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ABSTRACT We study invasion and survival of weakly beneficial mutations arising in linkage to an established migration–selection
polymorphism. Our focus is on a continent–island model of migration, with selection at two biallelic loci for adaptation to the island
environment. Combining branching and diffusion processes, we provide the theoretical basis for understanding the evolution of islands of
divergence, the genetic architecture of locally adaptive traits, and the importance of so-called “divergence hitchhiking” relative to other
mechanisms, such as “genomic hitchhiking”, chromosomal inversions, or translocations. We derive approximations to the invasion
probability and the extinction time of a de novo mutation. Interestingly, the invasion probability is maximized at a nonzero recombination
rate if the focal mutation is sufficiently beneficial. If a proportion of migrants carries a beneficial background allele, the mutation is less
likely to become established. Linked selection may increase the survival time by several orders of magnitude. By altering the timescale of
stochastic loss, it can therefore affect the dynamics at the focal site to an extent that is of evolutionary importance, especially in small
populations. We derive an effective migration rate experienced by the weakly beneficial mutation, which accounts for the reduction in
gene flow imposed by linked selection. Using the concept of the effective migration rate, we also quantify the long-term effects on neutral
variation embedded in a genome with arbitrarily many sites under selection. Patterns of neutral diversity change qualitatively and
quantitatively as the position of the neutral locus is moved along the chromosome. This will be useful for population-genomic inference.
Our results strengthen the emerging view that physically linked selection is biologically relevant if linkage is tight or if selection at the
background locus is strong.

ADAPTATION to local environments may generate a se-
lective response at several loci, either because the fitness-

related traits are polygenic or because multiple traits are under
selection. However, populations adapting to spatially variable
environments often experience gene flow that counteracts
adaptive divergence. The dynamics of polygenic adaptation
is affected by physical linkage among selected genes, and
hence by recombination (Barton 1995). Recombination allows
contending beneficial mutations to form optimal haplotypes,
but it also breaks up existing beneficial associations (Fisher
1930; Muller 1932; Hill and Robertson 1966; Lenormand and
Otto 2000). On top of that, finite population size causes

random fluctuations of allele frequencies that may lead to
fixation or loss. Migration and selection create statistical asso-
ciations even among physically unlinked loci.

The availability of genome-wide marker and DNA-sequence
data has spurred both empirical and theoretical work on the
interaction of selection, gene flow, recombination, and genetic
drift. Here, we study the stochastic fate of a locally beneficial
mutation that arises in linkage to an established migration–
selection polymorphism. We also investigate the long-term
effect on linked neutral variation of adaptive divergence with
gene flow.

Empirical insight on local adaptation with gene flow emerges
from studies of genome-wide patterns of genetic differentiation
between populations or species. Of particular interest are studies
that have either related such patterns to function and fitness
(e.g., Nadeau et al. 2012, 2013) or detected significant devi-
ations from neutral expectations (e.g., Karlsen et al. 2013),
thus implying that some of this divergence is adaptive. One
main observation is that in some organisms putatively adaptive
differentiation (e.g., measured by elevated FST) is clustered at
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certain positions in the genome (Nosil and Feder 2012 and
references therein). This has led to the metaphor of genomic
islands of divergence or speciation (Turner et al. 2005).
Other studies did not identify such islands, however (see
Strasburg et al. 2012, for a review of plant studies).

These findings have stimulated theoretical interest in mech-
anistic explanations for the presence or absence of genomic
islands. Polygenic local adaptation depends crucially on the
genetic architecture of the selected traits, but, in the long
run, local adaptation may also lead to the evolution of this
architecture. Here, we define genetic architecture as the
number of, and physical distances between, loci contributing
to local adaptation, and the distribution of selection coefficients
of established mutations.

Using simulations, Yeaman and Whitlock (2011) have
shown that mutations contributing to adaptive divergence in
a quantitative trait may physically aggregate in the presence
of gene flow. In addition, these authors reported cases where
the distribution of mutational effects changed from many di-
vergent loci with mutations of small effect to few loci with
mutations of large effect. Such clustered architectures reduce
the likelihood of recombination breaking up locally beneficial
haplotypes and incorporating maladaptive immigrant alleles.
This provides a potential explanation for genomic islands of
divergence. However, it is difficult to explain the variability in
the size of empirically observed islands of divergence, espe-
cially the existence of very long ones. Complementary mech-
anisms have been proposed, such as the accumulation of
adaptive mutations in regions of strongly reduced recombina-
tion (e.g., at chromosomal inversions; Guerrero et al. 2012;
McGaugh and Noor 2012) or the assembly of adaptive muta-
tions by large-scale chromosomal rearrangements (e.g., trans-
positions of loci under selection; Yeaman 2013).

It is well established that spatially divergent selection can
cause a reduction in the effective migration rate (Charlesworth
et al. 1997; Kobayashi et al. 2008; Feder and Nosil 2010). This
is because migrants tend to carry combinations of alleles that
are maladapted, such that selection against a locally deleteri-
ous allele at one locus also eliminates incoming alleles at other
loci. The effective migration rate can be reduced either by
physical linkage to a gene under selection or by statistical
associations among physically unlinked loci. Depending on
whether physical or statistical linkage is involved, the pro-
cess of linkage-mediated differentiation with gene flow has,
by some authors, been called “divergence hitchhiking” or
“genomic hitchhiking,” respectively (Nosil and Feder 2012;
Feder et al. 2012; Via 2012). These two processes are not
mutually exclusive, and, recently, interest in assessing their
relative importance in view of explaining observed patterns
of divergence has been growing. If not by inversions or
translocations, detectable islands of divergence are expected
as a consequence of so-called divergence hitchhiking, but
not of genomic hitchhiking. This is because physical linkage
reduces the effective migration rate only locally (i.e., in the
neighborhood of selected sites), whereas statistical linkage
may reduce it across the whole genome. Yet, if many loci are

under selection, it is unlikely that all of them are physically
unlinked (Barton 1983), and so the two sources of linkage
disequilibrium may be confounded.

