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ABSTRACTWe develop a maximum penalized-likelihood (MPL) method to estimate the fitnesses of amino acids and the distribution of
selection coefficients (S = 2Ns) in protein-coding genes from phylogenetic data. This improves on a previous maximum-likelihood
method. Various penalty functions are used to penalize extreme estimates of the fitnesses, thus correcting overfitting by the previous
method. Using a combination of computer simulation and real data analysis, we evaluate the effect of the various penalties on the
estimation of the fitnesses and the distribution of S. We show the new method regularizes the estimates of the fitnesses for small,
relatively uninformative data sets, but it can still recover the large proportion of deleterious mutations when present in simulated data.
Computer simulations indicate that as the number of taxa in the phylogeny or the level of sequence divergence increases, the
distribution of S can be more accurately estimated. Furthermore, the strength of the penalty can be varied to study how informative
a particular data set is about the distribution of S. We analyze three protein-coding genes (the chloroplast rubisco protein, mammal
mitochondrial proteins, and an influenza virus polymerase) and show the new method recovers a large proportion of deleterious
mutations in these data, even under strong penalties, confirming the distribution of S is bimodal in these real data. We recommend the
use of the new MPL approach for the estimation of the distribution of S in species phylogenies of protein-coding genes.

ESTIMATION of the distribution of selection coefficients
(S= 2Ns) of new mutations in protein-coding genes is of

much interest (Eyre-Walker and Keightley 2007). Theoreti-
cal considerations (Akashi 1999, figure 1) and empirical
observations of mutation experiments (e.g., Wloch et al.
2001; Sanjuan 2010; Hietpas et al. 2011) find the distribu-
tion of S is bimodal: one mode centered around nearly neu-
tral mutations (22 # S # 2) and the other mode centered
around highly deleterious mutations (S � 210). However,
phylogenetic-based methods to estimate the distribution of
S have failed to recover the bimodal distribution and, in
particular, have not detected the large proportion of highly
deleterious mutants observed in mutation experiments

(Thorne et al. 2007; Yang and Nielsen 2008; Rodrigue
et al. 2010; Rodrigue 2013).

In a previous article (Tamuri et al. 2012) we examined
a maximum-likelihood (ML) method to estimate the distri-
bution of S over amino acids in protein-coding genes from
phylogenetic data. The method is based on the model of
Halpern and Bruno (1998) and uses a multiple-sequence
alignment of several species to estimate the fitness F of each
amino acid at each codon location in a protein-coding gene.
We refer to this model as the site-wise mutation–selection
(swMutSel) model. The method ignores polymorphism and
treats differences among sequences as fixed differences
among species; it is thus not suitable for population data.
Analysis of computer simulations (Tamuri et al. 2012)
showed the method can recover the distribution of S when
the distribution is bimodal. Furthermore, analysis of two
real data sets (Tamuri et al. 2012) indicated the distribution
of S among new mutations is bimodal in the protein-coding
genes studied.

The swMutSel model is highly parameterized. For a
protein-coding gene of length Lc codons, 193 Lc site-specific
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fitnesses are estimated. The large dimension of the estima-
tion problem is challenging, and extreme estimates of the
fitnesses (i.e., F = 2N) of some amino acids at some loca-
tions are common. Considering this, Rodrigue (2013) ar-
gued that the large proportion of deleterious mutants
estimated for real data using the swMutSel model is the
result of overfitting by the ML method. Rodrigue (2013)
suggested a hierarchical Bayesian approach is preferable to
estimate parameters in such high-dimensional problems.
However, analysis of various protein-coding genes using
a mixture model version of swMutSel under such a hierar-
chical Bayesian approach again did not detect the large pro-
portion of deleterious mutations expected (Rodrigue et al.
2010; Rodrigue 2013). It is unclear whether a strong prior
on the fitnesses (for example, a unimodal prior with concen-
trated probability mass around 0) or a limited number of
categories in the mixture model is responsible for the un-
derestimation of the proportion of deleterious mutants.

A limitation of the Bayesian method suggested by
Rodrigue (2013) is that the posterior distribution of fit-
nesses cannot be calculated analytically, and computation-
ally expensive MCMC sampling is necessary to calculate the
distribution, therefore limiting the size of analyzed data sets.
A fast approach is to use numerical optimization to find the
highest mode of the posterior distribution to obtain the max-
imum a posteriori estimates of the fitnesses. The method is
essentially the same as maximum penalized-likelihood
(MPL) estimation when the penalty function is a probability
density (the prior) on the parameters (Cox and O’Sullivan
1990). Because the MPL method is fast, it can be used on
long sequence alignments and phylogenies of hundreds to
thousands of species. It incorporates one of the advantages
of the Bayesian method, the penalization of extreme esti-
mates, thus correcting overfitting (Cox and O’Sullivan
1990). Furthermore, the strength of the penalty function
can be varied to assess how informative a particular data
set is about the parameter values. Several phylogenetic
problems have been addressed using penalized likelihood
(e.g., Nielsen 1997; Sanderson 2002).

Here we develop an MPL approach to estimate the
distribution of S under the swMutSel model. Using a combi-
nation of computer simulations and real data analysis, we
evaluate the effect of various penalty functions on the esti-
mation of the fitnesses and we assess how reliable the esti-
mated distribution of S is for different penalty strengths. We
show the new method regularizes the estimates of fitnesses
for small, uninformative data sets (i.e., it penalizes extreme
fitness estimates), but can still recover a large proportion of
deleterious mutations when these are present in simulated
data. Furthermore, we study the effects of taxon sampling
and sequence divergence on the accuracy of the estimation
of the distribution of S. We find accuracy of estimates
increases with the number of sequences in the phylogeny
or the level of sequence divergence. Results for real data
indicate high proportions of deleterious mutations as pre-
dicted by theory and as seen in mutation experiments. We

recommend the use of the new MPL swMutSel approach for
the analysis of real data.

