p = 2000. A shows the resulting distribution of the bulk eigenvalues
Aiz1 of either H.H* or HW.H* (see inset) and the corresponding M-P law
as solid lines. Each histogram color corresponds to a distinct distribution of
the bj. B shows the behavior of the dominant eigenvalue A;. The coeffi-
cient cv (Equation 5) is set in the simulations via the scaling parameter o-. For
each value of cv on the x-axis, the full set of eigenvalues is represented by
the circles. Red and blue circles correspond to b; drawn from normal or
uniform distributions (undistinguishable). The range of the bulk (A;;, or-
ange area) and the dominant eigenvalue A1 (green line) are well predicted
by the M-P law approximation.
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©

This distribution depends on just three parameters (11, A, s,),
which constitutes a striking reduction in the parameteriza-
tion of the model. Most importantly, there is no directional-
ity effect on the DFE: the mutant selection coefficients have
the same distribution, irrespective of the direction to the
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optimum from the ancestor position. Only the overall dis-
tance to the optimum (s, = y2/2) counts: this is the iso-
tropic model in its exact form. At the optimum (s, = 0),
this DFE reduces to the negative gamma distribution
s, ~ —I'(n/2,1), where the “*” refers to the fact that this
is the DFE at the optimum.

Beyond the phase transition: When cv? < ,/n p. (Equation
6), anisotropy arises because, even with B, > 1, the lead-
ing eigenvalue A; can be strikingly higher than the others
(see Figure 4B). This generates a favored direction in phe-
notype space where mutants tend to arise preferentially.
However, this anisotropy is still of a relatively simple form,
because the n — 1 lower eigenvalues can still be equated to
a constant whenever B8, > 1. We thus retain a form of iso-
tropic approximation. We can then replace A; = A for all
i>1, while A\; = a A, and the stochastic representation in
Equation 2 becomes

X 2s -1 281
s (1 () + et (G3)

where s,-1 = Y1, 22/2 and s; = 23/2. It is easily checked
that, below the phase transition (« = 1), we retrieve our pre-
vious result (Equation 8), by properties of the noncentral chi-
square distribution [x2_;(a) + x3(b) ~ x2(a +b) for any
a,b > 0]. The two quantities s; and s, depend on the parental
position (y or z) relative to the optimum, not just on its
distance s,. They sum up to the total maladaptation:
Sn—1+51 = 1, 22/2=s5,. They are the contributions to
maladaptation of the projections of the parental phenotype
(y) onto two orthogonal and complementary phenotypic sub-
spaces: the eigenspace associated with the n — 1 lowest eigen-
values for s,—; and that associated with the dominant
eigenvalue for s1. This time, directionality is introduced: the
same overall maladaptation (a given s,) can result in a dif-
ferent DFE, according to the relative contributions of s,,—; and
s1. Note that, although more complex than Equation 9, this
distribution still has only five parameters (s,—1,s1, @, n, ).
Unfortunately, I could not derive a closed-form pdf for this
general model, so it would have to be computed as a convolu-
tion of two noncentral chi-square pdfs, by numerical integra-
tion. A pdf could be derived in the subcase where the ancestor
is optimal, so that all mutations are deleterious (s, = 0,s = s..).
The DFE then becomes a sum of two independent negative

gamma deviates s, ~—F((n - 1)/2,X) —T(1/2, a A): us-
ing a result from Di Salvo (2008), its pdf is

o (R in sl 1\ 1
Fem = (n/z))F (237 0-2) %

(11

(10

where 1F;(.,.,.) is the Kummer confluent hypergeometric
function. The left-hand factor in Equation 11 is the pdf of
the negative gamma distribution — I'(n/2,1), which is the
DFE when a =1 and s, = 0. Consistently, the right-hand
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term in Equation 11 (hypergeometric function factor) sim-
plifies to 1 when a = 1.

Figure 5 shows the effect of the phase transition and the
agreement between theory and exact simulations of the DFE
with randomly drawn parameters (pathway coefficients bj;,
mutational covariance V, and mutation effects dx). The sim-
ulations and Figure 5 were generated in File S3, which can
be used to generate similar figures and checks at will. The
agreement between Equations 9-11 and the simulated DFEs
is good, whether close to or far from the optimum, and
both beyond and below the phase transition (Figure 5,
B-D). As expected (Equation 4 and File S1), heterogeneity
in the eigenvalues of W, which is strong in this example
(cvw? = 2), does not affect the agreement with theory, as
long as p > 1. Figure 5, B-D, also shows the fast conver-
gence to the asymptotic result, as n,p— o : here n = 6 and
p = 200. Figure 5B illustrates visually the form of anisotropy
that is generated by the phase transition for «: a single fa-
vored direction emerges, and the model converges more and
more to that in one dimension as « gets larger, as suggested
by our initial intuition. The consequence for the DFE is
shown in Figure 5D.

File S2 details these approximations and why they prove
accurate even though the actual model can be relatively far
from isotropic. It also provides approximations for the first
moments of the DFE.

Fitting empirical DFEs among random
single-nucleotide substitutions

To illustrate how these results can be used, I fitted the
observed DFE among random single-nucleotide substitutions
introduced into two ribosomal genes of the bacterium S. typhi-
murium (Lind et al 2010). In this study, a large set of mutants
was created by site-directed mutagenesis, and their selection
coefficient in competition (at 1:1 ratio) was estimated with
high precision (detection limit |s| <107%). I neglected the
measurement error in this analysis, whose goal is merely to
evaluate the qualitative agreement between theory and data
in one example. I fitted the distribution of s among both syn-
onymous and nonsynonymous mutations, because they
showed no significant difference in DFE in this study (Lind
et al. 2010). As no beneficial mutations were observed (sug-
gesting s, = 0), I fitted Equation 11 to the observed distribu-
tion of s by maximum likelihood, using R (R Development
Core Team 2007). A first fitting procedure was performed
on the scaled values [of s/E(s)], to find best-fitting values of
n and « on scale-free data. Then a full maximization was
performed starting with the best-fitting values thus obtained
to jointly estimate (A, 7, &).

The results of the fits are given in Table 2, and the log-
likelihood profiles for the parameters n and & are shown
in Figure S3. The resulting fitted distributions are illustrated
in Figure 6, showing both the pdf and the cumulative distri-
bution function (cdf). The gamma distribution (Equation 11
with « = 1) already performs well, a pattern already shown
by the original authors (Lind et al. 2010). The two ribosomal
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Figure 5 Simulated DFE vs. isotropic approximation(s). The distribution of selection coefficients among random mutations is represented for different
situations (see File S3). The network was simulated as in Figure 4. The bias g was scaled to obtain a given level of a: « = 1 (C) or & = 50 (D). The mutable traits dx
were drawn as i.i.d. uniform deviates and scaled to obtain V (dx) = V. Then dy = B.dx was computed and scaled to enforce E(s) = — 0.01. The n parental
coordinates y; were drawn as standard normal deviates and scaled to enforce a given ||y||? /2 = s. The fitness effect of mutations was then computed from y and
dy according to Equation 1. All other parameters are indicated in the insets: n = 6, p = 200. A illustrates the distribution of pathway coefficients, scaled by their
variance (b;/+/V (bj)) for each situation: below the phase transition [a = 1: all b; under the same blue histogram N(0, 1)] or beyond the phase transition (o« = 50:
each color gives the b; for a given index j for the three first mutable traits). The corresponding anisotropy in the spectral distribution of M is illustrated in B:
ellipsoids are the 95% domain of the mutant phenotypes on the three first optimized traits y;. Beyond the phase transition (@ = 50: purple cloud), there is a favored
direction in y space. C and D show the corresponding DFE, below (C) or beyond (D) the phase transition, at the optimum (s, = 0, blue), close to it (s, = 5, red), or

farther from it (s, = 5 5, brown). The lines show the corresponding analytic predictions [Equation 9 (C) or Equations 10 and 11 (D)] (see insets).

genes yield similar estimates for 1 and A. However, in the
rpsT gene, a value of & significantly >1 (& = 4.14) was
detected, while no such improvement in fit was obtained
by letting a > 1 for the rplA gene.

Overall, these results suggest that the prediction proposed
here provides a good agreement with empirical DFEs. It is
interesting to note that (i) allowing for an extra parameter
() can sometimes improve the fit relative to the pure gamma
and (ii) on the other hand, in the one case where it does so
(rpsT), the estimated value was not very high. Telling
whether the phase transition (@ > 1) can be ignored or not
is of key importance for the predictions on adaptation away
from the optimum. This could be done by the type of simple
fitting procedure illustrated here.