A number of recent studies have focused on the invasion
probability of neutral or locally beneficial de novomutations in
the presence of divergently selected loci in the background
(Feder and Nosil 2010; Yeaman and Otto 2011; Feder et al.
2012; Flaxman et al. 2013; Yeaman 2013). They showed that
linkage elevates invasion probabilities only over very short
map distances, implying that physical linkage provides an in-
sufficient explanation for both the abundance and size of is-
lands of divergence. Such conclusions hinge on assumptions
about the distribution of effects of beneficial mutations, the
distribution of recombination rates along the genome, and the
actual level of gene flow. These studies were based on time-
consuming simulations (Feder and Nosil 2010; Feder et al.
2012; Flaxman et al. 2013; Yeaman 2013) or heuristic ad
hoc aproximations (Yeaman and Otto 2011; Yeaman 2013)
that provide limited understanding. Although crucial, invasion
probabilities on their own might not suffice to gauge the im-
portance of physical linkage in creating observed patterns of
divergence. In finite populations, the time to extinction of adap-
tive mutations is also relevant. It codetermines the potential of
synergistic interactions among segregating adaptive alleles.

Here, we fill a gap in existing theory to understand the role
of physical linkage in creating observed patterns of divergence
with gene flow. First, we provide numerical and analytical
approximations to the invasion probability of locally beneficial
mutations arising in linkage to an existing migration–selection
polymorphism. This sheds light on the ambiguous role of re-
combination and allows for an approximation to the distribution
of fitness effects of successfully invading mutations. Second, we
obtain a diffusion approximation to the proportion of time the
beneficial mutation segregates in various frequency ranges (the
sojourn-time density) and the expected time to its extinction
(the mean absorption time). From these, we derive an invasion-
effective migration rate experienced by the focal mutation.
Third, we extend existing approximations of the effective mi-
gration rate at a neutral site linked to two migration–selection
polymorphisms (Bürger and Akerman 2011) to an arbitrary
number of such polymorphisms. These formulae are used to
predict the long-term footprint of polygenic local adaptation
on linked neutral variation. We extend some of our analysis
to the case of standing, rather than de novo, adaptive variation
at the background locus.

Methods

Model

We consider a discrete-time version of a model with migration
and selection at two biallelic loci (Bürger and Akerman 2011).
Individuals are monoecious diploids and reproduce sexually. Soft
selection occurs at the diploid stage and then a proportion m
(0, m, 1) of the island population is replaced by immigrants
from the continent (Haldane 1930). Migration is followed by
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gametogenesis, recombination with probability r (0 # r #

0.5), and random union of gametes including population
regulation. Generations do not overlap.

We denote the two loci by A and B and their alleles by A1
and A2, and B1 and B2, respectively. Locus A is taken as the focal
locus and locus B as background locus. The four haplotypes 1,
2, 3, and 4 are A1B1, A1B2, A2B1, and A2B2. On the island, the
frequencies of A1 and B1 are p and q, and the linkage disequi-
librium is denoted by D (see Supporting Information, File S1,
sect.1, for details).

Biological scenario

We assume that the population on the continent is fixed for
alleles A2 and B2. The island population is of size N and initially
fixed for A2 at locus A. At locus B, the locally beneficial allele B1
has arisen some time ago and is segregating at migration–
selection balance. Then, a weakly beneficial mutation occurs
at locus A, resulting in a single copy of A1 on the island. Its fate
is jointly determined by direct selection on locus A, linkage to
the selected locus B, migration, and random genetic drift. If A1
occurs on the beneficial background (B1), the fittest haplotype
is formed and invasion is likely unless recombination transfers
A1 to the deleterious background (B2). If A1 initially occurs on
the B2 background, a suboptimal haplotype is formed (A1B2;
Equation 1 below) and A1 is doomed to extinction unless it
recombines onto the B1 background early on. These two scenar-
ios occur proportionally to the marginal equilibrium frequency
q̂B of B1. Overall, recombination is therefore expected to play an
ambiguous role.

Two aspects of genetic drift are of interest: random fluctua-
tions when A1 is initially rare and random sampling of alleles
between successive generations. In the first part of the article,
we focus exclusively on the random fluctuations when A1 is
rare, assuming that N is so large that the dynamics is almost
deterministic after an initial stochastic phase. In the second
part, we allow for small to moderate population size N on
the island. The long-term invasion properties of A1 are expected
to differ in the two cases (Ewens 2004, pp. 167–171). With
N sufficiently large and parameter combinations for which
a fully polymorphic internal equilibrium exists under deter-
ministic dynamics, the fate of A1 is decided very early on. If
it survives the initial phase of stochastic loss, it will reach the
(quasi-) deterministic equilibrium frequency and stay in the
population for a very long time (Petry 1983). This is what
we call invasion, or establishment. Extinction will finally occur,
because migration introduces A2, but not A1. Yet, extinction
occurs on a timescale much longer than is of interest for this
article. For small or moderate N, however, genetic drift will
cause extinction of A1 on a much shorter timescale, even for
moderately strong selection. In this case, stochasticity must
be taken into account throughout, and interest shifts to the
expected time A1 spends in a certain range of allele frequencies
(sojourn time) and the expected time to extinction (absorption
time).

As an extension of this basic scenario, we allow the
background locus to be polymorphic on the continent. Allele

B1 is assumed to segregate at a constant frequency qc. This
reflects, for instance, a polymorphism maintained at drift–
mutation or mutation–selection balance. It could also apply
to the case where the continent is a metapopulation or
receives migrants from other populations. A proportion qc
of haplotypes carried by immigrants to the focal island will
then be A2B1, and a proportion 1 2 qc will be A2B2.

Fitness and evolutionary dynamics

We define the relative fitness of a genotype as its expected
relative contribution to the gamete pool from which the next
generation of zygotes is formed. We use wij for the relative
fitness of the genotype composed of haplotypes i and j (i, j 2
{1, 2, 3, 4}). Ignoring parental and position effects in hete-
rozygotes, we distinguish nine genotypes. We then have
wij = wji for all i 6¼ j and w23 = w14.