Theory

The site-wise mutation–selection model

For full details of the model and the population genetics
assumptions used see Tamuri et al. (2012) (pp. 1103–1104).
We assume a protein-coding gene evolving in a Fisher–
Wright population with effective gene number N (i.e., the
population number is N for haploid and N/2 for diploid
organisms). Imagine a new mutant allele in the population
with scaled Malthusian fitness F = 2Nf. Selection and ran-
dom drift will act on the new allele and the mutant will
eventually become fixed in the population or lost. If the
allele becomes fixed, we say the population has been
substituted. We model the substitution process at the codon
level in the protein-coding gene. The substitution rate from
codon i to j at location k in the gene is

qij;k ¼
8<
:mij

Sij;k
12 e2Sij;k

; if Sij;k 6¼ 0;

mij; else;
(1)

where Sij,k = Fj,k 2 Fi,k is the selection coefficient for the i to
j mutation, and Fi,k and Fj,k are the fitnesses of the two
codons. Parameter mij is the neutral mutation rate from i to
j, which can be constructed from any standard nucleotide sub-
stitution model (e.g., see Yang and Nielsen 2008; Tamuri et al.
2012). The effect of selection is thus to accelerate or slow
down the substitution rate with respect to the rate of a neutral
mutation. That is, when Sij,k . 0, Sij,k = 0, or Sij,k , 0, then
qij,k . mij, qij,k = mij, and qij,k , mij, respectively. Note that Fij,k
(and thus Sij,k and qij,k) vary over locations in the protein,
while mij is the same for all locations.

We assume codon substitution is a continuous-time
Markov process. The qij,k thus form the off-diagonal ele-
ments of a rate matrix Qk. The transition probability matrix
Pk(t) = exp(tQk) can then be used to calculate the likeli-
hood of a sequence alignment under a given tree topology,
using standard methods (Yang 2006). We assume no selec-
tion on codon usage, so Fi,k = Fj,k if i and j code for the same
amino acid. We use the HKY85 nucleotide substitution
model (Hasegawa et al. 1985) to construct mij, so six addi-
tional global parameters are necessary: a multiple substitu-
tion factor t, the transition–transversion ratio k, three
nucleotide frequency parameters (p*), and a branch scaling
parameter c (see Tamuri et al. 2012 for details). The tree
topology and the branch lengths are assumed known (i.e.,
they can be estimated using quicker methods and fixed dur-
ing estimation of fitnesses with the swMutSel model).

The equilibrium frequency of codon j at location k is
given by

pj;k ¼
p*
j1p

*
j2p

*
j3e

Fj;k

z
; (2)
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where p*
j1 ; p

*
j2 , and p*

j3 are the equilibrium frequencies of the
nucleotides at the three positions of codon j in the absence
of selection, and z ¼P64

j¼1p
*
j1p

*
j2p

*
j3e

Fj;k : We assume STOP
codons are lethal within protein-coding genes (i.e., FSTOP =
2N), and therefore pSTOP = 0.

Let aai be the amino acid encoded by i. At equilibrium,
the proportion of nonsynonymous i to j mutations at location
k among all nonsynonymous mutations for all locations is

mij;k ¼
pi;kmijP

k
P

i 6¼j pi;kmij
Iaai 6¼aaj ; (3)

where the sum
P

i6¼j is over all pairs i 6¼ j and the indicator
function Iaai 6¼aaj = 1 if aai 6¼ aaj and = 0 otherwise. The
distribution of S among nonsynonymous mutations in the
protein-coding gene is given by the distribution of Sij,k val-
ues weighted by their corresponding mij,k proportions. We
can represent the distribution in histogram form. Writing wI

for the width of the Ith histogram bin, the proportion of
mutations in the Ith bin (centered on the value SI) is

hðSIÞ ¼
X
k

X
i6¼j

mij;kISI2wI=2, Sij;k # SIþwI=2; (4)

where the indicator function Ia,S#b = 1 if a , S # b and =
0 otherwise.

There has been much discussion in the literature about
the relative proportions of deleterious, neutral, and advan-
tageous mutations in protein evolution (e.g., Kimura 1983;
Ohta 1992; Akashi 1999), so we study these proportions in
detail here. We define an i to j mutation at location k as
deleterious if Sij,k , 22, as nearly neutral if 22 # Sij,k , 2,
and as advantageous if 2 # Sij,k (Li 1978). The proportions
of the three types of mutations are written p2, p0, and p+,
respectively. For example, the proportion of advantageous
mutations is

pþ ¼
X
k

X
i6¼j

mij;kISij;k .2: (5)

We note a few points about estimation of the distribution of
S in this work. First, we are interested only in the distribu-
tion of S for nonsynonymous mutations. Equations 3 and 4
can be used to calculate the distribution among all muta-
tions if we include synonymous i to j codon mutations in the
calculation. However, because we assume synonymous
mutations are neutral, a large peak of neutral mutations
would be obtained when calculating the distribution (e.g.,
Tamuri et al. 2012, figure 2). Second, the distribution can
also be calculated among substitutions (i.e., those mutations
becoming fixed in the population) by using pi,kqij,k instead
of pi,kmij in Equation 3. The distribution of S among substi-
tutions is symmetrical; i.e., h(SI) = h(2SI), because the sub-
stitution model of Equation 1 is reversible and there is
a detailed balance of slightly advantageous/deleterious
mutations becoming fixed and lost in the population. We
do not consider the distribution of S among substitutions

in this work. Third, mutations with S , 210 and those with
S . 10 are binned together in the calculation of h(S), so we
calculate the distribution of S between 210 and 10. Fourth,
we consider mutations toward STOP codons to be nonsy-
nonymous, and they are included in the calculation of
h(210) and p2.

Penalized likelihood

The penalized-likelihood function is

L*ðuÞ ¼ PðuÞLðuÞ; (6)

where P(u) is a penalty function, L(u) is the likelihood func-
tion, and u are the model parameters. Taking the logarithm
on both sides gives the penalized log-likelihood

ℓ*ðuÞ ¼ log  L*ðuÞ ¼ pðuÞ þ ℓðuÞ; (7)

where p(u) = log P(u) and ℓ(u) = log L(u). The penalized
likelihood is defined up to a proportionality constant, so any
constant factors of P(u) or L(u) can be ignored. If P(u) is
a probability density on u, then Equation 6 has a Bayesian
interpretation, and finding the maximum penalized-likelihood
estimates (MPLE) is equivalent to finding the highest mode
of the posterior distribution. Using log-penalty functions of
the form p(u) = lf(u) is desirable, where l (.0) is called
the regularization parameter. When l = 0, the problem is
reduced to standard maximum-likelihood estimation. Large
values of l regularize the estimates of u; that is, the esti-
mates become concentrated around the mode of P(u) and
extreme estimates are penalized (Cox and O’Sullivan 1990).