Discussion

In this article, I sought to build a mathematically tractable
phenotype—fitness landscape from a set of qualitative first

principles. It relies on five key assumptions about the effect
of genetic changes on phenotype and fitness: (1) existence
of a fitness optimum, (2) parent not too suboptimal, (3)
mutations of mild effects, (4) pleiotropy of mutations on
a large set of p phenotypic traits, and (5) high integration
from these traits to fewer (n < p) optimized traits (see Fig-
ure 1). A statistical model is then applied to describe
a mostly unspecified network of integration from many phe-
notypic dimensions into fitness. Various laws of large num-
bers (central limit theorem and random matrix theory) then
yield a simplified phenotype—fitness landscape, in the limit
of large np and n < p. This provides explicit results in terms
of a few summary parameters. The resulting landscape is
well approximated by Fisher’s geometrical model, either in
its isotropic form (all directions equivalent, Equations 8 and
9) or with simple anisotropy (one dominant direction
plus isotropy in the remaining phenotype space, Equations
10 and 11). The most general result is an approximate
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Table 2 Fit of the pdf in Equation 11 to empirical distributions of selection coefficients among random single mutations

Data set h & A nb par AIC Pla>1)
Salmonella rplA gene 4.0 [2.7-5.5] 1.20 [1-4.9] 0.0049 3 —408.0 1.0 (NS)
(56 mutants) 3.9 1 0.0052 2 —410.0

Salmonella rpsT gene 5.3[3.8-7.0] 414 [2.2-7.1] 0.0033 3 —473.4 0.025*
(70 mutants) 3.8 1 0.0073 2 —470.4

For each data set the maximum-likelihood estimates (MLE) are given for the fit of a gamma sum model (Equation 11, parameters n, A, «) and for the pure gamma fit (setting
a =1). The 95% confidence interval for the value of n is provided (based on a 1.92 point reduction in log-likelihood relative the maximum likelihood). The Akaike
information criterion (AIC) and number of fitted parameters (nb par) are given for each model. The P-value [P(a > 1)] for the significance of the parameter « is given
based on a likelihood-ratio test between the pure gamma and the gamma sum models. A Kolmogorov-Smirnov goodness-of-fit test (not shown) does not reject any of the

fitted models (but this test is notably too conservative for fitted distributions).

stochastic representation for the DFE in the general model
(Equation 10), yielding explicit pdfs in two subcases (Equa-
tions 9 and 11), as well as the moments of the distribution
(File S2). The accuracy of these approximate distributions
was confirmed by extensive simulations of various situations
(Figure 5 and Figure S2).

Whenever the isotropic approximation is valid, predic-
tions can be made on how the DFE will change with context
(environmental or genomic background), based only on
fitness measurements. This is the case where empirical tests
appear most feasible. Otherwise (with anisotropy), the DFE
will be affected by the direction from the parent toward the
optimum (not just its distance), which is much more difficult
to infer from empirical measures. Assumptions 1-4 alone
yield a Fisher model, but isotropy further requires that
n < p (assumption 5) and that « ~ 1 (mild bias in the dis-
tribution of pathway coefficients, see Equation 6). In fact,
provided a ~ 1, isotropy always seems to be a reasonable
approximation, even in situations where n is only slightly
smaller than p, and, hence, the spectral distribution of M is
quite spread (see Figure 4). We propose a tentative justifi-
cation for this robustness in File S2 and Figure S1.

In what follows, I discuss limitations and several impli-
cations of the model for the distribution of mutation fitness
effects across genetic or environmental contexts and for
parallel evolution.

Model assumptions and limitations

The five central assumptions were presented and discussed
in the Methods section, so I do not delve into this here. The
two most obvious limitations of the model lie in its local
approximations. The first approximation assumes that muta-
tions have mild effects on phenotype (assumption 3), so that
the developmental function ¢&(x) =y can be approximated
by its linear trend [slope B = &’ (x)]. The second local ap-
proximation (assumptions 2 and 3) assumes that the parent
and its mutants all lie close enough to the optimum that
their phenotypes lie below the leading-order quadratic ap-
proximation to the fitness function. These assumptions
may, of course, break down (strong maladaptation, critical
genetic changes that induce large phenotypic changes).
Whether the model is robust to strong deviations from these
assumptions is a matter of simulating various such devia-
tions, which is beyond the scope of this article (it might be
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done using File S3). Whether such deviations are actually
important in real-life systems is, as for all tests of the model,
a matter of generating empirical DFEs, possibly from mutants
in particular genes and measured in various contexts (genetic
background or environmental conditions). Provided the mal-
adaptation s, corresponding to these contexts is measured, the
model should provide testable predictions. An extension of the
model could also consider higher-order approximations to the
developmental functions, using tools derived, e.g., by Rice
(2004, Chap. 8).

Finally, it was also assumed that mutation effects on
mutable traits are unbiased [E(dx) = 0]. This potentially lim-
its the generality of the conclusions. The present model yields
a gamma distribution (or a sum of two gammas) when the
parent is close to optimal. This type of distribution has shown
a good fit to empirical DFEs, both in Lind’s data set (Figure 6
and Lind et al 2010) and in several previous studies
(reviewed in Bataillon 2000; Martin and Lenormand 2006b;
Eyre-Walker and Keightley 2007). It may thus be reasonable
to ignore bias on the dx; in the first approximation. A detailed
study of the effects of biased mutation in Fisher’s model can
be found in Waxman and Peck (2003, 2004).

Relationship to previous theory

The effect of the phase transition on the DFE (Equation 11)
can be related to previous studies on anisotropy and its
impact on effective dimensionality n. (Martin and Lenor-
mand 2006b; Chevin et al. 2010). Below the phase transi-
tion, the effective dimensionality (as defined in Martin and
Lenormand 2006b) would be close to n. = n, which is con-
sistent with the model being roughly isotropic. Beyond the
phase transition and with a large « > 1, the model would
approximately reduce to that in Chevin et al. (2010) with
ne ~m = 1<n and syax = 57 in their notation. The model is
then driven by the mutant effects on the leading direction
(eigenspace associated with A1 > ), although the muta-
tional variance is not exactly zero in other directions (be-
cause I assumed p >n), as was the case in this previous
study. The present model can, thus, provide a natural model
for parallel evolution, in the same way as that modeled in
Chevin et al. (2010), as detailed below. Overall, our statis-
tical approximation of a complex network yields forms of the
Fisher model that have already been studied and for which
several results have been derived.
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Another approximation of the DFE in Fisher’s model, with
a parent close to an optimum, has previously been proposed
by Martin and Lenormand (2008), who used arguments
from extreme-value theory. The present approach follows
the same spirit in using a local approximation, but it differs
from the extreme value approximation in three respects.
First, the latter describes the distribution of only beneficial
effects, not deleterious effects. Second, it applies in a poten-
tially narrower range about the optimum, as it requires a low
frequency of beneficial mutants, not just a local approxima-
tion in phenotype space. Finally, as for all previous work on
the Fisher model, Martin and Lenormand (2008) had to as-
sume the normality of mutation effects on optimized traits,
whereas here it emerges from more general first principles.
The present model can accurately capture fairly high propor-
tions of beneficial mutants (Figure 5, Figure S2).

Finally, the present results might contribute to the debate
over pleiotropy and its evolutionary cost (Orr 2000; Wagner
and Zhang 2011; Hill and Zhang 2012). In the present
model, two unrelated measures of dimensionality are de-
fined at distinct levels of integration (see Figure 1). The
dimension of pleiotropy p is the number of not fully depen-
dent traits that are jointly affected by mutations in a given
genetic target. It is the quantity often considered in empir-
ical studies of pleiotropy. The second dimension is that of
optimization, n, the number of not fully dependent traits
that jointly define a local fitness optimum. The two are re-
lated by the developmental function ¢(.). Whenever n <p,
it is clearly n and not p that affects the DFE and thus has an
evolutionary impact: when pleiotropy (p) is higher than the
dimension of optimization (n), it is the latter that drives the
“cost of complexity.” The recent study by Le Nagard et al.

(2011) also appears consistent with our findings. They sim-
ulated evolution in a phenotype-fitness landscape where the
underlying network of interacting genes could evolve. They
showed that complexity, in “Fisherian” terms (roughly our
n), could evolve in response to the complexity of the envi-
ronmental challenge imposed (defined by the complexity of
an optimal reaction norm). This evolution was rather inde-
pendent of the size of the underlying network (which could
be a good proxy for p), especially for larger networks (where
n <p). In this study, too, the cost of complexity seems to be
“paid” according to the dimensionality of optimization
rather than that of pleiotropy itself.

