
NOTE

SNP2GO: Functional Analysis of Genome-Wide
Association Studies

David Szkiba,* Martin Kapun,†,‡ Arndt von Haeseler,*,§ and Miguel Gallach*,1

*Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna,
A-1030 Vienna, Austria, †Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland, ‡Institut
für Populationsgenetik, Vetmeduni Vienna, A-1210 Vienna, Austria, and §Bioinformatics and Computational Biology, Faculty of

Computer Science, University of Vienna, A-1090 Vienna, Austria

ABSTRACT Genome-wide association studies (GWAS) are designed to identify the portion of single-nucleotide polymorphisms (SNPs)
in genome sequences associated with a complex trait. Strategies based on the gene list enrichment concept are currently applied for
the functional analysis of GWAS, according to which a significant overrepresentation of candidate genes associated with a biological
pathway is used as a proxy to infer overrepresentation of candidate SNPs in the pathway. Here we show that such inference is not
always valid and introduce the program SNP2GO, which implements a new method to properly test for the overrepresentation of
candidate SNPs in biological pathways.

GENOME-WIDE association studies (GWAS) allow re-
searchers to identify the portion of the genetic variants

associated with a complex trait. The typical output of GWAS
consists of a set of noncandidate and candidate single-
nucleotide polymorphisms (SNPs), which are supposedly as-
sociated with the trait. How to identify a candidate SNP is still
under discussion and different statistical approaches have
been suggested (Evangelou and Ioannidis 2013). In addition,
biological information, such as linkage, genotype, and muta-
tion effects (e.g., missense SNPs in coding regions) can also
help to deal with the heterogeneity associated with the ex-
perimental design and reduce the number of false (positive)
candidate SNPs (Wang et al. 2012).

At some point, and regardless of the classification criterion,
the researcher ends up with a set of candidate and non-
candidate SNPs. To gain a deeper biological insight into the
candidate SNPs, a pathway analysis is carried out to identify
the genes and mechanisms that are involved in the expression
of the trait under study (Holmans 2010; Wang et al. 2012).
One rationale of such analysis is that if a biological pathway

(i.e., a group of related genes) is involved in the expression
of the trait, then it is likely that the candidate SNPs will be
enriched among the genes of the pathway (Holmans 2010).
Here, we focus on the Gene Ontology (GO) as a paradigm of
a structured and controlled way to associate genes accord-
ing to their cellular roles (Ashburner et al. 2000).

Strategies to identify significant GO terms are typically
based on the concept of gene list enrichment (Wang et al.
2007; Chasman 2008; Guo et al. 2009; Holmans et al. 2009;
Medina et al. 2009; Chen et al. 2010; Nam et al. 2010;
Zhang et al. 2010; Turner et al. 2011; Jones et al. 2012;
Kofler and Schlötterer 2012) (to cite a few). Originally de-
veloped for the analysis of differentially expressed genes
(Wang et al. 2012), the idea is to test whether the number
of candidate genes (i.e., genes having at least one candidate
SNP) linked to a GO term is higher than expected (enriched)
in the respective GO term (Holmans 2010; Wang et al.
2012). If candidate genes are significantly overrepresented,
then one typically concludes that the GO term also contains
an overrepresentation of candidate SNPs. While this may be
true in many instances, it is certainly not always the case.
Figure 1 illustrates the conceptual difference between gene
list enrichment and candidate SNP enrichment. Let us call
p1 the probability to obtain a candidate gene associated
with one GO term and p2 the probability to obtain a candi-
date gene associated with the other GO terms. The null
hypothesis of homogeneity, H0, states that p1 = p2, which
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is tested against the alternative hypothesis H1: p1 . p2

(Agresti 1992). If H0 is rejected in favor of H1, it is inferred
that the tested GO term has an overrepresentation of candi-
date genes. However, the conclusion that the tested GO term
has also an overrepresentation of candidate SNPs is true
only when p1 = p91 and p2 = p92, where p91 is the proba-
bility to obtain a candidate SNP associated to the GO term,
and p92 is the probability to obtain a candidate SNP associ-
ated to the other GO terms. When these equalities do not
hold, then rejection of H0: p1 = p2 may not entail rejection
of H0: p91 = p92, and vice versa.