In this work, ℓ(u) is the log-likelihood of a sequence align-
ment calculated on a phylogeny using the swMutSel model,

Figure 1 Marginal distribution density of Fi when u = (ui) � Dirichlet(u | a).
The marginal density of ui is f(ui) = Beta(ui | a, ak 2 a), and the marginal
density of Fi is f(Fi) = f(ui) 3 J = Beta(ui | a, ak 2 a) 3 ui(1 2 ui), with ui =
exp Fi /(k 2 1 + exp Fi). A Dirichlet distribution with a = 1 is very in-
formative on the transformed parameter space on F: The 95% equal-tail
range of ui is (0.00133, 0.176), corresponding to a 95% range for Fi of
(23.68, 1.41).
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and u are the substitution model parameters. The penalty
function depends only on the site-wise fitnesses, Fk =
(F1,k, . . . , F20,k) and the same penalty function is applied to
all locations. As only the fitness differences (Sij,k = Fj,k 2 Fi,k)
enter the likelihood function, we fix one of the fitnesses to
zero, and thus only 19 fitnesses are estimated for site k. We
drop the k subindex and simply write F for the site-specific
fitness vector. Below we describe two penalty functions on F,
the first based on the multivariate normal distribution and
the second based on the Dirichlet distribution.

Multivariate normal penalty: We use a penalty function
proportional to a MVN density

PðFÞ} ð2pÞ219=2jSj21exp

 
2

1
2s2

X20
i¼1

ðFi2mÞ2
!
; (8)

where m ¼P20
i¼1Fi=20, and S is a 19 3 19 covariance ma-

trix. Ignoring constant factors, we define the log-penalty
function as

pðFÞ ¼ log

"
exp

 
2

1
2s2

X20
i¼1

ðFi2mÞ2
!#

¼ 2
1

2s2

X20
i¼1

ðFi2mÞ2: (9)

Note that l = 1/s2 is the regularization parameter.
Equation 9 penalizes fitness values as they move away

from the fitness mean m. With this parameterization we
obtain the same penalty value for whichever fitness we de-
cide to fix to zero (which is not true for other MVN penal-
ties). Some tedious algebraic manipulation of the exponent
of Equation 8 shows the density has mean vector 0, equal
variances v = 2s2 (the diagonal of S), and correlation of 0.5
between any Fi and Fj (the off-diagonal elements of S are all
0.5v). Because the mode of the density is at F = 0, extreme
estimates of F (toward N or 2N) are penalized.

Dirichlet-based penalty: We use a penalty function pro-
portional to a transformed Dirichlet density with parameter
a (.0),

PðFÞ}Dirichletðu  jaÞ3 J;

¼ Gð19aÞ
GðaÞ19 3

Y20
i¼1

ua21
i 3 J;

(10)

where ui ¼ exp Fi=
P20

j¼1exp Fj is the inverse multivariate
logit transform of the fitnesses (with 0 # ui # 1 andP

iui ¼ 1), and J = |@(ui, . . . , u19)/@(F1, . . . , F19)| is the
Jacobian of the transform. In the Appendix we show
J ¼Q20

i¼1ui: The log-penalty function is then

pðFÞ ¼ log

 Y20
i¼1

ua21
i 3 J

!
¼ a

X20
i¼1

logui; (11)

and the regularization parameter is l = a. Because of the
Jacobian, the Dirichlet-based density of Equation 10 has
a single mode at F = 0 for any a . 0. As with the MVN
penalty, extreme estimates of F (toward N or 2N) are
penalized.

The Dirichlet distribution is useful to construct a penalty
on a set of parameters with the constraint 0 # ui # 1 andP

iui ¼ 1: However, the Dirichlet cannot be used directly to
construct a penalty on the fitnesses because 2N , Fi , N.
Therefore, we use the multivariate logit transform, mapping
the fitnesses from the real line to the (0, 1) interval and
enforcing the constraint

P
iui ¼ 1 (which is mathematically

equivalent to fixing one of the fitnesses to an arbitrary con-
stant value, say F20 = 0). It follows from standard probabil-
ity theory that if the probability density on u is Dirichlet,
then the density on its transform F is Dirichlet times the
Jacobian. The Jacobian guarantees the probability mass is
preserved during the transformation. Figure 1 shows the
marginal density of Fi for various values of a. Note that
a seemingly uninformative Dirichlet density with a = 1 is
rather informative about Fi (Figure 1). We implement the

Table 1 Estimated proportions of deleterious, neutral, and advantageous nonsynonymous mutations in simulated data sets when the
distribution of fitnesses is unimodal for trees with varying number of taxa

n taxa

128 512 4096

Penalty p2 p0 p+ p2 p0 p+ p2 p0 p+

True 0.243 0.748 0.009 0.243 0.748 0.009 0.243 0.748 0.009
No penalty (l = 0) 0.583 0.408 0.008 0.431 0.558 0.011 0.271 0.719 0.010
Normal

s = 1000 0.584 0.408 0.008 0.431 0.558 0.011 0.271 0.719 0.010
s = 100 0.583 0.409 0.008 0.430 0.559 0.011 0.271 0.720 0.010
s = 10 0.560 0.429 0.012 0.418 0.571 0.012 0.270 0.720 0.010

Dirichlet
a = 0.01 0.557 0.433 0.010 0.418 0.571 0.011 0.270 0.721 0.010
a = 0.1 0.378 0.610 0.012 0.344 0.645 0.011 0.261 0.729 0.009
a = 1.0 0.088 0.910 0.002 0.143 0.852 0.004 0.216 0.776 0.008
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Dirichlet-based penalty on the fitnesses because it is equiv-
alent to the Dirichlet-based prior used by Rodrigue et al.
(2010) in their hierarchical Bayesian framework to estimate
the distribution of S; it is also equivalent to the use of amino
acid pseudocounts to estimate the fitnesses as done by
Halpern and Bruno (1998).

Selection of l and Kullback–Leibler divergence: The value
of l must be set by the user before statistical inference is
carried out. Selection of l is subjective and an important
issue in MPL estimation. Some authors use cross-validation
(sequential removal of data and reestimation of parameters)
to choose the value of l (see Sanderson 2002, for a phylo-
genetic example). Cross-validation would be computation-
ally expensive with our approach. We suggest the distribution
of S should be estimated under various values of l, and
the estimated distributions can be compared to assess
how informative a particular data set is about the true
distribution.