The extent to which analytical results can be obtained for
general fitnesses is limited (Ewens 1967; Karlin and McGregor
1968). Unless otherwise stated, we therefore assume absence
of dominance and epistasis, i.e., allelic effects combine addi-
tively within and between loci. The matrix of relative genotype
fitnesses wij (Equation 27 in File S1) may then be written as

B1B1 B1B2 B2B2
A1A1

A1A2

A2A2

0
BB@

1þ aþ b 1þ a 1þ a2 b

1þ b 1 12 b

12 aþ b 12 a 12 a2 b

1
CCA;

(1)

where a and b are the selective advantages on the island of
alleles A1 and B1 relative to A2 and B2, respectively. To enforce
positive fitnesses, we require that 0, a, b, 1, and a+ b, 1.
We assume that selection in favor of A1 is weaker than selection
in favor of B1 (a , b). Otherwise, A1 could be maintained in
a sufficiently large island population independently of B1,
whenever B1 is not swamped by gene flow (Haldane 1930).
As our focus is on the effect of linkage on establishment of
A1, this case is not of interest.

The deterministic dynamics of the haplotype frequencies are
given by the recursion equations in File S1, Equation 28 (see
also File S2). A crucial property of these dynamics is the fol-
lowing. Whenever a marginal one-locus migration–selection
equilibrium EB exists such that the background locus B is poly-
morphic and locus A is fixed for allele A2, this equilibrium is
asymptotically stable. After occurrence of A1, EB may become
unstable, in which case a fully polymorphic (internal) equilib-
rium emerges and is asymptotically stable, independently of
whether the continent is monomorphic (qc = 0) or polymor-
phic (0 , qc , 1) at the background locus. Therefore, in the
deterministic model, invasion of A1 via EB is always followed by
an asymptotic approach toward an internal equilibrium (see
File S1, sect. 3 and 6).

Casting our model into a stochastic framework is difficult
in general. By focusing on the initial phase after occurrence
of A1, the four-dimensional system in Equation 28 can be
simplified to a two-dimensional system (Equation 29 in File S1).
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This allows for a branching-process approach as described in the
following.

Two-type branching process

As shown in File S1, sect. 2, for rare A1, we need to follow only
the frequencies of haplotypes A1B1 and A1B2. This corresponds
to A1 initially occurring on the B1 or B2 background, respectively,
and holds as long as A1 is present in heterozygotes only. More-
over, it is assumed that allele B1 is maintained constant at the
marginal one-locus migration–selection equilibrium EB of the
dynamics in Equation 28. At this equilibrium, the frequency of
B1 is

q̂B ¼ b2mð12 aÞ
bð1þmÞ (2)

for a monomorphic continent (see File S1, sect. 3, for
details, and Equation 39 for a polymorphic continent).

Tomodel the initial stochastic phase after occurrence ofA1 for
large N, we employed a two-type branching process in discrete
time (Harris 1963). We refer to haplotypes A1B1 and A1B2 as
types 1 and 2, respectively. They are assumed to propagate in-
dependently and contribute offspring to the next generation
according to type-specific distributions.We assume that the num-
ber of j-type offspring produced by an i-type parent is Poisson-
distributedwithparameterlij (i2 {1, 2}). Because of independent
offspring distributions, the probability-generating function (pgf)
for the number of offspring of any type produced by an i-type
parent is fiðs1; s2Þ ¼

Q2
j¼1 fijðsjÞ, where fijðsjÞ ¼ e2lijð12sjÞ for i,

j2 {1, 2} (File S1, sect. 4). The lij depend on fitness, migration,
and recombination and are derived from the deterministic
model (Equation 33 in File S1). The matrix L = (lij), i, j 2
{1, 2}, is called the meanmatrix. Allele A1 has a strictly positive
invasion probability if n . 1, where n is the leading eigenvalue
of L. The branching process is called supercritical in this case.

We denote the probability of invasion of A1 conditional
on initial occurrence on background B1 (B2) by p1 (p2), and
the corresponding probability of extinction by Q1 (Q2). The
latter are found as the smallest positive solution of

f1ðs1; s2Þ ¼ s1 (3a)

f2ðs1; s2Þ ¼ s2 (3b)

such that si, 1 (i2 {1, 2}). Then,p1=12Q1 andp2=12Q2

(Haccouetal.2005).Theoverall invasionprobabilityofA1 isgiven
as the weighted average of the two conditional probabilities,

p�¼ q̂Bp1 þ ð12 q̂BÞp2 (4)

(cf. Ewens 1967, 1968; Kojima and Schaffer 1967). File S1,
sect. 4, gives further details and explicit expressions for additive
fitnesses.

Diffusion approximation

The branching process described above models the initial
phase of stochastic loss and applies as long as the focal mutant

A1 is rare. To study long-term survival of A1, we employ
a diffusion approximation. We start from a continuous-time
version of the deterministic dynamics in Equation 28, as-
suming additive fitnesses as in Equation 1. For our purpose,
it is convenient to express the dynamics in terms of the allele
frequencies (p, q) and the linkage disequilibrium (D), as given
in Equation 87 in File S1. Changing to the diffusion scale, we
measure time in units of 2Ne generations, where Ne is the
effective population size.

We introduce the scaled selection coefficients a= 2Ne a and
b = 2Neb, the scaled recombination rate r = 2Ner, and the
scaled migration rate m = 2Nem. As it is difficult to obtain
analytical results for the general two-locus diffusion problem
(Ethier and Nagylaki 1980, 1988, 1989; Ewens 2004), we
assume that recombination is much stronger than selection
and migration. Then, linkage disequilibrium decays on a faster
timescale, whereas allele frequencies evolve on a slower one
under quasi-linkage equilibrium (QLE) (Kimura 1965; Nagylaki
et al. 1999; Kirkpatrick et al. 2002). In addition, we assume
that the frequency of the beneficial background allele B1 is not
affected by establishment of A1 and stays constant at q ¼ ~̂qB.
Here, ~̂qB is the frequency of B1 at the one-locus migration–
selection equilibrium when time is continuous, ~EB (Equations
88 and 89 in File S1). As further shown in File S1, sect. 6, these
assumptions lead to a one-dimensional diffusion process. The
expected change in p per unit time is

MðpÞ ¼ apð12 pÞ2mpþ mðb2mÞ
b2m2að12 2pÞ þ r

  p (5)

if the continent is monomorphic. The first term is due to direct
selection on the focal locus, the second reflects migration, and
the third represents the interaction of all forces.