Relationship to previous empirical findings

A central goal of this study was to propose an explanation for
why the Fisher model, with all its simplifications, can still
capture some real-life patterns with reasonable accuracy.
Simple skewed distributions like the negative gamma have
repeatedly shown good agreement with empirical DFEs
(reviewed in Bataillon 2000; Martin and Lenormand 2006b;
Eyre-Walker and Keightley 2007). This may not be so surpris-
ing: with high pleiotropy (p >> 1) and mild mutation effects,
we always expect to see such gamma-like DFEs, in permissive
conditions (s, =~ 0, see Figure 5). However, an extra param-
eter arises beyond the phase transition (« > 1, Equation 11),
and adding this parameter improved the fit of the DFE in the
rpsT gene in Figure 6. This may also be the case for other data
sets where the gamma alone did not capture the fat tail of
observed distributions (e.g., Elena et al. 1998), while the tail
gets fatter here in Equation 11 as « increases. This result goes
beyond optimal conditions: as long as the parent and mutants
remain close enough to some local optimum, we expect the
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isotropic FGM to accurately predict the DFE, with both ben-
eficial and deleterious mutations (Figure 5). This may thus
explain why the FGM also provided accurate predictions in
several empirical studies of fitness epistasis and/or compen-
sation, in the presence of beneficial mutations (Martin et al.
2007; MacLean et al. 2010; Sousa et al. 2011).

Impact of the genetic or environmental context?

By building a more mechanistic version of the Fisher model,
we can evaluate which parameters of the DFE may or may
not depend on the context (environment, parental lineage,
mutational target). Of course, in the end, this issue can be
settled only by empirical testing; in this respect, gene-specific
measurements of the DFE (such as in Lind et al. 2010) offer
the most promising approach. In its most general form (Equa-
tion 10), the model has five parameters (M, A, 81,51, a).
discuss each of them in turn, assuming a given species, so that
variation in the “lineage” context is limited to genetic variation
within a species.

Parameter n is the number of traits under optimizing se-
lection (the dimension of optimization, in y space). It might
be expected to be fairly stable across contexts within a given
species, as it relates to the core internal processes determin-
ing fitness. The nature of the traits under selection can also
change without affecting the parameter, as long as they re-
main in roughly the same number. In the empirical example
on Salmonella (Figure 6, Table 2), no significant difference in
n was detected between mutations within the two genes
studied. However, the power to detect such differences was
limited, and whether these genes truly pertain to distinct
“targets” is difficult to assess: they are part of the same broad
class of ribosomal protein genes.

Parameter A summarizes the contribution of mutational
covariances on mutable traits (V) and of covariances among
pathway coefficients (Cg). It may, in principle, be affected
by any effect of the context on these covariances. A change
in the nature of optimized traits (see above) would also
affect A, because a different developmental function (from x
to y) would then be defined, modifying Cg. Yet, because it
synthesizes the small contribution from many parameters, it
may also prove stable across contexts. Even if V and/or Cg
changes across contexts, the resulting effect on the DFE will
be negligible if they still average out to the same A. Settling
this issue could be possible by empirical fitting of the sort
described in Figure 6. In Table 2 the estimates of A were fairly
similar in the two genes considered. The context here would
be the mutational target, which may or may not differ be-
tween these genes. More such studies would obviously pro-
vide key insights.

Parameter « was the only parameter showing significantly
different estimates in the two genes whose DFE was fitted in
Figure 6 (see Table 2). This suggests that these two genes did
pertain to distinct mutational targets and that « may vary
among these targets (in the same environment and genetic
background). A simple (maybe too simple) way to account for
such a pattern is to consider that each gene “samples” a subset
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of pathways, with associated coefficients b;;, within the larger
set of all possible pathways. According to the bias in the b;
sampled by a given gene, cv? > /i p. or not, and this gene
will lie below or beyond the phase transition (a =1 ora >1,
see Equations 5 and 6). This provides a null model to describe
genomic variation in the DFE.

Finally, the fitness distance to the optimum [s, or the pair
(s1,87,—1)] is typically expected to vary across contexts. It is
the main application of Fisher’s model to summarize the
effect of various contexts into variation at a single parameter
So. The genomic background and the environment should
jointly determine s, or (s1,s,—1) a priori. Whether the mu-
tational target (gene) affects these parameters depends on
the isotropy of the model. Below the phase transition (Equa-
tion 8), all genes “see” the same distance to the optimum s,.
Beyond the phase transition, however (Equation 10), the
overall distance s, = s + s,—1 may be divided into distinct
pairs of (s1,s,-1) according to the subspace associated with
the leading eigenvalue A; for this gene. This is the basis for
potential parallel evolution, by roughly the same process as
described in Chevin et al. (2010).

To summarize, the DFE in Equations 8-10 is unaffected by
(i) the nature of the distribution of the pathway coefficients
or (ii) the nature of the mutation effects on mutable traits, by
(iii) their number p (as long as p > n), or by (iv) their par-
ticular values or mutual covariance, as long as they retain the
same overall trace Tr(V.Cg). Overall, the argument above
merely shows that several effects of the context should have
negligible influence on the DFE, but it does not state that
none has an impact. At least one advantage is that all these
complex effects can be summarized into the effects of context
on five parameters [n,A,s,a,and s, or (si,s,—1)]. All these
parameters are measurable empirically, except a priori for
the pair (s1,s,—1), which arises when a > 1 and the parent
is suboptimal.

Essential genes

Let us now focus on a particular type of context dependence
that has the advantage of having been well studied empiri-
cally. In recent years, studies of large sets of gene deletions
and their impact on fitness have flourished, mostly in the yeast
S. cerevisae. One salient feature that emerged is that genes fall
into two distinct categories: “essential” genes (whose deletion
is lethal or nearly lethal) and “nonessential” or “dispensable”
genes (whose deletion has weak effects). One puzzling finding
is that there are essential genes in comparable proportions in
most functional gene complexes (Fudala and Korona 2009).
Under the model proposed here, there are two simple and
testable alternative interpretations for an essential gene. First,
if a given gene samples the full set of pathway coefficients, it
may by chance sample a set that leads to A larger than usual.
This gene would then have higher average effect on fitness,
and its deletion might thus be particularly harmful. Alterna-
tively, the gene may sample a set of coefficients with a highly
biased distribution (mg large), so that it falls beyond the
phase transition [@ =1 +n/ cv? > 1, Equations 5 and 6]. It



would then also be particularly harmful when deleted, as
§ = (n— 1+ «)A /2. This simplistic view has the advantage of
being testable, by extensions of the experiments in Lind et al.
(2010) or using the more recent high-throughput method
EMPIRIC (Hietpas et al. 2011). The test would consist of mea-
suring the gene-specific DFE in a well-adapted parent (s, ~ 0),
in essential vs. nonessential genes. In the first case, the DFE at
an essential gene should show a higher A than at nonessential
genes (a gamma with large scale). In the second case, it should
show a larger value of « (a heavier left tail than the gamma). In
the future, this type of method might give valuable insights into
gene essentiality. There are also more puzzles with lethal muta-
tions in general than “simply” gene essentiality (discussed in
Manna et al. 2011).

Parallel evolution and the genomic DFE

A natural follow-up of this argument is that some environ-
ments may lead to parallel evolution in those genes that lie
beyond the phase transition (one of the mechanisms gener-
ating essential genes, see above). Because the model retrieved
is close to the form described in Chevin et al. (2010), their
framework applies to describe the DFE over the genome and
how parallel evolution can arise. We propose that a > 1
arises in those genes that sample a biased distribution of path-
way coefficients. Those are also the ones likely to generate
parallel evolution, in the particular environments where the
direction to the optimum corresponds to their dominant di-
rection. In these particular environments, selection will then
fix mutations preferentially in those genes that (i) are beyond
phase transitions and (ii) have the corresponding leading di-
rection. Note that those genes with « > 1 might not have
noticeable influence on the genomic DFE, which is roughly
the mean of the gene-specific DFEs (Chevin et al. 2010), un-
less there are many such genes across the genome. Yet these
genes will be overrepresented among those undergoing par-
allel evolution.

Extensions of the model and further applications
of RMT

This model illustrates the potential of RMT as a tool for
multivariate evolution studies. This is not new, as several
studies (Wagner 1984, 1989; Martin and Lenormand 2006b;
Chevin et al. 2010) have already used random covariance
matrices to model phenotypic covariances, but this choice
was assumed from the start. Here, the random covariance
matrix structure emerges from first principles. The approach
could be extended, for example, using results on large “ran-
dom sparse matrices” (Bai and Silverstein 2010, Chap. 7) to
model less connected networks with isolated clusters (a large
proportion of zeroes in matrix B). This would correspond to
a more “modular” network where each mutable trait affects
only a small portion of all optimized traits (contrary to our
assumption 5).