The Kullback–Leibler (KL) divergence can be used to
compare two probability distributions. Writing h0(S) and
h1(S) for two estimates of the distribution of S (the histo-
grams, Equation 4) estimated using different values of the
regularization parameter (l = l0, l1), then the KL diver-
gence of h1(S) from h0(S) is

DKL ¼
X
I

h0ðSIÞlog h0ðSIÞ
h1ðSIÞ: (12)

If the estimated distributions are identical [i.e., h0(SI) =
h1(SI) for all I], then DKL = 0. Large values of DKL indicate
dissimilar distributions (DKL is always nonnegative). An

informative data set should produce similar estimates of the
distribution of S (low DKL) for different values of l. The KL
divergence is asymmetrical; i.e., DKL(h0, h1) 6¼ DKL(h1, h0).
Here we set h0 to be the histogram estimated with the
weaker penalty (l0 , l1).

Equation 12 can also be used to measure the divergence of
an estimated distribution from the true distribution (e.g., in
a simulation study). In this case h0(S) is the histogram for
the true distribution and h1(S) the histogram for the estimate.

Materials and Methods

Analysis of simulated data sets

We used computer simulations to study the impact of taxon
sampling, level of sequence divergence, and penalty func-
tion on the MPL estimation of the distribution of S, when (1)
the true distribution is centered around neutral mutations
and (2) the true distribution is strongly bimodal with a large
proportion of deleterious mutations. We assess the effect of
the value of the regularization parameter l on the estimated
distribution of S and its effect on the estimate of the pro-
portion of deleterious mutations, p2. Because the penalty
functions used (Equations 9 and 11) penalize extreme fit-
ness estimates, strong penalties (large l) are expected to
lead to underestimates of p2 and p+ and overestimates of
p0. We are interested in assessing whether increasing the
number of taxa leads to more accurate estimates of the
distribution of S, in particular when the distribution contains
a large proportion of deleterious mutations (large p2). We
also examine the effects of levels of divergence between
taxa.

Figure 2 Estimated and true dis-
tribution of S (for nonsynony-
mous mutations) for simulated
data when the fitnesses are sam-
pled from a unimodal distribu-
tion. The true distribution is
shown as vertical shaded bars.
The distributions are calculated
using Equation 4 by dividing the
range of S from 210 to 10 into
equally spaced bins with wI =
0.25. Mutations with S # 210
or those with S $ 10 are binned
together. We consider mutations
to STOP codons to be lethal, and
these are included in the calcula-
tion of h(210).
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Sequence alignments can be simulated on a phylogeny
using the swMutSel model with standard methods (Yang
2006). Sequence alignments of length Lc = 1000 codons
were simulated with mutational parameters k = 2, p* =
(0.25), and t = 0 on the unimodal or bimodal distributions
of S for various simulation conditions as described in full
below.

Unimodal and bimodal distributions of S: Two types of
data sets were simulated. First, we simulated data under
a distribution of S centered around nearly neutral muta-
tions. For each location (sequence position), one amino acid
was randomly selected to have F = 0 and the remaining 19
fitnesses were drawn from a normal distribution with mean
0 and variance 1, F � N(0, 1). Once the fitnesses were
sampled for all 1000 locations, the true distribution of S
was calculated using Equation 4. We assume STOP codons
have F = 2N, so the true histogram of S has a small mode
at 210, corresponding to mutations toward STOP codons.
Second, we simulated data sets under a bimodal distribution
of S, with a large proportion of deleterious mutations. For
each location, one amino acid was randomly selected to
have F = 0. The fitnesses of 10 randomly selected amino
acids were drawn from the normal distribution F � N(0, 1),
and then the remaining 9 fitnesses were drawn from F �
N(210, 1), producing a distribution of S with a large pro-
portion of deleterious mutations.

Taxon sampling:We simulated sequence alignments on six
phylogenies with different numbers of taxa. We started
with a rooted, symmetrical, bifurcating 64-taxon tree with
branch lengths of 0.25, for a tree height of 1.5 and tree
length (sum of branch lengths) of 31.5. We then con-
structed a 128-taxon tree by replacing every leaf in the 64-
taxon tree with a bifurcating node with branch lengths of
0.25 leading to two new leaves, increasing the tree height
to 1.75 and the tree length to 63.5. The same procedure
was used to construct 256-, 512-, 1024-, and 4096-taxon

trees. In the swMutSel model branch lengths are given as
neutral substitutions per site, which can be scaled to the
usual substitutions per site as explained by Tamuri et al.
(2012).

Level of sequence divergence: In addition to examining how
taxon sampling affects estimation of S, we studied the effect
of varying levels of divergence. Using the 4096-taxon tree,
we set all branch lengths to 1/1024, to produce a tree with
height of 3/256. We then doubled the length of every
branch to 1/512, resulting in a tree with height of 3/128.
We continued this doubling procedure until reaching a tree
having branch lengths of 8.0 and height of 96. In total we
generated 14 trees. Unimodal and bimodal data sets were
simulated on each tree, using the fitnesses described above.

MPL estimation: Fitnesses for all data sets were estimated
using the MPL method, fixing the tree topology, branch
lengths, and mutational parameters to their true values. At
each site, one amino acid has fitness fixed to zero and 19
fitnesses are estimated. We performed MPL with (1) the
multivariate normal (MVN) penalty with s = 1, 10, 100,
and 1000; (2) the Dirichlet penalty with a = 2.0, 1.0, 0.1,
and 0.01; and (3) without penalty (l= 0; i.e., s =N or a=
0). Penalties with a . 0.1 or s , 10 are very informative,
having a single mode with the probability mass being very
concentrated around F = 0. They are used here to study the
effect of informative penalties on the estimation of the dis-
tribution of S. Numerical optimization of the parameters was
repeated three times with different random starting values
to test for convergence and obtain reliable results. Given the
fitness estimates, we then calculated the estimated distribu-
tion of S for each data set and the corresponding proportions
of deleterious (p2), neutral (p0), and advantageous (p+)
nonsynonymous mutations. The Kullback-Leibler divergence
DKL between the true and the estimated distribution of S was
calculated using Equation 12 with h0(S) set as the true
distribution.