For a polymorphic continent, M(p) is given by Equation
116 in File S1, and the interaction term includes the conti-
nental frequency qc of B1. In both cases, assuming random
genetic drift according to the Wright–Fisher model, the
expected squared change in p per unit time is V(p) = p(1
2 p) (Ewens 2004). We callM(p) the infinitesimal mean and
V(p) the infinitesimal variance (Karlin and Taylor 1981,
p. 159).

Let the initial frequency of A1 be p0. We introduce the
sojourn-time density (STD) t(p; p0) such that the integralR p2
p1

tðp; p0Þdp approximates the expected time A1 segregates
at a frequency between p1 and p2 before extinction, condi-
tional on p0. Following Ewens (2004, Equations 4.38 and
4.39), we define

tQLEðp; p0Þ ¼
(
t1;QLEðp; p0Þ if   0# p# p0

t2;QLEðp; p0Þ if   p0# p# 1
; (6)

with subscript QLE for the assumption of quasi-linkage equilib-
rium. The densities ti,QLE(p; p0) are

t1;QLEðp; p0Þ ¼ 2
VðpÞcðpÞ

Z p

0
cðyÞdy; (7a)
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t2;QLEðp; p0Þ ¼ 2
VðpÞcðpÞ

Z p0

0
cðyÞdy; (7b)

where cðpÞ ¼ exp

"
22
Z p

0
ðMðzÞ=VðzÞÞdz

#
. Integration over

p yields the expected time to extinction,

tQLE ¼
Z p0

0
t1;QLEðp; p0Þdpþ

Z 1

p0
t2;QLEðp; p0Þdp; (8)

or the mean absorption time, in units of 2Ne generations. A
detailed exposition is given in File S1, sect. 7. See File S10
for Mathematica Notebooks.

Simulations

We conducted two types of simulation, one for the branching-
process regime and another for a finite island population
with Wright–Fisher random drift. In the branching-process
regime, we simulated the absolute frequency of the two
types of interest (A1B1 and A1B2) over time. Each run was
initiated with a single individuum and its type determined
according to Equation 2. Every generation, each individual
produced a Poisson-distributed number of offspring of either
type (see above). We performed n = 106 runs. Each run was
terminated if either the mutant population went extinct (no
invasion), reached a size of 500/(2a) (invasion), or survived
for more than 5 3 104 generations (invasion). We estimated
the invasion probability from the proportion p̂ of runs that
resulted in invasion, and its standard error as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð12 p̂Þ=np

.
In theWright–Fisher-type simulations, each generationwas

initiated by zygotes built from gametes of the previous gener-
ation. Viability selection, migration, and gamete production
including recombination (meiosis) were implemented accord-
ing to the deterministic recursions for the haplotype frequen-
cies in Equation 28. Genetic drift was simulated through the
formation of Ne (rather, the nearest integer) zygotes for the
next generation by randomunion of pairs of gametes. Gametes
were sampled with replacement from the gamete pool in
which haplotypes were represented according to the deter-
ministic recursions. Replicates were terminated if either allele
A1went extinct or amaximumof 109 generationswas reached.
Unless otherwise stated, for each parameter combination we
performed 1000 runs, each with 1000 replicates. Replicates
within a given run provided one estimate of the mean absorp-
tion time, and runs provided a distribution of these estimates.
Java source code and JAR files are available in File S11.

Results

Establishment in a large island population

We first describe the invasion properties of the beneficial
mutation A1, which arises in linkage to a migration–selection
polymorphism at the background locus B. Because we assume
that the island population is large, random genetic drift is
ignored after A1 has overcome the initial phase during which

stochastic loss is likely. Numerical and analytical results were
obtained from the two-type branching process and confirmed
by simulations (see Methods). We turn to the case of small to
moderate population size further below. (See lines 511, 515,
and 516.)

Conditions for the invasion of A1:Mutation A1 has a strictly
positive invasion probability whenever

rw14

"
w

12m
2 q̂Bw1 2

�
12 q̂B

�
w2

#
, 2

 
w

12m
2w1

! 
w

12m
2w2

!

(9)

(File S1, sect. 4, and File S3). Here, wi is the marginal fitness
of type i and w the mean fitness of the resident population (see
Equations 30 and 31 in File S1). Settingm= 0, we recover the
invasion condition obtained by Ewens (1967) for a panmictic
population in which allele B1 is maintained at frequency q̂B by
overdominant selection. All remaining results in this subsection
assume additive fitnesses as in Equation 1.

For a monomorphic continent (qc = 0), it follows from
Equation 9 that A1 can invade only if m , m*, where

m* ¼ aðb2 aþ rÞ
ða2 rÞða2 bÞ þ rð12 aÞ: (10)

In terms of the recombination rate, A1 can invade only if r ,
r*, where

r* ¼

8>>><
>>>:

1
2

if m #
a

122aþ b

aða2 bÞð1þmÞ
að1þ 2mÞ2 ð1þ bÞm otherwise

(11)

(see File S1, sects. 3 and 4, File S2, and Figure S1 for
details).

For a polymorphic continent (0 , qc , 1), A1 has a strictly
positive invasion probability whenever r and qc are below the
critical values r* and q*c derived in File S1, sect. 3 (cf. File S4,
Figure S2). In this case, we could not determine the critical
migration ratem* explicitly. For an analysis in continuous time,
see File S1, sect. 6, and Figure S7, Figure S8, and Figure S9.