Another interesting extension could be to follow the
effect of correlations of pathway coefficients among opti-
mized traits (b; correlated both across j and across i). As

explained in the Distribution of pathway coefficients section,
the model assumptions forbid, de facto, a substantial corre-
lation of b; across optimized traits (across i) because Cg
would become positive semidefinite. In File S1 (Equations
A1.16-A1.20), I consider an extension, suggested by Dave
McCandlish, to allow for weakly correlated b; among the
rows i, not only the columns j. An approximate treatment
can be found, provided that this correlation remains weak.
This extension does not change the structure of the model:
we retain an M-P law prediction, but with a further reduction
of the ratio B.. This ratio now takes a finite limit, even as
n/p—0. Let cv, be the coefficient of variation of the eigen-
values of the covariance matrix of the pathway coefficients
(b;) among optimized traits (among rows i). The effective
dimensionality n. (Martin and Lenormand 2006b), which
was roughly n. = n in the model without correlations among
rows i, now becomes <n, more precisely n. ~ n/(1 + cv2).
This additional correlation can thus create anisotropy, but,
a priori, of smaller order than what is obtained via the phase
transition. My (clearly disputable) claim, here, is that these
“developmental” correlations across optimized traits should
be fairly weak, as the pathway coefficients b; result from
“percolation,” through many intermediate levels of organiza-
tion, from the mutable traits j to the optimized traits i.

Without going into detailed extensions, these examples
show that even more general models could be handled with
tools from RMT.

Conclusion

This model of pleiotropic mutation over a phenotypic network
(Figure 1) is less phenomenological than the original Fisher’s
model. Yet, it remains uninformative on the functional reason
why any mutation has a given fitness effect. This is both
a weakness and a strength: because the results prove indepen-
dent of many details of the phenotypic network, they do not
provide any information on it either. Focusing on evolutionary
predictions, not on phenotypic networks, the fact that the iso-
tropic Fisher model can emerge is good news. Indeed, it means
that we may predict the DFE in various contexts, without much
knowledge of its underlying functional determinants, a knowl-
edge that is not available for most species of interest, in most
environments.
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Figure S1 Convergence of the Shannon transform to the isotropic approximation

The Shannon transform of the M-P law (vyy«(x) with Ayy-~MP(S,{), see eq. Al.3) is compared to the isotropic
approximation (v(x) = log(1 + A x)) where 1 = ¢ = 25/n where § = —E(5) is the mean (deleterious) effect of mutations.
The parameters are indicated on the graph, with n =5 and recalling that f§ =p/n and { = 25/p. The isotropic

approximation proves accurate over a wide range of parameter values.
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Figure S2 Distribution of mutation fitness effects with various fitness functions

The DFE in simulations (below phase transition, as in Figure 5.c) is compared to the analytic prediction (eq. 9) for three
choices of fitness function for which the quadratic approximation applies (detailed in Figure 2.a.): quadratic, near quartic and
asymmetric. The upper panels show various distributions common to all simulations: pathway coefficients, correlations
between mutation effects on mutable traits x and mutation effects on x themselves. The middle panels show the three
alternative fitness functions. The bottom panels show the corresponding DFE in simulations (histograms) and the

corresponding prediction (dashed lines, eq. (9)) for various distances to the optimum (same as Figure 5: s, = 0, blue, s, = 5,
red, s, = 5§, brown).
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Figure S3 Log - likelihood profile for the parameter a from empirical DFEs

For each gene, the log-likelihood of the fitted model (Figure 6 and Table 2) is given as a function of the parameter «, for
various integer values of n (see legend) and with the scale A set to match the mean of the distribution (1 = 25/(n — 1 + a)).
The dashed black line gives the log — likelihood of the best fitting gamma sum model (eq. (11) with n, a, A jointly fitted) and
the gray plain line gives the log — likelihood of the best fitting pure gamma model (i.e. setting @ = 0). The shaded area
corresponds to log — likelihood lying within 1.92 points of the maximum log — likelihood for the best fitting model (with
«a fitted), implying no significant difference in the fit to the data. In the rpl/A gene, the pure gamma models withn =
3,4,5 or 6 are not statistically different from the best fitting model (Table 3): their maxima lie within the shaded area. For the
rpsT gene, the ‘gamma sum’ model (eq. (11), with @ > 0) provides a significantly better fit than a pure gamma model with
a = 0 (the gray line lies below the gray shaded area). It further shows that the best fitting model (Table 3) and models
with n = 4,5,6 or 7, with corresponding (increasing) values of @ > 0, cannot be distinguished in terms of goodness of fit (all
their maxima lie within the shaded area).
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File S1

Approximations to the LSD for some classes of random matrices

In this appendix, | first state several results on the Limit Spectral Distribution (LSD) of some large random
covariance matrices. This LSD is the nonrandom limit of the distribution of the eigenvalues of a random
matrix, as its dimensions get large (here asn,p — ). The first section merely states various known
results from Random matrix Theory: most are summarized in (TULINO and VERDU 2004). Then | derive an
approximation for the LSD of M in the integrative phenotypic network model presented in the main text
(Figure 1), and for key quantities related to the mutant fitness distribution. In what follows, | refer to the
pdf of the spectral distribution of a given matrix X as px and to the corresponding Limit Spectral
distribution (LSD) of this matrix as px. | refer to any of the transforms of this LSD by an index referring to
that matrix. All the derivations of this Appendix can be checked in a Mathematica® (WOLFRAM RESEARCH
2012) notebook (file S3, in freely readable [.cdf] format) available for download at XXX.

A) The Marchenko-Pastur law and its properties

Limiting Spectral Distribution (LSD): Central to our derivations is the Marchenko - Pastur (M-P) law,
which provides the LSD of a covariance matrix with random entries. Consider a n X p matrix H whose
entries h;; are randomly and independently drawn from possibly different distributions. These
distributions are arbitrary in nature but have mean zero, variance 1/n and fourth moments of
order 0(1/n2), i.e. they are ‘standard’ zero mean distributions, not too leptokurtic (normal, extreme
value, uniform, etc.). Then, if { > 0 is an arbitrary scale factor, the random n X n matrix { H. H* is called
a sample covariance matrix. Its name comes from the fact that { H.H* can describe the covariance
matrix in a sample (of size p) from a multivariate distribution with covariance matrix {I,,. When the
entries of H are normally distributed, n H.H* follows the standard Wishart distribution:
n H.H" ~ W, (I,,) with p degrees of freedom. As (p,n) — oo with a fixed ratio (p/n — B), the spectral
distribution of H. H* converges to a nonrandom LSD whose pdf is given by eq. (1.12) in (TuLiNO and VERDU
2004)

~ -1 +5 ®-x)(x—a) b
pun+ = Pupr(x) = (1 - B)"6(x) + 2mix o xEled] ’ (A1.1)

a=¢(1-yB) andb=¢(1+B)

where (x)* = max(x, 0) and 6(.) is the Dirac delta function.

This pdf has a point mass at zero with weight 1 — § whenever 0 < § < 1, plus a bulk of positive
eigenvalues with weight min(f, 1). When 8 = 1 (our case of interest), the left hand term vanishes and
all eigenvalues are strictly positive: we then retrieve eq. (3) of the main text. The pdf of the bulk

iSP4x) = PAA>0) =/ (b—x)(x —a)/(2m { Amin(B, 1)). As stated in main text, | refer to this
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distribution as the scaled M-P law with scale parameter ¢ and ratio index § and denote the result by the
stochastic representation A; g+ ~ MP(f,{). The mean eigenvalue is E(1) = { B, with variance V(1) =
{?B . Note that the original (and more standard) statement of the M-P law (TULINO and VERDU 2004; BAI
and SILVERSTEIN 2010) is in terms of the LSD of H*. H, which has ratio index 1/ and corresponding scale
{B: Ag*n ~ MP(1/B,{B) in our notation. Note also that, for notational simplicity, | drop the reference
to the scaling factor ¢ in the indexing when referring to the LSD of sample covariance matrices

(P~ (x), veu- (x) etc.).

One powerful property of the M-P law (and of random matrix theory in general) is that the actual
spectral distributions of finite random covariance matrices converge quickly to their limit: for any single
draw of a matrix H with dimensions, say, n = 10 and p = 100 the spectral distribution of H.H* is
already well described by the M-P law given above, in that it is bounded within the predicted domain
[a, b] in eq. (A1.1), and that the pdf p(x) is close to the M-P law. However, it is difficult to represent this
pdf with small min(n, p) as there are then only few eigenvalues to show. This is why | show examples
with larger dimensions (e.g. n = 100,p = 500). However, when simulating the DFE | will use smaller
parameter values and show the convergence of the DFE to the predicted distribution based on Random
Matrix Theory.

Transforms of the LSD: Various transforms of the LSD of random matrices have been defined in Random
Matrix Theory, | propose here a quick overview, drawn from section 2.2 of (TULINO and VERDU 2004). The
purpose of these transforms is akin to that of generating functions in standard probability theory. These
transforms can be derived from one another and allow to derive various properties of the LSD, or to
compute the LSD of the sum or product of random matrices, which will prove useful in our case. Each
transform fully characterizes a given LSD, just as the pdf p(x) does. The mutual relationships between
these transforms are illustrated in the notebook file S3.