Table 2 Estimated proportions of deleterious, neutral, and advantageous nonsynonymous mutations in simulated data sets when the
distribution of fitnesses is bimodal for trees with varying number of taxa

n taxa

128 512 4096

Penalty p2 p0 p+ p2 p0 p+ p2 p0 p+

True 0.598 0.397 0.004 0.598 0.397 0.004 0.598 0.397 0.004
No penalty (l = 0) 0.744 0.252 0.004 0.685 0.311 0.005 0.625 0.370 0.005
Normal

s = 1000 0.744 0.253 0.004 0.685 0.310 0.005 0.625 0.370 0.005
s = 100 0.743 0.253 0.004 0.685 0.311 0.005 0.625 0.370 0.005
s = 10 0.729 0.264 0.007 0.677 0.317 0.006 0.622 0.373 0.005

Dirichlet
a = 0.01 0.721 0.272 0.007 0.676 0.319 0.006 0.622 0.373 0.005
a = 0.1 0.545 0.443 0.012 0.598 0.393 0.009 0.607 0.388 0.005
a = 1.0 0.191 0.802 0.007 0.376 0.613 0.011 0.545 0.448 0.007
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Analysis of real data sets

We estimated the distribution of S for three real data sets.
Two data sets (mitochondrial proteins and influenza poly-
merase) were analyzed by Tamuri et al. (2012), using the
ML method, and showed estimated distributions of S with
large proportions of deleterious mutations. We reanalyzed
these two data sets with the MPL method to assess whether
the estimates of the distribution of S and in particular of p2
are robust or the result of overfitting by the ML method. The
third data set is a chloroplast protein-coding gene alignment
of thousands of species, analyzed here to assess the effect of
a large phylogeny on the estimated distribution of S.

For each data set, the fitnesses were estimated using the
MPL method with the MVN penalty (s = 10 and 100), with
the Dirichlet penalty (a = 0.01 and 0.1), and without pen-
alty (l = 0). To reduce computation time, we estimated
branch lengths on a fixed tree topology with the FMutSel0
model (Yang and Nielsen 2008), using the CODEML pro-
gram from the PAML package (Yang 2007). The FMutSel0
model is similar to the model of Equation 1, but fitnesses are
equal for all locations (i.e., only 19 fitnesses are estimated
for the entire alignment). Branch lengths in the swMutSel
analyses are fixed to the FMutSel0 estimates. The muta-
tional parameters (k, p*, c, and t) were estimated using
the swMutSel model with no penalty (l = 0), using the
FMutSel0 estimates as starting values.

Mammal mitochondrial proteins: We analyzed the 12
protein-coding genes on the heavy strand of the mitochon-
drial genome of 244 placental mammals. The 12 genes have
similar base compositions and substitution pattern (Yang

and Rannala 2006) and are treated here as a single gene.
The concatenated alignment is 3598 codons long. The tree
topology and alignment are from Tamuri et al. (2012).

Influenza PB2 protein: We analyzed the pb2 polymerase
gene of 401 influenza viruses isolated from 80 human and
321 avian hosts. The alignment is 759 codons long. The PB2
polymerase is involved in the replication of the virus within
the host cell, and it has been suggested to be involved in
host adaptation (Boivin et al. 2010). The tree topology and
alignment are from Tamuri et al. (2009).

Plant chloroplast rbcL: We analyzed the highly conserved
rbcL gene of 3490 Eudicots (a group of flowering plants).
The alignment, which is 457 codons long, is from Stamatakis
et al. (2010). We estimated the tree topology using RAxML
(Stamatakis et al. 2005), using the GTR + G substitution
model. The rbcL gene encodes the large subunit of the
Rubisco enzyme, one of the most abundant proteins on
Earth, responsible for the photosynthetic fixation of CO2

from the atmosphere into organic compounds.

Results

Analysis of simulated data sets

Table 1 lists the true and estimated proportions of deleteri-
ous, neutral, and advantageous nonsynonymous mutations
for the simulated data sets when the true distribution of
fitnesses is unimodal. Both the number of taxa and the
strength of the penalty influence the proportions. The model
overestimates the proportions of deleterious mutations for

Figure 3 Estimated and true
distribution of S (for nonsynon-
ymous mutations) for simulated
data when the fitnesses are
sampled from a bimodal distri-
bution. The true distribution is
shown as vertical shaded bars.
The distributions are calculated
as in Figure 2.
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smaller trees and weak penalties, but it underestimates the
proportion under the stronger penalties. For the largest
4096-taxon tree, the estimated proportions are close to the
true proportions for all penalties. Figure 2 shows the esti-
mated distribution of S for the 128-, 512-, and 4096-taxon
trees (solid and dashed lines) compared to the distribution
calculated from the true fitness values (vertical shaded bars)
for the unimodal data sets. The distribution estimated using
the Dirichlet penalty with a = 1.0 on the 128-taxon tree
provides an example of applying a strong penalty on limited
data, considerably overestimating the proportion of neutral
mutations. Congruence with the true distribution improves
with the addition of taxa. For the 4096-taxon tree, the
estimated distribution is almost identical to the true
distribution.

Table 2 and Figure 3 show the corresponding proportions
and distribution of S for the simulated data sets where the
true fitness distribution is bimodal. Although the estimated
proportions approach the true proportions with the addition
of taxa, Figure 3 illustrates the difficulty in accurately de-
termining the true shape of the distribution in this case.
Contrary to the unimodal data set, where the modes of
the distribution were consistent with true distribution, the
modes for the estimated distribution for the bimodal data
sets are irregular, particularly for the 128-taxon tree under

the stronger penalties. The stronger penalties tend to pull
the peak of the deleterious mode closer to the neutral
mode. The situation improves with the addition of taxa.
For the 4096-taxon case, the estimated distribution
approaches the true distribution. Furthermore, large values
of p2 are recovered for the 4096-taxon case even under the
stronger penalties (s = 10 and a = 1).

We use the KL divergence to measure the difference
between the true and estimated distributions of S for the
simulated data sets when the number of taxa is increased
(Figure 4). For the unimodal case, the addition of taxa
steadily improves the fit of the estimated distribution to
the true distribution, until the KL divergence is close to zero
(Figure 4, top), i.e., when the estimated distribution is vir-
tually identical to the true distribution. By contrast, the KL
divergences for the bimodal case decrease only with the
addition of taxa for the weaker penalties, but not for the
strong penalties (Figure 4, bottom). Although the shape of
the estimated distribution does not always match the true
distribution, Table 1 and Table 2 show the relative propor-
tions of mutations do converge to their true values with the
addition of taxa in all cases. We note there is a model mis-
match between the penalty densities and the data genera-
tion density: The penalty densities have a single mode at
F = 0, with the probability mass being very concentrated

Figure 4 Kullback–Leibler divergence between
the true distribution of S (for nonsynonymous
mutations) and its estimate vs. number of taxa
for simulated data sets.
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around this mode for the strong penalties (a . 0.1 or s ,
10); while the data generation density has two modes, one
at F = 0 and the other at F = 210 3 1. This mismatch
between the two densities is expected to be problematic
during statistical inference. In other words, the concentrated
unimodal penalties indicate a strong prior belief that the
distribution of S is unimodal. The use of these strong pen-
alties is thus a stern test on our statistical machinery when
the true distribution of S is bimodal. It is remarkable we can
still recover a large proportion of deleterious mutations un-
der such strong penalties.