Invasion probability: We obtained exact conditional invasion
probabilities, p1 and p2, of A1 by numerical solution of the pair
of transcendental equations in Equation 3. From these, we
calculated the average invasion probability p� according to
Equation 4, with q̂B as in Equation 2 (Figure 1 and Figure
S3 for a monomorphic continent). Haldane (1927) approxi-
mated the invasion probability without migration and linked
selection by 2a, i.e., twice the selective advantage of A1 in
a heterozygote. With linked selection, the map distance over
which p� is above, say, 10% of 2a can be large despite gene
flow (Figure 1, A and B).

Analytical approximations were obtained by assuming
that the branching process is slightly supercritical, i.e., that
the leading eigenvalue of the mean matrix L is of the form
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n = 1 + j, with j . 0 small. We denote these approxima-
tions by p1(j) and p2(j). The expressions are long (File S5)
and not shown here. For weak evolutionary forces (a, b, m,
r � 1), p1(j) and p2(j) can be approximated by

~p1ðjÞ ¼ max
�
0;
a
�
bþ rþ ffiffiffiffiffiffi

R2
p �

2 2mrffiffiffiffiffiffi
R2

p
�
; (12a)

~p2ðjÞ ¼ max

"
0;
b2 2 2mrþ b

�
r2

ffiffiffiffiffiffi
R2

p �
2 a
�
b2 r2

ffiffiffiffiffiffi
R2

p �
ffiffiffiffiffiffi
R2

p
#
;

(12b)

whereR2=b2+2br24mr+ r2 and j � 1
2

�
2a2 b2 rþ ffiffiffiffiffi

R2
p �

:

The approximate average invasion probabilityp�~ðjÞ is obtained
according to Equation 4, with q̂B as in Equation 2. Formally,
these approximations are justified if j � 1 (File S1, sect. 4).
Figure 2 suggests that the assumption of weak evolutionary
forces is more crucial than j small and that if it is fulfilled, the
approximations are very good (compare Figure 2, A–D).

For a polymorphic continent, exact and approximate
invasion probabilities are derived in File S3 and File S5
(see also sect. 4 in File S1). The most important, and per-
haps surprising, effect is that the average invasion probabil-
ity decreases with increasing continental frequency qc of the
beneficial background allele B1 (Figure S4). As a conse-
quence, invasion requires tighter linkage if qc . 0. This is
because the resident island population has a higher mean
fitness when a proportion qc . 0 of immigrating haplotypes
carry the B1 allele, which makes it harder for A1 to become
established. Competition against fitter residents therefore
compromises the increased probability of recombining onto
a beneficial background (B1) when A1 initially occurs on the
deleterious background (B2). However, a closer look sug-
gests that if A1 is sufficiently beneficial and recombination
sufficiently weak (r � a), there are cases where the critical

migration rate below which A1 can invade is maximized at
an intermediate qc (Figure S5, right column). In other
words, for certain combinations of m and r, the average in-
vasion probability as a function of qc is maximized at an
intermediate (nonzero) value of qc (Figure S6).

For every combination of selection coefficients (a, b) and
recombination rate (r), the mean invasion probability decreases
as a function of the migration rate m. This holds for a mono-
morphic and a polymorphic continent (Figure S3 and Figure
S5, respectively). In both cases, migrants carry only allele A2
and, averaged across genetic backgrounds, higher levels of mi-
gration make it harder for A1 to invade (cf. Bürger and Akerman
2011).

Optimal recombination rate: Deterministic analysis showed
that A1 can invade if and only if recombination is sufficiently
weak; without epistasis, large r is always detrimental to estab-
lishment of A1 (Bürger and Akerman 2011; File S1, sect. 3). In
this respect, stochastic theory is in line with deterministic
predictions. However, considering the average invasion prob-
ability p� as a function of r, we could distinguish two qualita-
tively different regimes. In the first one, p�ðrÞ decreases
monotonically with increasing r (Figure 1A). In the second
one, p�ðrÞ is maximized at an intermediate recombination rate
ropt (Figure 1B). A similar dichotomy was previously found for
a panmictic population in which the background locus is
maintained polymorphic by heterozygote superiority (Ewens
1967) and has recently been reported in the context of mi-
gration and selection in simulation studies (Feder and Nosil
2010; Feder et al. 2012). As shown in File S1, sect. 5, ropt .
0 holds in our model whenever

w12w2 . w
p∘
1

ð12mÞ�12p∘
1

�; (13)

where w1 (w2) is the marginal fitness of type 1 (2) and w the
mean fitness of the resident population (defined in Equations
30 and 31 in File S1). Here, p∘

1 is the invasion probability of A1

Figure 1 Invasion probability of A1 as a function of the recombination rate for a monomorphic continent. (A and B) Weighted average invasion
probabilitiy p� across the two genetic backgrounds B1 and B2 (Equations 2 and 4). For comparison, horizontal dashed lines give 10% of Haldane’s (1927)
approximation 2a, valid for m = 0 and r = 0.5. (B) The optimal recombination rate ropt, defined as the recombination rate at which p� is maximized (red
arrow), is nonzero. (C) Same as in B, but in addition to the weighted average, the invasion probabilities of A1 conditional on initial occurrence on the B1
or B2 background are shown in blue or red, respectively. Note the difference in the scale of the vertical axis between B and C. In A–C, curves show exact
numerical solutions to the branching process. Dots represent the point estimates across 106 simulations under the branching-process assumptions (see
Methods). Error bars span twice the standard error on each side of the point estimates, but are too short to be visible.
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conditional on background B1 and complete linkage (r = 0).
Setting m = 0, we recover Equation 36 of Ewens (1967) for
a panmictic population with overdominance at the background
locus.

Inequality (13) is very general. In particular, it also holds with
epistasis or dominance. However, explicit conclusions require
calculation of p∘

1, w, and wi, which themselves depend on q̂B
and hence onm (cf. Equation 2). For mathematical convenience,
we resorted to the assumption of additive fitnesses (Equation 1).
For a monomorphic continent, p∘

1 � 2a
�
1þm

�	�
1þ b

�
to

first order in a. Moreover, we found that

a. a* (14)

is a necessary condition for ropt . 0, where

a* ¼ 1
2



1þ bð2þmÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2bð1þmÞ þ b2½2þmð4þmÞ�

q �

(File S1, sect. 5). Thus, A1 must be sufficiently beneficial for
ropt . 0 to hold. Figure 3 shows the division of the param-
eter space where A1 can invade into two areas where ropt = 0 or
ropt . 0 holds.