Let p(x) be the pdf of the LSD of a random matrix, defined on some finite or infinite range
[Amin> Amax]- The first important transform is the Stieltjes transform: S(z) = fj"fax 1/(x — z)p(x)dx

with z € C the set of complex numbers. It provides the range and pdf of the eigenvalues of the matrix, in
particular p(x) = lir(r)l+ S(x +iw) where i is the complex unit number. The n transform:n(z) =
w-—

f;ﬁi" 1/(1 + zx)p(x)dx, with z € R*(positive real numbers) is defined for positive semi-definite
matrices only (with eigenvalues all positive or zero, [Amin, Amax] € RT). This function is a generating
function for the raw moments of the LSD: we have 7(0) = 1andn[—z] = Y5, z¥E(A¥). The 7
transform is related to the Stieltjes transform vian(z) = S(—1/z)/z. For the scaled M-P law in eq.

(A1.1), the n transform is given by

man(2) =1-9¢(2)/(4z{)

#(2) = (\/bz+1—\/az+1)2 ' (A1.2)
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where (a, b) are given in eq. (A1.1). Taking the limit at infinity provides the weight of the point mass at
zero (the proportion of zero eigenvalues) lim 1y g+ (z) = max(1 — 3, 0).
Z—00

Central to our applications is the Shannon transformv(z) = f;m,ax log(1 + x z) p(x)dx, also
min

defined only for positive semi-definite matrices ([Admin, Amax] € RY), with z € R*. It is related to the n
transform via v(z) = f(l — n(z))/z dz. For the scaled M-P law the Shannon transform is

(A1.3)

4 477

vuu*(2) :,Blog<1+(z—%z)>+log<l+(zﬁ—

Where ¢(.) is given in eq.(A1.2).

The two next transforms are key to compute the LSD of sums or products of random matrices
whose entries are drawn independently, more specifically matrices that are asymptotically free, meaning
that their LSD are independent (see details on free probability in section 2.4 p. 77 of TULINO and VERDU
2004). In the next section, we will use these transforms to compute approximations of the spectral
distribution of various covariance matrices in terms of an M-P law with modified parameters. The R
transform is related to the Stieltjes transform via R(z) = S™1(z) — 1/z where S™1(.) is the functional
inverse of S such that S‘l(S(z)) = z. The R transform of the LSD of the sum of two matrices (A and B)
with entries independently drawn is the sum of the components’ R transforms: Rpy,g(2z) = Rp(2) +
Rg(2). For the scaled M-P law, the R transform is

B<
1—-2z¢

Ryn+(2) = (A1.4)

The S transform plays the exact same role as the R transform for products of semi-definite matrices. It is
related to the 1 transform via 2(z) = —(z + 1)/zn~1(z + 1) where n71(.) is the functional inverse
of n. The S transform of the LSD of the product of two positive semi-definite matrices (A and B), with
entries independently drawn, is 4 g(x) = Z5(x)Zg(x). For the scaled M-P law, the S transform is

un+(2) = (AL1.5)

_1
B+2)7

Another formula will prove particularly useful in what follows: for any n X n positive semi-definite
matrix T whose LSD exists and has S transform Z1(z), we have (adapted from 2.216 p. 91 of TuLINO and
VERDU 2004):

Tpra(2) = %EH*.H (%) Xt (%) = ((Z—]:i'ﬁ)ZT (%) : (Al.6)
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The last transform used here is the D transform, introduced in (BENAYCH-GEORGES and NADAKUDITI
2011). It will prove useful to predict the behavior of the maximal eigenvalue when the entries h;; have
non zero mean. In this article, it is defined in terms of the distribution of singular values of H (when H =
H, has entries with a zero mean). As the singular values of H are simply the square roots of the non zero
eigenvalues of H. H*, the D transform in (BENAYCH-GEORGES and NADAKUDITI 2011) can also be expressed in

terms of the spectral distribution of H.H*. More precisely, letp(z) = f; z/(z? — x)p(x)dx =
n(—1/z%)/z, the D transform is D(z) = @(2)(¢(2)/B + (1 — 1/B)/z) which, for the M-P law, yields

Dyy+(2) = z 1- \]1 + (B -12-222(1+pB))

257 g —-(1+p8)¢ : (A1.7)

In what follows we use these transforms and their approximations to derive an M-P law approximation
for the spectral distribution of M when 1 K n < p.

B) Spectral distribution of M with high phenotypic integration

In this section, | study the matrix M of mutational covariance among optimized traits, under the model of
integrative phenotypic network described in Figure 1. | first describe its structure in detail, then derive
an approximation of its LSD in terms of an M-P law.

Structure of the mutational covariance matrix M: Matrix B = {bij} is an n X p matrix of

i€[1,n],je[1,p]
pathway coefficients given by the first derivatives of the developmental function about the parent

phenotype. As explained in the main text, the1l X p vectorb; ={bij}je[1p] of the p pathway

coefficients determining a given trait y; is a single draw from a multivariate distribution. This distribution
has mean vector ug and positive-definite p X p covariance matrix Cg. Otherwise the nature of these
distributions is unspecified. As its entries are randomly distributed, M = B.V.B* has the structure of a
sample covariance matrix (BAl and SILVERSTEIN 2010).

In order to go any further, we must characterize the structure of M in more mathematical detail. Let us
first ignore any potential bias in the b;; (ug = 0) and denote by B, the matrix of pathway coefficients in
this case. By assumption (8), the matrix B, can be decomposed into the product B, = H. A where H is
an n X p matrix with independent entries h;; with mean 0 and variance V(hi]-) =1/n,and Aisap X
p matrix introduced to generate the suitable covariance among b;;’s (matrix bending). By this
definition, Cg = E(B.B*) = A*. A/n, which is positive-definite as required. The matrix A can thus be set
asA =+n C]13/2’ the Cholesky decomposition of n Cg, but there will typically be many other possibilities.
By definition, a given draw of the matrix B, corresponds to a given draw of the matrix H. This matrix H is
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the building block of most models of Random Matrix Theory, and we derive the structure of B.V.B* in
terms of this building block.

From now on, we take the expectation E(.) to mean the expected outcome of a given draw of
the random coefficients b;; (and the corresponding h;;). Importantly, the random entries in matrix H. H*
are independent of Cg. If we now consider the general model where pg # 0, the bias in the distribution
of the pathway coefficients b;; boils down to adding an n X p matrix Ug to B,. We can write B = B, +
Ug where B, = H. A and matrix Ug has all its n line vectors equal to pg , so by construction Ug has rank
1.

We can now derive the structure of the random matrix B.V.B*: it can be decomposed
into B. V.B* = K.K* where K = K, + Ug with K, = H.A.VY/2 and Uk = Ug.V'/2. The singular values
of K, are the square roots of the eigenvalues of K,.K; = H.W.H*, where W = A.V.A* is a positive-
definite p X p matrix. The spectral distribution of W is equal to that of n V. Cg. Like Ug, matrix Uk is a
rank 1 matrix by construction. Indeed, basic properties of the rank of matrix products imply that 0 <
rank(Ug) < min(rank(UB),rank(V)) = min(1,p) = 1. Therefore, Uk has a single non-zero singular
value 6 which can be computed by using the fact that Uk. Uk then has a single non-zero eigenvalue
equal to 62 by definition. Therefore, its matrix trace Tr(.) must satisfy 8% = Tr(Ug.Ug). By
construction of matrix Ug = Ug.V1/2, we also have Tr(Ugk. Ug) = pj. V. ug so the unique singular value

of Ugis 8 = \/pg. V. pg.

To summarize, matrix M has the same eigenvalues as a (non-standard) sample covariance matrix
K.K* where K = K, + Uy with K, = H.W'/2 3 ‘standard’ random matrix H multiplied by a positive-
definite ‘constant’ matrix W = A.V.A*. Matrix Uk is of rank 1 and its unique singular value is 8 =
\/m. Both components are n X p matrices. This whole decomposition argument is exemplified in
the notebook file S3.

Existence of the LSD of M: A cornerstone result of RMT is that the spectral distribution of H. H* admits a
limit whennp — oo, given by the M-P law: Ay g+ ~ MP(p/n,1). In the absence of a bias among
pathway coefficients (ug = 0), M = B,.B; = H. W.H" is a non-standard sample covariance matrix: as
the entries of H are independent of W, the existence of an LSD for this matrix is also certain (chapter 4
of BAl and SILVERSTEIN 2010). This LSD is fully determined by that of W and H. HT taken separately, and is
still independent of the nature of the distributions of the entries in H. Tools from RMT can then be used
to compute explicit approximations for the LSD of such a matrix product. The effect of bias, as we will
see, does not affect the existence of an LSD, as it only modifies the leading eigenvalue of M.