To better illustrate the conceptual difference, we discuss
an example. To this end, we randomly classified 1.6 million
nucleotide positions across the Drosophila melanogaster ge-
nome as noncandidate SNPs and 2000 positions as candi-
date SNPs. The apportionment is based on recent population
genetics studies on this species (Orozco-Terwengel et al.
2012). Next, we ran Gowinda (Kofler and Schlötterer
2012) (snp mode), a program based on the gene list enrich-
ment concept, on the simulated data and compared the
results with the SNP2GO results. Because candidate genes
are defined as a function of candidate SNPs, we expect p1 =
p91 and p2 = p92 in most cases. In agreement with this, we
found a significant correlation between the P-values calcu-
lated by Gowinda and SNP2GO for each GO term (Spear-
man’s r = 0.924, P , 2.2 10216). However, these equalities
do not always hold. GO:0000981 and GO:0006915 consti-
tute representative examples. GO:0000981 is an arbitrary
GO term in which Gowinda found a significant overrepre-
sentation of candidate genes (P-value = 0.009). Thus, from
the Gowinda analysis, one would conclude that, because can-
didate genes are significantly overrepresented, GO:0000981

has an overrepresentation of candidate SNPs. However,
SNP2GO estimated a P-value of 0.133, indicating that there
is no overrepresentation of candidate SNPs in GO:0000981.
On the other hand, GO:0006915 has a significant overrepre-
sentation of candidate SNPs according to SNP2GO (P-value =
0.038),while this result doesnot necessarily imply a significant
overrepresentation of candidate genes (P-value = 0.848,
according to Gowinda). At this point, it is worth clarifying that
GO:0000981 and GO:0006915 are not examples of false pos-
itive and false negative errors found by Gowinda. The exam-
ples illustrate that gene list enrichmentmethods do not test for
overrepresentation of candidate SNPs and that in some instan-
ces the test outcomes may be very different. Therefore,
SNP2GO complements standard gene list enrichment tests.

To add more complexity to the problem, a GO term may
be significant due to different reasons: (1) only few genomic
regions accumulate most or even all candidate SNPs associ-
ated with the GO term (as in Linkage Disequilibrium (LD) in
Figure 2) or (2) the candidate SNPs are “evenly” distributed
in the genomic regions associatedwith a GO term and equally
contribute to the significance of the GO term (Even Distribu-
tion (ED) in Figure 2). In the latter case, one may conclude
that the GO term is involved in the expression of the trait
(Holmans 2010), whereas in the former case, the significance
may be due to the positional neighborhood of the SNPs.
A third case, not usually considered in GWAS, is the over-
dispersion of candidate SNPs, in which the number of geno-
mic regions carrying at least one candidate SNP is larger than
expected. Therefore, detection of a local genomic effect on
the SNP distribution is of special interest as it might help
researchers to properly interpret their results. In some cases,
mainly in humans, linkage or haplotype data are available,
and this information can be used to detect enrichment of
candidate SNPs due to LD (see, for instance, Raychaudhuri
et al. 2009). However, inmany others, such information is not
available or cannot be inferred (e.g., if allele frequencies are
analyzed from pooled sequencing data). In addition, the
enrichment of candidate SNPs may be due to other genomic
local effects, such as clustering of genes with the same func-
tion (Hong et al. 2009) or heterogeneity in mutation and
evolutionary rates across the genome (Eyre-Walker 1993;
Hwang and Green 2004; Singh et al. 2005; Duret and Arndt
2008; Tanay and Siggia 2008). We have, therefore, devel-
oped SNP2GO to detect such local genomic effects. Impor-
tantly, SNP2GO does not require genotype data and can be
easily used in studies on any organism. Our method is espe-
cially useful in the aforementioned cases, typically found in
population genetics and experimental evolution studies
(Atwell et al. 2010; Hancock et al. 2011; Turner et al. 2011;
Fabian et al. 2012; Jones et al. 2012; Orozco-terWengel et al.
2012; Turner and Miller 2012; Bastide et al. 2013) (to cite
a few).