Finally, Table 3 and Table 4 list the estimated proportions
of nonsynonymous mutations when varying branch lengths on
the 4096-taxon tree for unimodal and bimodal distribution of
fitnesses, respectively. The method is able to recover increas-
ingly better estimates of proportions as sequence divergence
increases. The tree with height 48 recovers almost exactly the
true proportions under both weak and strong penalties and for
both the unimodal and bimodal distributions of S (Table 3 and
Table 4). Although the proportions are recovered with high
accuracy, the true shape of the distribution remains elusive as
indicated by the KL divergence scores (Figure 5). As with our
results from increased taxon sampling, increasing tree height
steadily recovers the true shape in the case of unimodal fitness
distributions. However, the KL divergence score for the bi-
modal fitness distributions does not reach zero, except for
the weak penalty case, due entirely to the shape of the distri-
bution where S is deleterious (S , 22). In contrast, the neu-
tral mode (22 , S , 2) is recovered accurately. In other
words, although the method recovers the true proportions of
S under all penalties, it is unable to determine exactly how the
deleterious mutations are distributed. Nevertheless, including
more divergent homologous taxa in the data set, in addition to
increasing taxon sampling, is a useful method for more accu-
rately estimating the distribution of S.

Analysis of real data sets

Table 5 lists the estimated proportions of deleterious, neu-
tral, and advantageous nonsynonymous mutations for the

three real data sets for various penalties. For all three data
sets, a large proportion of deleterious mutations is obtained
under both weak and strong penalties, with p2 ranging from
63.3% (PB2, Dirichlet a = 0.1) up to 95.2% (rbcL, MVN s =
100), indicating the majority of nonsynonymous mutations
in these protein-coding genes are deleterious. Figure 6
shows the estimated distribution of S for each real data
set. The shape of the distribution is sensitive to the penalty
used. While the weak penalties (MVN s = 100 and Dirichlet
a = 0.01) produce similar distributions for each data set
(solid lines in Figure 6), the strong Dirichlet penalty (a =
0.1) has a noticeable mode around S = 0 (dashed lines in
Figure 6). The impact of the stronger MVN penalty (s = 10)
on each data set is largely confined to the shape of the
distribution over deleterious mutations (S , 22).

For each data set, we calculate the KL divergence
between distributions estimated using the strong and weak
penalties. This indicates how informative the data sets are
about the true distribution of S. The rbcL, mitochondria, and
PB2 data sets have KL divergence values of 0.24, 0.46, and
0.69, respectively, using the MVN penalty, and 0.36, 0.19,
and 2.96, using the Dirichlet penalty (Figure 6). On average,
the long mitochondria and large rbcL alignments are the
most informative data sets about the distribution of S. The
PB2 alignment is the least informative, with the shape of the
distribution being sensitive to the strength of the penalty.
How informative a data set is about the distribution of S
depends on the length of the alignment, the number of taxa,
and the level of divergence among the taxa (Tamuri et al.
2012). For example, a set of 4000 nearly identical sequences
is not expected to be informative about the distribution of S.

Discussion

The site-wise mutation–selection model proposed by Halpern
and Bruno (1998) has received renewed interest in recent
years (Holder et al. 2008; Yang and Nielsen 2008; Rodrigue
et al. 2010; Tamuri et al. 2012; Thorne et al. 2012). The
model is motivated by a biochemical understanding of protein

Table 3 Estimated proportions of deleterious, neutral, and advantageous nonsynonymous mutations in simulated data sets when the
distribution of fitnesses is unimodal for a 4096-taxon tree with increasing total tree height

Tree height

0.01171875 0.75 48

Penalty p2 p0 p+ p2 p0 p+ p2 p0 p+

True 0.243 0.748 0.009 0.243 0.748 0.009 0.243 0.748 0.009
No penalty (l = 0) 0.765 0.234 0.001 0.435 0.555 0.010 0.245 0.746 0.009
Normal

s = 1000 0.765 0.234 0.001 0.434 0.555 0.011 0.245 0.746 0.009
s = 100 0.764 0.234 0.001 0.434 0.556 0.010 0.245 0.746 0.009
s = 10 0.719 0.217 0.010 0.415 0.573 0.012 0.245 0.746 0.009

Dirichlet
a = 0.01 0.687 0.300 0.013 0.417 0.572 0.011 0.245 0.746 0.009
a = 0.1 0.286 0.705 0.008 0.327 0.663 0.011 0.245 0.746 0.009
a = 1.0 0.053 0.947 0.000 0.143 0.853 0.004 0.241 0.750 0.009
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structure and function, with the site-specific amino acid fit-
nesses revealing the selective constraints acting on the pro-
tein at a given position. For example, buried sites in a protein
may accommodate only particular hydrophobic amino acids
(Baud and Karlin 1999), or the active site of an enzyme may
tolerate only a few amino acids capable of stabilizing a sub-
strate and carrying out the enzymatic reaction (Bartlett et al.
2002). Although the site-wise nature of the model captures
the idiosyncratic features of protein sites, its adoption has
been considered impractical due to the computational cost
of estimating its many parameters in large data sets (Yang
and Nielsen 2008; Rodrigue et al. 2010). For example, in
their original implementation Halpern and Bruno (1998)
could use the model only to estimate the evolutionary dis-
tance in pairwise sequence alignments. Holder et al. (2008)
made the first implementation where the likelihood of the
model could be calculated on a phylogeny to estimate all
the parameters. Later Tamuri et al. (2012) provided a full
implementation of the model to calculate the distribution of
selection coefficients from phylogenetic (species-level) data in
real data sets and showed the swMutSel model could recover
the large proportion of deleterious mutations expected in real
data sets (Akashi 1999; Wloch et al. 2001; Sanjuan 2010;
Hietpas et al. 2011) where other phylogenetic models had
failed (Nielsen and Yang 2003; Yang and Nielsen 2008;
Rodrigue et al. 2010). Furthermore, Tamuri et al. (2012)
showed increasing taxon sampling could improve the esti-
mates of fitnesses and the distribution of S, despite the large
number of parameters in the model.