Approximation to the LSD of matrix M when pg = 0: Here, | describe how the LSD of the sample
covariance matrix { H.H* is modified by inner multiplication by the matrix W, yielding the LSD of M =
H.W.H".
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As shown above, the matrix W = A. V. A" is an unspecified positive-definite matrix, whose eigenvalues
are the same as those of n V.Cg. Overall, W gathers all the correlation among mutation effects on
mutable traits and among pathway coefficients within B. It is impossible to have a general a priori
knowledge on the structure of W, so we must rely on an approximate treatment under less general
conditions, in order to keep as much generality as possible regarding W. This is possible if we assume
that the phenotypic integration from mutable to optimized traits is high (our assumption (4): =
p/n> 1).

First, let us note that the LSD of H. W. H* always exists as long as W is positive-definite and has a
bounded spectral distribution (Chapter 4 in BAI and SILVERSTEIN 2010). Under the additional assumption
that n/p — 0 (or § — ), we can approximate eq. (A1.6) to obtain a simple limit for this LSD. Let nw(z)
be the (unspecified) 1 transform of the spectral distribution of W, and let 7y (x) be the functional
inverse of this transform. From the relationship between n and S transforms (2(z) = —(z+ 1)/
zn~1(z + 1)) we can express eq. (A1.6) as Zgwn*(x) = — 1wt (1 + x/B)/x . Assuming that f3 is large,
we can then take a series expansion of ny! (1 + x/B) for small x /B which gives

il (143) =m0+ S () + 5 w0 + 0 (5) (AL

g
This Taylor series can be expressed in terms of the derivatives of 7y (z) taken at z = 7y (1) = 0 (e.g.
applying the method in KOeEPF 1994), and we find that 1y (1) = 1/nw'(0) and r]w1 (1) = —nw''(0)/
(mw'(0)3). Recalling that the 1 transform is a moment generating function for the LSD (n[—z] =
Y, zKE(F)), we have gt (1) = —1/¢w and nwt (1) = 2(1 + cv2)/{w, where {y is the mean of
the eigenvalues of W and cvyy is their coefficient of variation. Plugging these expressions into eq. (A1.8),

we obtain a simple expression for the inverse n transform, which depends only on the mean and
coefficient of variation of the eigenvalues of W:

x) x2(1+cvg)—xp +0 ({)2 - (A1.9)

w (1+ﬁ Tw B B

Plugging eq. (A1.9) into the formula Ty wn*(x) = — nwt (1 + x/B)/x, we obtain a linear function of x:
introducing the parameters {, = {w(1 + cv ) and B, = B/(1 + cvd):

-1 X
() = Zyw (0 = M (i + B) _ Zlﬁ (1 _ ﬁﬁ) +o (i) ! (A1.10)

which can be rearranged into Zy(x) = (;1(x + ﬁe)_l + o(xf2). To first order in x/32, we retrieve the
S transform of an M-P law (eq.(A1.5)) with parameters {, and f3,.

Therefore, we obtain a simple approximation to the LSD of the mutational covariance,
accounting for arbitrary covariance matrices among mutation effects on metabolic traits or among
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pathway coefficients. This approximation is to the second order in 1/ and is thus relatively robust: it
remains valid even when p is not much larger than n. All along, we made no assumption on the mean or
variance of the spectral distribution of W (on {y or cv@). Therefore, eq. (A1.10) remains valid even with
high correlations and heterogeneity within V or B. As expected, we retrieve the original M-P law
when W = {yl,: in this case cvi = 0 (all the eigenvalues of W are equal to their mean {y) so that 8, =
B and {, = {y, and multiplication by W results in a mere scaling.

Obviously, this derivation cannot claim full mathematical rigor: caution might be necessary on how the
approximation of the S transform implies convergence in distribution to the corresponding LSD. Yet,
Figure 4.a and other extensive simulations (not shown) do suggest that this approximation is valid: the
convergence of the spectral distribution of M to this modified M-P law is good, even with very high
heterogeneity in the eigenvalues of W (here cvd, = 2.1).

Effect of a non-zero mean in b;;: The above treatment describes the LSD of K,,. K that equals that of M
whenever the b;’s are unbiased (ug = 0), see main text. However, in general we want to allow for
arbitrary pg # 0. To do so, we rely on Theorem 2.9 of Benaych-Georges & Nadakuditi (2011) on the
effect of small rank perturbations on the singular value distribution of random rectangular matrices
(such as K,). As the singular values of K are simply the square roots of the eigenvalues of K. K* and thus
of M, this provides the required result.

Let us order the eigenvalues of M in decreasing order (1; = 1,..> 1, > 0). To generate K, the random
matrix K, (the standard one with zero mean entries) is “additively perturbed” by a small rank matrix Uk:
K = K, + Uk has a number of singular values that differ from those of K,. When K is a large random
matrix, these differing eigenvalues are the r largest in general, where r is the rank of the perturbation
matrix (BENAYCH-GEORGES and NADAKUDITI 2011). The perturbation Uk is of rank 1 with a unique singular
value 6 = ,/pg.V.ug (see above). Therefore, only the leading singular value \/A—l is affected by the
perturbation, while all the lower singular values \/A_l of K retain the same distribution as those of K.
The leading singular value \/1—1 shows a phase transition behavior that is determined by what the
Benaych-Georges and Nadakuditi dubbed the D-transform of the singular value distribution, which is the
expectation D(z) = E,(z/(z? — 0,))) over the distribution of the singular values g, of the unperturbed
matrix, in their notation. In our context, the unperturbed matrix is K, and it is useful to express D(z) in
terms of the eigenvalues, = 62 of K,. This gives: D(z) = E, (z/(z% — 2,)) over the spectral
distribution of K,.K;. Now as we have seen above, the spectral distribution of K,.Kj can be
approximated by an M-P law: A,~MP(f,,{.), so the corresponding D transform is Dy g+ (z) given above
(eq.(A1.7)) for the M-P law.

To summarize: the effect of the bias in the b;; is (i) no effect on the bulk of lower eigenvalues
(Ajz1 ~ MP(B.,{.)) and (ii) a “phase transition” behavior for the leading eigenvalue 4,. Denote 8;, =

1/\/Dynu-(maxo,) the functional inverse of the D transform, taken atmaxo, = max./4,.
Whenever 0 < 62 < 02, all eigenvalues (including 1;) pertain to the M-P law so that 1; —» max ],
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which is the expected maximum of the spectral distribution of the unperturbed matrix. However,

whenever 6% > Gtzh, A4 rises above the bulk of smaller eigenvalues, to a higher value \//'1—1 -

Dy (1/6%).

Using the M-P law approximation to the LSD of K. K}, (1,~MP(f,,{.)), the maximum of the M-P law is
2

max o2 = maxA, = (1 + ,/ﬁe) ., so the threshold for the phase transition is

1
On = = :831/4 e

\/DH_H* (max \//1_0)

The limit reached by the leading eigenvalue beyond the phase transition depends on the functional
inverse of the D transform of A,, which, for the M-P law, is (from eq. (A1.7)):

(A1.11)

. j(1+zze>(;+zceﬁe> A
This yields the limit:
(1Y) L Gt 0 (Bege +69) . (ALD)
A 9>_)9th Duw (ﬁ) B 62 '

We can express this result in more intuitively amenable terms. Define cv = \/Tr(CB.V)/(u’]g.V. Kg) ,
which is analogous to a coefficient of variation of the means u; but modified by the mutational
covariance V. When V « L,,, this is exactly the mean coefficient of variation of the linear coefficients bij
across mutable traits x;. Recall that {, = {w p/p. and that the p X p matrix W has the same spectrum as
n V.Cg: its mean eigenvalue is therefore {y = Tr(n V.Cg)/p = n/p Tr(Cg.V). Putting this together,
we get

02 02 Jn e

% o B

We see that when the bias in the coefficients b;; is small enough, cv? is large enough to outweigh \/n p,.

By a “small enough bias”, we mean specifically that the cumulated variance of mutational effects on
mutable traits, and of the linear coefficients is larger than pg.V.pg. Otherwise, a phase transition
appears and the leading eigenvalue rises above the bulk of lower eigenvalues, by a factor

M, (1+ n) 1+2) 5 142 (A1.15)
E(A,) 6>6¢n cv? De ) Pe—o  cV? '
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This is our eq. (6), except that we replaced A, (all eigenvalues of K. K* when pg = 0) by 1;.; (the set
of n — 1 smallest eigenvalues, namely the “bulk” eigenvalues in the general situation (arbitrary pg). The
latter is distributed as A,, except that it is depleted of its maximal value A4, so it is very slightly
(unnoticeably if n > 1) biased downwards.

The accuracy of this result is checked Figure 4b. In this figure, the actual LSD of M is not exactly the M-P
law because of the covariances in mutable traits (V # I,,) and pathway coefficients (Cg # I,,), so that
H.W.H" # {,,H. H*. However, the prediction for the phase transition behavior, which is based on the
M-P law approximation (derivation above), is accurate. This is simply because the behavior of 1; is
entirely determined by the spectral distribution of the unperturbed matrix (4,), which was shown to be
accurately captured by the M-P law approximation as long as n < p (e.g. Figure 4a).