The two regimes ropt = 0 and ropt . 0 arise from the
ambiguous role of recombination. On the one hand, when
A1 initially occurs on the deleterious background (B2), some
recombination is needed to transfer A1 onto the beneficial
background (B1) and rescue it from extinction. This is rem-
iniscent of Hill and Robertson’s (1966) result that recombi-
nation improves the efficacy of selection in favor of alleles
that are partially linked to other selected sites (Barton
2010). On the other hand, when A1 initially occurs on the
beneficial background, recombination is always deleterious,
as it breaks up the fittest haplotype on the island (A1B1).
This interpretation is confirmed by considering p1 and p2

separately as functions of r (Figure 1C). Whereas p1(r) al-
ways decreases monotonically with increasing r, p2(r) is
always 0 at r = 0 (File S1, sect. 5) and then increases to
a maximum at an intermediate recombination rate (compare
blue to red curve in Figure 1C). As r increases further, p1(r)
and p2(r) both approach 0. We recall from Equation 4 that the
average invasion probability p� is given by q̂Bp1 þ ð12 q̂BÞp2.
Depending on q̂B, either p1 or p2 makes a stronger
conbribution to p�, which then leads to either ropt . 0 or
ropt = 0.

Figure 2 Approximation to the invasion probability of A1 for a monomorphic continent. Invasion probabilities are shown for A1 initially occurring on the
beneficial background B1 (blue), on the deleterious background B2 (red), and as a weighted average across backgrounds (black). Analytical approximations
assuming a slightly supercritical branching process (dot-dashed curves) and, in addition, weak evolutionary forces (Equation 12; thick dashed curves) are compared
to the exact numerical branching-process solution (solid curves). Inset figures show the error of the analytical approximation p�~ðzÞ (thick dashed black curve)
relative to p� (solid black curve), p�~ðzÞ=p� 21. (A) a = 0.02, b = 0.04, m = 0.022. (B) a = 0.02, b = 0.04, m = 0.03. (C) a = 0.2, b = 0.4, m = 0.22. (D) a = 0.2,
b = 0.4, m = 0.3. As expected, the analytical approximations are very good for weak evolutionary forces (top row), but less so for strong forces (bottom row).
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A more intuitive interpretation of Equation 14 is as
follows. If A1 conveys a weak advantage on the island
(a , a*), it will almost immediately go extinct when it initially
arises on background B2. Recombination has essentially no op-
portunity of rescuing A1, even if r is large. Therefore, p2 contrib-
utes little to p�. If A1 is sufficiently beneficial on the island (a .
a*), however, it will survive for some time even when arising on
the deleterious background. Recombination now has time to
rescue A1 if r is sufficiently different from 0 (but not too large).
In this case, p2 makes an important contribution to p� and leads
to ropt . 0. For a polymorphic continent, ropt . 0 may also hold
( File S1, sect. 5). However, in such cases, ropt approaches zero
quickly with increasing qc (File S6 and Figure S4).

Distribution of fitness effects of successful mutations:
Using Equation 12 we can address the distribution of fitness
effects (DFE) of successfully invading mutations. This distribu-
tion depends on the distribution of selection coefficients a of
novel mutations (Kimura 1979), which in general is unknown
(Orr 1998). In our scenario, the island population is at the
marginal one-locus migration–selection equilibrium EB before
the mutation A1 arises. Unless linkage is very tight, the selec-
tion coefficient amust be above a threshold for A1 to effectively
withstand gene flow (this threshold is implicitly defined by
Equation 10). Therefore, we assumed that a is drawn from
the tail of the underlying distribution, which we took to be
exponential (Gillespie 1983, 1984; Orr 2002, 2003; Barrett
et al. 2006; Eyre-Walker and Keightley 2007) (for alternatives,
see Cowperthwaite et al. 2005; Barrett et al. 2006; Martin and

Lenormand 2008). We further assumed that selection is di-
rectional with a constant fitness gradient (Equation 1). We
restricted the analysis to the case of a monomorphic conti-
nent. As expected, linkage to a migration–selection polymor-
phism shifts the DFE of successfully invading mutations
toward smaller effect sizes (Figure 4). Comparison to simu-
lated histograms in Figure 4 suggests that the approximation
based on Equation 12 is very accurate.

Survival in a finite island population

We now turn to island populations of small to moderate size
N. In this case, genetic drift is strong enough to cause ex-
tinction on a relevant timescale even after successful initial
establishment. Our focus is on the sojourn-time density and
the mean absorption time of the locally beneficial mutation
A1 (see Methods). We also derive an approximation to the
effective migration rate experienced by A1.

Sojourn-time density: A general expression for the STD was
given in Equation 7. Here, we describe some properties of the
exact numerical solution and then discuss analytical approx-
imations (see also File S7). Because A1 is a de novomutation,
it has an initial frequency of p0 = 1/(2N). For simplicity, we
assumed that the effective population size on the island is
equal to the actual population size, i.e., Ne = N (this assump-
tion is relaxed later). As p0 = 1/(2N) is very close to zero in
most applications, we used t2,QLE(p; p0) as a proxy for tQLE(p;
p0) (cf. Equation 6).

The STD always has a peak at p = 0, because most muta-
tions go extinct after a very short time (Figure 5). However,
for parameter combinations favorable to invasion of A1
(migration weak relative to selection, or selection strong rel-
ative to genetic drift), the STD has a second mode at an in-
termediate allele frequency p. Then, allele A1 may spend
a long time segregating in the island population before ex-
tinction. The second mode is usually close to—but slightly
greater than—the corresponding deterministic equilibrium
frequency (solid black curves in Figure 5, C–F for a monomor-
phic continent). The peak at this mode becomes shallower as
the continental frequency qc of B1 increases (Figure S10).