Here we extended the work of Tamuri et al. (2012) under
a penalized-likelihood framework. The new approach has
two main advantages: (1) it regularizes the estimates of
fitnesses for small, uninformative data sets, and (2) it can
be used to assess whether the estimated distribution of S is
robust for a particular data set, by varying the form and
strength of the penalty function. Using the new approach,
we confirmed the distribution of S among new mutations is
indeed bimodal in the mammalian mitochondria and influ-
enza PB2 proteins analyzed by Tamuri et al. (2012) and also

for the large subunit of the rubisco protein in plant chloroplasts.
Furthermore, our method is useful for estimating the distribu-
tion of S in organisms for which mutation–selection experi-
ments cannot be performed, such as mammals or plants.

Rodrigue (2013) criticized the approach of Tamuri et al.
(2012) on two counts. First, Rodrigue (2013) suggested the
swMutSel model is overparameterized, and simply increas-
ing the number of taxa to improve fitness estimates was
unsound. His argument is based on the changing parame-
terization of the likelihood function as taxa are added: each
additional taxon involves a different tree topology and two
additional branch lengths, therefore changing the form of
the likelihood function. Second, Rodrigue (2013) suggested
the large proportion of deleterious mutations estimated by
Tamuri et al. (2012) was the result of overfitting by the ML
method: unobserved amino acids at particular locations are
estimated to have F = 2N, therefore inflating estimates of
p2. We deal with these two criticisms here.

Effect of taxon sampling

Site-specific parameters employed in phylogenetic models are
themselves often of interest to biologists and a natural way to
add more information for analyses is by adding taxa. Despite
the changing parametric form of the likelihood function,
simulations have consistently demonstrated that estimates
improve considerably with the addition of taxa (Pollock and
Taylor 1997; Pollock et al. 1999; Zwickl and Hillis 2002;
Heath et al. 2008; Tamuri et al. 2012). For example, Pollock
and Bruno (2000) found increasing taxon sampling improved
phylogenetic inference, more so than increasing sequence
length, and reduced the variance of site-specific parameter
estimates. Our analysis of simulated data demonstrates the
model tends to the true distribution of S given the addition of
more taxa and increased evolutionary divergence between
taxa. For the unimodal simulated data set, we find the esti-
mated distribution steadily converges to the true distribution
even for the strongest penalties. The bimodal simulated data
set is not as consistent, due to the penalty imposed on non-
unimodal distribution of fitnesses. Only the weaker penalties

Table 4 Estimated proportions of deleterious, neutral, and advantageous nonsynonymous mutations in simulated data sets when the
distribution of fitnesses is bimodal for a 4096-taxon tree with increasing total tree height

Tree height

0.01171875 0.75 48

Penalty p2 p0 p+ p2 p0 p+ p2 p0 p+

True 0.598 0.397 0.004 0.598 0.397 0.004 0.598 0.397 0.004
No penalty (l = 0) 0.850 0.149 0.000 0.687 0.308 0.004 0.599 0.396 0.004
Normal

s = 1000 0.850 0.150 0.000 0.687 0.308 0.005 0.600 0.396 0.004
s = 100 0.850 0.150 0.001 0.687 0.309 0.005 0.600 0.396 0.004
s = 10 0.813 0.181 0.006 0.680 0.314 0.006 0.600 0.396 0.004

Dirichlet
a = 0.01 0.774 0.216 0.010 0.677 0.317 0.006 0.600 0.396 0.004
a = 0.1 0.390 0.599 0.011 0.581 0.410 0.008 0.599 0.396 0.004
a = 1.0 0.053 0.947 0.000 0.370 0.623 0.007 0.597 0.398 0.005
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converge to the true distribution, given a maximum of 4096
taxa analyzed, due to the significant amount of data required
to accurately estimate the distribution of deleterious (S ,
22) mutations. Importantly, the nearly neutral mode of the
distribution and the estimated proportions of S converge
readily for all penalties. This may indicate a need for alterna-
tive penalty functions. One approach would be to devise pen-
alties more appropriate for bimodal distributions of S. Another
interesting way to use prior information about distributions of
amino acids at sites is the mixtures of Dirichlet densities pro-
posed by Sjölander et al. (1996). Using the mixture densities
in our penalized framework may be useful for dealing with
small or skewed samples.

A related question is how one can choose an optimal
value of the regularization parameter l to best balance the
trade-off between the fit to the data and the constraint im-
posed by the penalty function. Clearly, different values of l
can affect fitness estimates using the penalty functions de-
scribed here, especially for small data sets. The parameter
can be user-specified, and several different values can be
applied to examine the informativeness of a given data set.
The l value could also be selected by minimizing a cross-
validation criterion, as described by Sanderson (2002), or

by optimization of a modified Akaike’s information criterion
(Harrell 2001; Kim and Pritchard 2007). Here we recom-
mend using a # 0.1 if using the Dirichlet-based penalty or
s $ 10 if using the MVN penalty. We find stronger penalties
(a . 0.1 or s , 10) are too informative and may bias the
estimated distribution of S.

Effect of unobserved amino acids at a location

There are strong biological reasons indicating the proportion
of deleterious mutations is high for most protein-coding
genes, and mutation experiments of real protein-coding genes
have consistently detected large proportions of deleterious
mutants (Wloch et al. 2001; Sanjuan 2010; Hietpas et al.
2011). If a phenotype is lethal, then individuals carrying
the phenotype in a population will not be seen. In other
words, if an amino acid is lethal at a protein location, it will
not be seen at the corresponding location in multiple se-
quence alignments. Any statistical method devised to esti-
mate the distribution of S from species-level alignments will
have to estimate the proportion of highly deleterious muta-
tions based on the amino acids unobserved at particular loca-
tions in the alignment. Rodrigue (2013) showed that when
removing mutations toward unobserved amino acids in the

Figure 5 Kullback–Leibler divergence be-
tween the true distribution of S (for nonsy-
nonymous mutations) and its estimate as
a function of total tree height of a 4096-
taxon tree.
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calculation of mij,k (Equation 3), the peak of deleterious
mutations would disappear from the estimated distribution
of S. But this is exactly what we expect from population
genetics theory! We do not understand why the Bayesian
mixture-model approach of Rodrigue et al. (2010) and
Rodrigue (2013) failed to produce large estimates of p2 in
real data. We suspect that if a limited number of site classes is
imposed in the model (by the Dirichlet process prior), then
the fitness for the site classes will represent averages over the
fitnesses at particular locations. We note Rodrigue (2013)
tested the performance of his method only for simulated data
where the true distribution of S was unimodal, but not for the
more biologically realistic case when the distribution is bi-
modal. A new implementation of the Bayesian mixture model
has now become available (Rodrigue and Lartillot 2014),
which looks more promising as it produced larger estimates
of p2 for the PB2 data set.