Extensions to allow for correlations among the rows of B: In the end of the Discussion, | stress the fact
that in the model as formulated, it is impossible to have substantial correlations among the rows of B,

namely among the b;;, across i, for a givenj. This is because the covariance Cg is of full rankp. A

ijr
possible way to incorporate such correlations was suggested by one of the reviewers, by letting B =
A;.H. A, stilln X p, with A; ann X n matrix and A, a p X p matrix, both invertible (our model so far
corresponds to A; = I, and A, = A). | provide a quick analysis of this case, but merely to illustrate how
extensions can be made, and mostly in the form of conjectures rather than proofs. A full treatment of

this more general model is beyond the scope of this article.

The covariance of b;; among the rowsi is now given by thep Xp matrixC; = E(B*.B) =
E((A%.H*.A}).(A;.H.A3)). WhenA; =I,andA; = A (our former model), this givesC; = Cg =
A" E(H*.H).A =A".A/n, as E(H*.H) = 1/n. Even in the general case (A; #1,,), withn < p and
A;.A] of full rankn, we have convergence to C; < Aj.A;/n. Conversely, the covariance of the b;;
among the columns j is now given by the n X n matrix C; = E(B.B*) = E((Al. H.A,). (AS. H*.A*l)). In
our former model C; = E(H.A,.A5. H"): asn/p — 0 with A,. A5 of full rank p, we get C; < I,,, and in
the general case, we get C; < A;.A}. Therefore the introduction of matrix A; does introduce a
potential for correlations among the rows i, which is effectively negligible otherwise (providedn < p
and Cg is of full rank p), as conjectured.

Let us now see how the mutational covariance M is affected by multiplication of B on the left by A;. In
our extension, if we let M = H.A,.V.A%.H* be the former form of the mutational covariance, we now
have M’ = A;.M. A}, as the new mutational covariance. The LSD of M’ is the same as that of C;.M
where we define C; = A4. A7 which is approximately the covariance matrix of b;; among rows i. As the
elements in C; are independent of those in H, M' has S transform given by Zy, (x) = Zy(x)Z; (x) where
¥, is the S transform of the LSD of C;.

We must now approximate each S transform. We have seen above that the LSD of M is
approximately the M-P law so that Zy(x) = 1/({.(x + B.)) with {,, B, given above. | could not derive a
general result for X, (. ) without making an additional assumption. | assume that the spectral distribution
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of C4 is not widely spread. More precisely, defined¢, and set, without loss of generality, that E(Acl) =1
(all the scaling can be absorbed into {,). | assume that (i) v; = V(Acl) « 1 and that (ii) the higher raw
moments of the LSD of C4 scale with this variance E()l’c‘l) = 0(vK) for all k > 2. This simply implies that
the eigenvalues of C; are not too spread apart, corresponding to mild correlations among the rows of B.
In this case, we can find a first order approximation for the S transform of the LSD of C; and a
corresponding approximation for the LSD of M’ again in terms of an M-P law with modified parameters.
As for the rest of the Appendix, details of the computations can be found in the notebook file S3.

Definen;(x) = E(1/(1 + A¢,x)) then transform of the LSD of C; and n7 () the functional inverse
such thatz =n, (n;l(z)). First, take the Taylor series expansion for ratio: 1/(1 +n71(2) A¢,) to order

/1%1 ; then take expectations with respect to the distribution of A¢, : this yields

2
TR 1 (@) 1 y
s (@) = (1 +072) ﬂc1> (@) e o) - (ALIe)

Solving for nl_l(z), we retrieve four solutions, but only one has the correct behavior when v; = 0:
namely, it converges to the solution when all 1¢, = E(Acl) = 1, which isn;1(z) = (1 — z)/z. Taking
this solution, we can compute the S transform X, (x) of C; under the approximation. The expression is
analytic but unpractical. Yet, after taking a series of 1/Z;(x) to leading order in v; , we obtain an
approximate expression:

5,60 =~ e+ 1 : (A1.17)
xX)=——— X X — . .
! X T v<1 1+vx

Interestingly, this approximation is exact when C4 is a sample covariance matrix, with LSD given by the
M-P law (A¢, ~ MP(By,1/B;) and arbitrary f; > 0). Note that, in this particular case, this result should

thus be valid for an arbitrary level of variation in the eigenvalues of C4 (arbitrary 8; > 0).

Using eq. (A1.17), we can compute the S transform of the LSD of M": Zy,(x) = Zy(x)Z;(x) =
1/((x +B.) ¢ (1+ le)) . In general, this S transform is not related to any specific form of random
matrix. However, when the ratio index of M = H,.H; is large (B, > 1), we retrieve a simple
approximation in terms of an MP law. Taking the leading order when v; = o(1) while S,v; = 0(1)
(vi €K1 and B, > 1), we get the S transform of an M-P law with modified parameters {, =

(e (1 + Bevy) and g = B /(1 + Bevy):

1 1
<1 L+ B,) (Lt vix) b1 /(L + B %)

I () = Em(0)Z1(x) (A1.18)

As expected, we retrieve the original MP law when v; — 0 (our former model: M’ = M, with B, = f8,).
The approximation in eq. (A1.18) must break whenever v, is large enough or 8, small enough that 0 <
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Be < 1. Indeed, in this case, the approximation would predict that a portion (1 — f3,) of eigenvalues
should be zero whereas in fact there are none (8, > 1 and C4 is positive-definite). This sets a limit for
the validity of eq. (A1.18): we must have 0 < v; < (B, —1)/B., i.e. v; < 1 in the best case scenario

(Be = ).

To conclude, the effect of correlations in the rows of B is thus to further reduce the shape parameter of
the LSD of the mutational covariance, while retaining the M-P law structure. Whenn/p — oo, so
that B, « 8 — oo, we retrieve a finite shape parameter this time:

: 1
Be P

- ~ — Al1.19
e = A+ Bovn) bty (AL19)

Then, there is mild anisotropy, all the more as v; gets larger, namely as the rows of B get more
correlated. The effective dimensionality in the sense of the matching moment approximation in (MARTIN
and LENORMAND 2006), isn, = n/(1+ cv(1)?) where cv(1) is the coefficient of variation of the
eigenvalues of M. With our M-P law approximation we have cv(1)? = 1/, so that

n

n, ~ ——— A1.20
e n«p (1 + 171) ( )

In the main text, | refer directly tov; = cvﬁ as the coefficient of variation of the eigenvalues of the
covariance matrix of the b;; among rows i, to avoid stating the scaling E(A¢,) = 1 that was made here

for mere notational simplicity. Simulations (not shown) suggest that this new M-P law approximation is
indeed accurate as long as v, is small and 8, is large (0 < v; < (8. —1)/B.).

References:

BAl, Z., and J. W. SILVERSTEIN, 2010 Spectral Analysis of Large Dimensional Random Matrices, 2nd Edition.

BENAYCH-GEORGES, F., and R. R. NADAKUDITI, 2011 The eigenvalues and eigenvectors of finite, low rank
perturbations of large random matrices. Advances in Mathematics 227: 494-521.

KOEePF, W., 1994 Taylor polynomials of implicit functions, of inverse functions, and of solutions of ordinary
differential equations. Complex Variables, Theory and Application: An International Journal 25:
23-33.

MARTIN, G., and T. LENORMAND, 2006 A general multivariate extension of Fisher's geometrical model and
the distribution of mutation fitness effects across species. Evolution 60: 893-907.

TULINO, A. M., and S. VERDU, 2004 Random Matrix Theory and Wireless Communications. Now Publishers.

WOLFRAM RESEARCH, ., 2012 Mathematica Edition: Version 9.0, pp. Wolfram Research, Inc., Champaign,
lllinois.

G. Martin 15SI



File S2
Approximations for the DFE

We know that the limit spectral distribution of M is approximately given by the M-P law under
reasonable assumptions (see Appendix file S1). Let us see the implications for the distribution of the
fitness effect of mutations. Several of the analytical treatments can be checked using the Mathematica®
(Wolfram Research 2012) notebook file S3 (in freely readable [.cdf] format).

Stochastic representation of the DFE in the anisotropic FGM: Eq. (2) provides the stochastic
representation of s as a function of each individual value of A;. Its derivation can be found elsewhere
(Mathai and Provost 1992; Jaschke et al. 2004). It can be obtained in the basis of phenotype space
where the mutational covariance is diagonal, via the change of basis z = Q.y, where Q is the eigenbasis
of M. In this basis, the random variables dy; in eq. (1) become dz;, a set of n independent normal

deviates: dz; ~ N(O, \/A—l) Eg. (1) can thus be rearranged into
Y Aoy b (e
s = ' .
w2 Lz T

where the variables dzl-/\/l_i ~ N(0,1) are independent standard normal deviates. By definition of the

2
non-central chi-square distribution: (zi/\/l—i + dzi/\/l—l-) ~ x2[2% /], which leads to eq. (2). From this
stochastic representation, one can directly obtain the approximations in egs. (8) in the limit where
all 2; = 1 (or eq. (10) when only the n — 1 lowest eigenvalues are equal to ).