In the next section, we introduce SNP2GO, a candidate
SNP enrichment analysis method for GWAS that also
provides a strategy to detect local genomic effects in the
candidate SNP distribution.

Figure 1 Illustration comparing gene list enrichment (left) and candidate
SNP enrichment (right) methods. Solid and open bars represent candidate
genes (i.e., genes having at least one candidate SNP) and noncandidate
genes, respectively. Arrowheads and circles represent candidate and non-
candidate SNPs, respectively. p1 = a/(a + c); p2 = b/(b + d); p91 = a9/(a9 +
c9); p92 = b9/(b9 + d9); see main text for details.

286 D. Szkiba et al.



Candidate SNP Enrichment Analysis and Detection of
Local Genomic Effects

SNP2GO can be applied to pathway databases such as the
Kyoto encyclopedia of genes and genomes (Kanehisa et al.
2004), Panther (Mi et al. 2013), GO (Ashburner et al. 2000),
or other BioOntologies (Smith et al. 2007), although here
we focus on GO. SNP2GO answers two questions: (1) Does
a particular GO term show an overrepresentation of candi-
date SNPs? (2) Is the number of genomic regions contributing
to the significance of a GO term different from expectation?

We briefly describe the workflow. SNP2GO takes the
genome annotation of the organism of interest (i.e., the gene
coordinates), the associated GO terms, and the list of candi-
date and noncandidate SNPs as defined by the user as input.
To avoid decreasing the power of the tests when parental GO
terms and children GO terms are compared, SNP2GO carries
out an inclusive analysis of the GO terms (Al-Shahrour and
Dopazo 2005). For a selected node level, the SNPs are
assigned to the genomic regions associated with the GO term
(i.e., genes or genes plus or minus a given amount of nucleo-
tides up and down the gene) and a Fisher’s exact test for 23 2
contingency tables is done (Figure 1). Correction of P-values
for multiple testing follows the Benjamini and Hochberg
(1995) false discovery rate adjustment. This part of SNP2GO
answers the first question.

To answer the second question, SNP2GO carries out an
additional analysis of significant GO terms based on the
hypergeometric sampling. Figure 2 shows an instance where
all candidate SNPs belong to a single genomic region and
another example where exactly one candidate SNP belongs
to one genomic region. To determine significant spatial

patterns, we count the number, g, of genomic regions in the
selected GO term containing at least one candidate SNP and
the number, c, of candidate SNPs contained in these regions.
Then we sample without replacement c SNPs from all the
SNPs associated with the GO term and count the number of
genomic regions to which the SNPs belong. After r runs
(100,000 by default), the resulting distribution of genomic
regions with at least one SNP serves as a null distribution
to test whether g deviates significantly from the simulated
distribution. If g is small, then the candidate SNPs cluster in
a few genomic regions (LD in Figure 2); if g is large, then the
candidate SNP distribution is overdispersed (not shown).

This hypergeometric sampling is conceptually similar to
the genome-wide permutation approaches typically applied
to preserve the LD structure in the data (e.g., Guo et al.
2009; Holmans et al. 2009; Atwell et al. 2010; Kofler and
Schlötterer 2012). However, our sampling space is defined
by the genomic regions associated with the significant GO
term, instead of the whole genome. In other words, SNP2GO
does not assume that the level of LD between SNPs is, on
average, equal across GO categories, and therefore it is re-
leased from violations of this general assumption (Holmans
et al. 2009).