The effect on the STD of linkage is best seen from
a comparison to the one-locus model (OLM), for which the
STD is given by Ewens (2004) as

tOLMðp; p0Þ ¼
(
t1;OLMðp; p0Þ ¼ 2e2pað12 pÞ2m21 if 0# p# p0;

t2;OLMðp; p0Þ ¼ 2p0e2pap21ð12 pÞ2m21 if p0 # p#1:

(15)

If invasion of A1 is unlikely without linkage, but selection at the
background locus is strong, even loose linkage has a large effect
and causes a pronounced second mode in the STD (compare
orange to black curves in Figure 5C). In cases where A1 can be
established without linkage, the STD of the one-locus model
also shows a second mode at an intermediate allele frequency
p. Yet, linkage to a background polymorphism leads to a much
higher peak, provided that selection at the background locus is

Figure 3 Optimal recombination rate and regions of invasion. The dark
shaded area indicates where the optimal recombination rate r is positive
(ropt . 0; cf. Figure 1B). The medium shaded area shows the parameter
range for which ropt = 0 (cf. Figure 1A). Together, these two areas indicate
where A1 can invade via the marginal one-locus migration–selection equi-
librium EB if r is sufficiently small. The light shaded area showswhere EB does
not exist andA1 cannot invade via EB. The area above a = b is not of interest,
as we focus on mutations that are weakly beneficial compared to selection
at the background locus (a, b). The critical selection coefficient a* is given in
Equation 14 and the migration rate is m = 0.3 (other values of m yield
qualitatively similar diagrams). The continent is monomorphic (qc = 0).
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strong and the recombination rate not too high (Figure 5, D–F).
Specifically, comparison of Figure 5E with Figure 5F suggests
that the effect of linkage becomes weak if the ratio of the
(scaled) recombination rate to the (scaled) selection coefficient
at the background locus, r/b, becomes much larger than �10.
In other words, for a given selective advantage b of the bene-
ficial background allele, a weakly beneficial mutation will profit
from linkage if it occurs within �b3 103 map units (centimor-
gans) from the background locus. This assumes that one map
unit corresponds to r = 0.01.

An analytical approximation of the STD can be obtained
under two simplifying assumptions. The first is that the initial
frequency p0 of A1 is small (p0 on the order of 1/(2Ne)� 1).
The second concerns the infinitesimal mean M(p) of the
change in the frequency of A1: assuming that recombination
is much stronger than selection and migration, we may ap-
proximate Equation 5 by

Mr�0
�
p
� ¼ ap

�
12 p

�
2mpþ mðb2mÞ

r
p (16)

for a monomorphic continent. The STDs in Equation 7 can
then be approximated by

~t1;QLE;r�0
�
p; p0

� ¼ 2e2pa
�
12 p

�2mðm2bþrÞ=r21
; (17a)

~t2;QLE;r�0
�
p; p0

� ¼ 2p0e2pap21�12 p
�2mðm2bþrÞ=r21

:

(17b)

Here, we use � to denote the assumption of p0 small, and
a subscript r � 0 for the assumption of r � max(a, b, m).
For a polymorphic continent, expressions analogous to
Equations 16 and 17 are given in Equations 117 and 119 in
File S1.

Better approximations than those in Equations 17 and
119 are obtained by making only one of the two assump-
tions above. We denote by ~t1;QLEðp; p0Þ and ~t2;QLEðp; p0Þ the
approximations of the STD in Equation 7 based on the as-
sumption p0 � 1 (Equations 108 and 109 in File S1). Alter-
natively, the approximations obtained from the assumption
r � max(a, b, m) in M(p) are called t1,QLE,r�0(p; p0) and
t2,QLE,r�0(p; p0) (Equation 113).

In the following, we compare the different approximations
to each other and to stochastic simulations. Conditional on
p0 = 1/(2N), the approximation ~t2;QLEðp; p0Þ (Equations 109)
is indeed very close to the exact numerical value t2,QLE(p; p0)
from Equation 7b. This holds across a wide range of parameter
values, as seen from comparing solid to dashed curves in Fig-
ure 5 (monomorphic continent) and Figure S10 (polymorphic
continent). The accuracy of the approximation ~t2;QLE;r�0ðp; p0Þ
from Equation 17b is rather sensitive to violation of the as-
sumption r � max(a, b, m), however (dotted curves deviate
from other black curves in Figure 5, B and C). The same applies
to a polymorphic continent, but the deviation becomes smaller
as qc increases from zero (Figure S10A).

Comparison of the diffusion approximation ~t2;QLEðp; p0Þ to
sojourn-time distributions obtained from stochastic simula-
tions shows a very good agreement, except at the boundary
p = 0. There, the continuous solution of the diffusion ap-
proximation is known to provide a suboptimal fit to the
discrete distribution (Figure S11 and Figure S12).

Based on the analytical approximations above, we may
summarize the effect of weak linkage relative to the one-locus
model as follows. For a monomorphic continent, the ratio of
~t2;QLE;r�0ðp; p0Þ to t2,OLM(p; p0) is ~R ¼ ð12 pÞ2g, where g =
2m(b 2 m)/r. The exponent g is a quadratic function of m and
linear in b. For weak migration, ~R � 12 2ðbm=rÞlnð12 pÞ,
suggesting the following rule of thumb. For the focal allele
to spend at least the ~R-fold amount of time at frequency p
compared to the case without linkage, we require

bm

r
.