Challenges and limitations

Tamuri et al. (2012) discussed in detail the limitations and
assumptions of the swMutSel model. In particular, they dis-
cussed the impact of assuming independently evolving codon
sites, that is, assuming free recombination among codon loca-
tions and so ignoring linkage, epistasis, and clonal interfer-
ence. While previous studies (e.g., Lakner et al. 2011;
Ashenberg et al. 2013) have suggested the effect on estimates
of selective constraints due to epistasis is likely small, a larger
effect could be caused by codon locations in a protein being
tightly linked. Specifically, the fitness of highly advantageous
mutations may be underestimated when linkage is ignored
(Bustamante 2005). Some other assumptions are not
expected to have much impact on estimates of S. For exam-
ple, although the mutational component of the model does
not vary across sites and lineages, the impact on S is probably

Table 5 Estimated proportions of deleterious, neutral, and advantageous nonsynonymous mutations in real data sets

Data set

rbcL Mit proteins PB2

Penalty p2 p0 p+ p2 p0 p+ p2 p0 p+

No penalty (l = 0) 0.952 0.042 0.006 0.893 0.103 0.005 0.948 0.047 0.005
Normal

s = 100 0.952 0.042 0.006 0.893 0.103 0.005 0.947 0.048 0.005
s = 10 0.943 0.049 0.007 0.888 0.107 0.005 0.931 0.063 0.006

Dirichlet
a = 0.01 0.939 0.054 0.008 0.875 0.120 0.005 0.894 0.098 0.008
a = 0.1 0.805 0.184 0.010 0.747 0.245 0.008 0.633 0.356 0.011

Figure 6 Estimated distribution
of S (for nonsynonymous muta-
tions) for real data sets. The DKL

distance is calculated with Equa-
tion 12, with h0 being the
weaker penalty. The distributions
are calculated using Equation 4,
setting wI = 0.25 for all I.
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small because qij,k is a steeply varying function of Sij,k. Others,
such as changes in S over evolutionary time, can be explicitly
included in the modeling, using a nonhomogeneous approach
(e.g., Tamuri et al. 2012, figure 4). Of particular interest is the
effect of uncertainty in branch length estimates on estimates
of the distribution of S. We have shown that the height of the
phylogeny (Table 3 and Table 4) affects estimates of the
distribution of S, so uncertainties in branch length esti-
mates are also expected to have an effect. This is an im-
portant issue requiring further investigation.

Our results suggest accurate estimation of the distribution
of S using the penalized likelihood method is possible only
with a sizable number of sequences, a factor less troublesome
due to the rapid increase in the available number of divergent
homologous sequences. Highly conserved genes, such as rbcL,
will have fewer effective residues per site and, therefore, need
many sequences to accurately estimate the distribution of S. If
a residue is truly impossible at a given position, overestimation
of its fitness by the penalty can be countered by additional
informative sequences providing evidence the residue is in-
deed lethal. Nevertheless, estimating the shape of the left tail
of the distribution of Swill always be challenging (Eyre-Walker
and Keightley 2007), even when analyzing thousands of
sequences. For example, imagine a location where the fitness
of lysine (K) is 0, the fitness of glutamate (E) is 210, and the
fitnesses of all the other amino acids are 2N. The expected
frequency of E at equilibrium will be e210/(1 + e210) = 4.5 3
1025 (assuming equal p*). If the fitness of E was instead 27,
its equilibrium frequency would be 9.1 3 1024. In both cases
estimating the precise fitness of E is hard because the fre-
quency is very close to zero and we would be unlikely to
observe E, even once, in a sequence alignment of 1000 sequen-
ces. Nonetheless, examination of hundreds to thousands of
sequences is now commonplace in phylogenetic analysis and
neither the number of sequences nor the required computa-
tional resources are significant obstacles to using our methods
to accurately estimate the proportions p2, p0, and p+.

Program availability

The software implementation of the swMutSel model is
available to download at https://github.com/tamuri/swmutsel.
The program is written in Java and can use multiple and
distributed cores, reducing running time considerably. For
example, the total running time for each analysis of the
3490-taxa rbcL alignment using several hundred distributed
cores ranged from 13 to 20 hr.
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Appendix
The Jacobian of Equation 10 is the absolute value of the determinant of the Jacobian matrix of the transform, J = |J| =
|@(u1, . . . , u19)/@(F1, . . . , F19)|. The elements of matrix J = (Jij) are

Jij ¼ @ui
@Fj

¼

eFiP20
j¼1e

Fj
2

e2Fi�P20
j¼1e

Fj
�2 ¼ uið12 uiÞ; if i ¼ j;

2
eFi eFj�P20
k¼1eFk

�2 ¼ 2uiuj; if i 6¼ j:

8>>>>>>><
>>>>>>>:

(A1)

J is of size 19 3 19 because only 19 fitness parameters need to be estimated. Note that J can be written as the product of
two matrices

J ¼

2
664
u1ð12 u1Þ 2u1u2 . . . 2u1u19
2u2u1 u2ð12 u2Þ . . . 2u2u19

⋮ ⋮ ⋱ ⋮
2u19u1 2u19u2 . . . u19ð12 u19Þ

3
775

¼

2
664
u1 0 . . . 0
0 u2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . u19

3
775
2
664
12 u1 2u2 . . . 2u19
2 u1 12 u2 . . . 2u19
⋮ ⋮ ⋱ ⋮

2u1 2u2 . . . 12 u19

3
775:

Because the determinant of a product matrix is the product of the determinants, |AB| = |A||B|, the determinant of J can be
written as the product of two determinants. The first determinant is the determinant of a diagonal matrix,

Q19
i¼1ui: The

determinant of the second matrix is u20 ¼ 12
P19

i¼1ui (Grossman 1995, p. 202). Because all ui . 0, the determinant is always
positive. Therefore J ¼ jJj ¼Q20

i¼1ui:
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