Results

As previously mentioned, our method is especially useful in
population genetics studies where there is no a priori bi-
ological knowledge about linkage, haplotypes, or where this
information cannot be inferred. To show the relevance of
SNP2GO in such studies, we analyzed the SNPs identified
from the comparison between the base and the middle

Figure 2 Test for local effects. Here we represent the distribution of candidate and noncandidate SNPs in the 15 genomic regions associated with the
GO term GO:0005548. This term was significant using random SNP positions in the D. melanogaster genome, as explained in the main text. In ED
(actual result, with expected distribution of candidate SNPs), g = 6 while in LD (a hypothetical scenario) all candidate SNPs occur in a single genomic
region (g = 1). In both ED and LD examples, candidate SNPs (c) = 6 and noncandidate SNPs (nc) = 1497 (not all shown). Run 1 . . . Run r display typical
outcomes of the sampling. Genomic regions with at least one sampled SNP are shaded. After r runs, the empirical distribution (right side) is used to test
whether g is higher or lower than expected. For ED we estimated P(g $ 6) = 0.16 (shaded bar in the histogram), while for LD, P(g # 1) , 1025.

Note 287



experiment in Orozco-Terwengel et al. (2012). In this study,
the authors found 2000 candidate SNPs (of 1.6 million) po-
tentially involved in the thermal adaptation of D. melanogaster
and wanted to find the biological pathways potentially im-
plicated in the process. We ran SNP2GO on these data and
found 135 significant GO terms (false discovery rate ,0.05),
with at least 10 genes associated to each of these terms (sup-
porting information, Table S1). Typically, one would con-
clude that these cellular processes and molecular functions
are involved in thermal adaptation in Drosophila. However,
SNP2GO found that the number of genomic regions in the
corresponding GO terms contributing to the significance of
120 of the 135 significant GO terms was lower than expected
by chance (P , 0.05, according to the empirical null distri-
bution). In other words, only a few genomic regions per GO
term caused the significance. Hence, according to SNP2GO,
one should be careful about the interpretation of the signifi-
cance of these GO terms, since local genomic effects are
probably clustering the candidate SNPs.

Therefore, we further studied the genomic distribution of
the SNPs found in Orozco-Terwengel et al. (2012) and an-
alyzed the location of the candidate SNPs on the chromo-
somes. We found that 1568 of the 2000 candidate SNPs (i.e.,
78%) are located on the chromosomal arm 3R (expected
23%, according to the size of the chromosomal arm). In
agreement with this observation, we also found that the
chromosomal arm 3R contributes on average 2.6 more than
expected to the significance of the GO terms (Figure 3). This
leads to a simpler, nonadaptive, biological explanation for
the significance of these GO terms. The Drosophila popula-
tions that Orozco-Terwengel et al. (2012) studied segregate
the cosmopolitan inversion ln(3R)Payne, which covers a region
of �8 Mb on the chromosomal arm 3R. Since suppression

of recombination expands beyond the inversion region
(Evans et al. 2007), LD is expected to affect more than
one-third of this chromosomal arm, explaining the unique
contribution of the genes located in this genomic region, as
SNP2GO reported. This observation was recently corrobo-
rated by Tobler et al. (2013).

Conclusions

Originally developed for the analysis of gene expression
data, gene list enrichment is currently being applied by
researchers to test whether a particular pathway/GO term
has an overrepresentation of candidate SNPs. While a big
effort has been made to find the best criteria to define
candidate SNPs and to detect whether LD is causing the
significance of the pathway (Holmans 2010; Wang et al.
2012; Evangelou and Ioannidis 2013), the appropriateness
of gene list enrichment methods in GWAS has not been
discussed. Here we show that gene list enrichment tests
are not generally applicable to test for the overrepresenta-
tion of candidate SNPs. Thus, we propose a candidate SNP
enrichment analysis that is implemented in the program
SNP2GO. SNP2GO tests on the basis of the number of can-
didate SNPs and noncandidate SNPs in a GO term. In addi-
tion, it allows testing for the spatial distribution of candidate
SNPs and addresses the potential biological meaning for the
significant overrepresentation.

An R package that implements our method (i.e., the in-
clusive analysis of GO terms, candidate SNPs enrichment
analysis, and a test for local effects) can be found at http://
www.cibiv.at/software/snp2go/index.shtml.
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