However, it is useful to study the distribution in more details, to understand why this isotropic
approximation is in fact robust, considering that the eigenvalues are never exactly all equal. | do so via a
generating function of the DFE.

Generating function of the DFE: the stochastic representation in eq. (2) directly yields a closed form
expression for the cumulant-generating-function (CGF) of s : k(u) = log(Es(e™%))). This CGF fully
characterizes the DFE (all its cumulants). It is derived easily from the CGF of the non-central chi-
square x2[v], which is x; (u,v) = uv/(1 — 2 u) — log(1 — 2 u)/2. The CGF of the sum of independent
variables is the sum of their CGFs, so eq. (2) yields

1 Uu Zzl
Ks(w) =E<l_ 1+u/1 Zlog(1+u)l)) . (A2.2)

As the CGF fully characterizes a distribution, the DFE is fully determined by the joint distribution of the
eigenvalues of M (the A;’s) and the position of the parental phenotype (the y;’s).
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Link to the Shannon transform of the M-P law: At this point, we can note that a central quantity in eq.
(A2.2) isv,(u) = 1/n X7 log(1 + u 4;), the average of log(1 + u 1) over the n eigenvalues, namely
the Shannon transform of the spectral distribution of M. For an optimal genotype (s, = 0) allz; =0
and kg(u) = —n/2 v, (u). For a suboptimal genotype, it is impossible to derive an equivalent expression.
However, below phase transition (@ = 1), we may ignore any potential correlation, across traits i,
between the maladaptation terms Zl-2 and the A; . Then, we can, first, introduce the derivatives
of log(1 + u A;) with respect to u into ks (u) , then approximate

2 n

n n
n u? z: n 1 z?
Ks(u) = -3 vy (u) + Z 2 —d,log(1+ul) =~ -3 v, (u) + u? (;2 é) (auZ log(1 +u Ai))
i=1 i=1

i=1

Noting that 1/n Y™, z%/2 = s,/n and that 8, (31 ; log(1 + u 4;)) = n v}, (u), we thus get

Ko () = U5,V (W) = 5 V() . (A23)

provided that cov(ziz,Ai) =~ 0 and a = 1. Therefore, the DFE obtains in terms of the spectral distribution
of M (via v, (u)), plus two parameters: s, and n. The effect of maladaptation (y) on the DFE is thus fully
determined by the distance to the optimum (s, = |ly||?/2), not by the actual direction to the optimum:
the model behaves de facto as an isotropic one. Of course the independence assumed between zl-2
and 4; across traits i, is never guaranteed, but it must become an accurate approximation once the 4;
become close to each other (convergence towards more isotropy as § — o). Note also that (A2.3) is
always exact for an optimal genotype (s, = 0).

We can derive the equivalent expression beyond phase transition by simply separating the leading
eigenvalue (1; = a 1) from the others: k(1) ~ k,_,(u) + k(1) with

K1 (W) = uzsn—lvn—ll(u) - %Vn—l(u)
(A2.4)

, 1
Ky (u) =u?s;vy (W) — Evl(u)

where s; = z2/2 and s,y = X" ,2z?/2 =5, —s;, whilev,_;(u) is the average log(1+ u 1) over
the n — 1 smallest eigenvalues and v; (1) = log(1 + A;u) with 1; = a 1 (eq. (6)).

The general formula above is not fully determined because v,,(1) is an average, which varies asn
eigenvalues vary randomly. To overcome this, we simply take a limit when n,p — oo, in which case (i) the
distribution of A; converges to a non-random limit (the M-P law approximately) and (ii) the expectations
v, (1) andv,,_; (u)both converge to the Shannon transform of this M-P law asn — oo :

@) = E(log(1+u ) = () = fo B D log(l+u)dA~ vy @) +  (A25)
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in the context of the M-P law approximation, vy is approximately given by eq. (A1.3), with effective ratio
index B, = p,/n and effective scale {, = 1/f, as given by eq. (4).

Moments of the DFE: Based on the limit obtained for v,,(u) (eq. (A2.5)), we obtain a non-random limit
for the CGF via eq. (A2.4). Taking the derivatives of k,(u) with respect to u taken atu = 0 yields the
cumulants of the distribution. In particular, defining(n—1+a)1/2=5,0 =n/(n—1+a)—1,¢, =
S,/5 and €; = s;/5, we obtain, for the mean and variance of the DFE:

E(s) =ks'(0) = -5 =—{y, p/2
252 =11+ 0)?+p,(1+(n—-1)02-2n0¢ +2(1+0)€,) ' (A26)
n Pe

We obtain a simpler expression below phase transition (@ = 1 so that & = 0 and § = n 1/2), especially

V(s) = k(0) =

when taking the leading orderinn > 1:

25%( 1 1
V) 2, Sl gt At ze |+o (Z) L (A29)

It can be checked that eq. (A2.7) yields the exact expression from the purely isotropic FGM (see Martin
and Lenormand 2006) whenever 3, > 1.

Isotropic approximation: The isotropic approximation that we use in the main text consists in equating
the n — 1 lowest eigenvalues A;~4 to a constant 1, the mean of the M-P law, which amounts to
setting p, — . The expressions above do not make such an assumption; they only rely on the
convergence to the M-P law for the spectral distribution of M (eq.(A2.5)), and on ignoring any potential
correlation between ZL-Z and 4; (egs. (A2.3) and (A2.4)). However, to characterize the DFE more explicitly
(stochastic representation or pdf), it proves critical to further rely on the isotropic approximation. This
approximation proves accurate even though the actual system is clearly anisotropic, as illustrated on
Figure 5.a, where the spectrum of M is quite spread. A tentative explanation for this robustness can be
proposed, below phase transition (when a = 1). Beyond phase transition (¢ > 1), the problem boils
down to whether the isotropic approximation is accurate in the eigenspace associated with the n — 1
lower eigenvalues, so it is an equivalent issue.

Even when a = 1, the actual model is of course never isotropic. The ratio index 8 must be finite,
and because of metabolic correlations in W, the equivalent ratio 8, can be substantially smaller than
(eq. (4)). Figures 3 and 4 confirm that even with relatively large 8, the spectral distribution of M shows
substantial variance, in a manner captured by the M-P law approximation. More precisely, the coefficient
of variation of the eigenvalues of M is approximately CV(4;) = 1/\/E. Therefore, the eigenvalues A;
are not equal and phenotypic directions are not equivalent. However, this anisotropy remains mild, and
proves to have approximately no influence on the DFE, as long as p, is large enough. This can be
understood by looking at the CGF and its approximate expression in eq. (A2.3).
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The pdf of a distribution can be obtained as an inverse Fourier transform of the characteristic
function of this distribution. In our context, this characteristic function is given by y(t) = est)
where k¢(.) is the CGF given in eq. (A2.2) whena = 1andiis the unit complex number (i = —1).
Therefore, to find a suitable approximation for the pdf of s one must approximate e*s(t) \When we can
ignore correlations between Ziz and 4; or at the optimum, x4 (.) is approximately given by eq. (A2.3). Part
of the anisotropy then vanishes already: only the distance to the optimum s, has an impact, not its
direction. However, to obtain the isotropic approximation exactly (n traits all equivalent) still requires to
seek an approximation for vy y:(u), more precisely for (t) = e ™2Vun(Dat the optimum. The
corresponding expression in the isotropic model (all A; = 1) is simply ;5. (t) = (1 + 2 it)_n/2 which is
the characteristic of a negative gamma distribution s ~ — I'(n/2, 1). The characteristic function, at the
optimum (s, = 0), is equal to this isotropic approximation, to leading order in{, = 1/8,. Indeed,
recalling that A = 25/n and B, = p,/n, the ratio between the exact and approximate characteristic

() t? 52 5
—lpiso(t) =~ (1 — p_e> + o0 (p—e> ) (A2.8)

The relative error in equating @ (t) = @, (t) is thus small under fairly mild conditions. Even when 8, =

functions satisfies

pe/m is not very large, so that variation across 4; is substantial, it suffices that p, be large enough and
that mutation effects be mild enough (52/p, < 1) for the isotropic approximation to perform
satisfyingly. This accuracy of the isotropic approximation is illustrated in Figure S1 where vyy-(u) is
compared to its equivalent in the isotropic approximation v, (1) = log(1 + u /7[).

This whole argument is merely intuitive as it relies on approximate results, but it does give an intuition
on why, even when the spectral distribution of M is fairly spread (e.g. Figure 5.a), egs. (8-11) prove
accurate.
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