~R2 1
22 lnð12 pÞ: (18)

For example, allele A1 will spend at least twice asmuch time at
frequency P = 0.5 (0.8) if bm ≳ 0.72r (0.31r). Because we

Figure 4 DFE of successfully invading mutations for a monomorphic con-
tinent. The DFE of successfully invading mutations was obtained as
fðajinvÞ ¼ fðinvjaÞfðaÞ= RN0 fðinvjaÞfðaÞda, where fðinvjaÞ ¼ p�~ðjÞ ¼
q̂B ~p1ðjÞ þ ð12 q̂BÞ~p2ðjÞ, with q̂B and ~piðjÞ as in Equations 2 and 12,
respectively. The mutational input distribution was assumed to be expo-
nential, f(a) = le2al (blue). Vertical lines denote a = m (dotted) and a = b
(dashed). Histograms were obtained from simulations under the branching-
process assumptions (intermediate shading indicates where histograms over-
lap). Each represents 2.5 3 104 realizations in which A1 successfully invaded
(see Methods). As a reference, the one-locus model (no linkage) is shown in
orange. (A) Relatively weak migration: b = 0.04,m = 0.01. (B) Migration three
times stronger: b = 0.04,m = 0.03. In A and B, l = 100 and fðajinvÞ is shown
for a recombination rate of r = 0.005 (black) and r = 0.05 (gray). The inset in B
shows why the fit is worse for r = 0.005: in this case, p�~ðjÞ underestimates the
exact invasion probability p (Equation 4) for large a.
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assumed weak migration and QLE, we conducted numerical
explorations to check when this rule is conservative, meaning
that it does not predict a larger effect of linked selection than is
observed in simulations. We found that, first, genetic drift
must not dominate, i.e., 1 , a, b, m, r holds. Second, migra-
tion, selection at the background locus and recombination
should roughly satisfy m, b/4, 0.1r. This condition applies
only to the validity of Equation 18, which is based on
~t2;QLE;r�0ðp; p0Þ in Equation 17b. It does not apply to
~t2;QLEðp; p0Þ, which fits simulations very well if r is as low as
1.25b (Figure S11D). For related observations in different
models, see Slatkin (1975) and Barton (1983).

Mean absorption time: The mean absorption time is obtained
by numerical integration of the STD as outlined in Methods.
Comparison to stochastic simulations shows that the diffusion
approximation tQLE from Equation 8 is fairly accurate: the ab-
solute relative error is ,15%, provided that the QLE assump-
tion is not violated and migration is not too weak (Figure 6).

Given the approximations to the STD derived above,
various degrees of approximation are available for the mean
absorption time, too. Their computation is less prone to
numerical issues than that of the exact expressions. Exten-
sive numerical computations showed that if p0 = 1/(2N)
and Ne = N, the approximations based on the assumption
of p0 small (~tQLE and ~tQLE;r�0 as given in Equations 110 and
115) provide an excellent fit to their more exact counter-

parts (tQLE and tQLE;r�0 in Equations 8 and 114, respec-
tively). See also Table S2 and S4. Across a wide range of
parameter values, the absolute relative error never exceeds
1.8% (Figure S13, A and C). In contrast, the approximation
based on the assumption of r � 0, tQLE;r�0, is very sensitive
to violations of this assumption. For large effective population
sizes and weak migration, the relative error becomes very high
if recombination is not strong enough (Figure S13B; Table S3).

The effect of linkage is again demonstrated by a compar-
ison to the one-locus model. If selection is strong relative to
recombination, the mean absorption time with linkage, ~tQLE,
is increased by several orders of magnitude compared to the
one-locus case, ~tOLM (Figure 7, A and D; Table S5). The effect
is reduced, but still notable, when the recombination rate
becomes substantially higher than 10 times the strength
of selection in favor of the beneficial background allele, i.e.,
r/b � 10 (Figure 7, B and E). Importantly, large ratios of
~tQLE=~tOLM are not an artifact of ~tOLM being very small, as
Figure 7, C and F confirm. Moreover, ~tQLE=~tOLM is maximized
at intermediate migration rates: for very weak migration, A1
has a fair chance of surviving for a long time even without
linkage (~tOLM is large); for very strong migration, ~tOLM and
~tQLE both tend to zero and ~tQLE=~tOLM approaches unity.

As expected from deterministic theory (Bürger and Akerman
2011; see also File S1, sect. 3) and invasion probabilities cal-
culated above, themean absorption time decreases as a function
of the migration rate m (Figure S14). A noteworthy interaction

Figure 5 Diffusion approximation to the sojourn-time density of A1 under quasi-linkage equilibrium for a monomorphic continent. Comparison of the
STD t2,QLE(p; p0) (thin black; Equation 7b) to the approximation valid for small p0, ~t2;QLEðp;p0Þ (dashed black; Equation 109 in File S1), and the one based
on the additional assumption of r � max(a, b, m), ~t2;QLE;r�0ðp; p0Þ (dotted; Equation 17b). The STD for the one-locus model, ~t2;OLMðp; p0Þ, is shown in
orange as a reference. Vertical lines give the deterministic frequency p̂þ of A1 at the fully polymorphic equilibrium (computed in File S7). (A) Weak
evolutionary forces relative to genetic drift. (B) As in A, but with half the scaled recombination rate r. The assumption of r �max(a, b, m) is violated and
hence ~t2;QLE;r�0ðp; p0Þ is a poor approximation of t2,QLE(p; p0). (C) Strong evolutionary forces relative to genetic drift. The STD has a pronounced mode
different from p = 0, but ~t2;QLE;r�0ðp;p0Þ overestimates t2,QLE(p; p0) considerably. (D) Strong assymmetry in selection coefficients and moderate
migration. As in C, the STD has a pronounced mode different from p = 0, but ~t2;QLE;r�0ðp; p0Þ now approximates t2,QLE(p; p0) better. (E) Recombination
10 times stronger than selection at locus B. (F) As in E, but with recombination 100 times stronger than selection at locus B. In A–F, p0 = 0.005, which
corresponds to an island population of size N = 100 and a single initial copy of A1.

326 S. Aeschbacher and R. Bürger

http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/TableS2.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/TableS4.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/FigureS13.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/FigureS13.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/TableS3.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/TableS5.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/FileS1.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/FigureS14.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/FileS1.pdf
http://www.genetics.org/content/suppl/2014/03/05/genetics.114.163477.DC1/FileS7.zip


exists between m and the effective population size Ne. For
small m, the mean absorption time increases with Ne, whereas
for large m, it decreases with Ne. Interestingly, the transition
occurs at a value of m lower than the respective critical migra-
tion rate below which A1 can invade in the deterministic model
(Figure S14). Hence, there exists a small range of intermediate
values ofm for which deterministic theory suggests that A1 will
invade, but the stochastic model suggests that survival of A1
lasts longer in island populations of small rather than large
effective size. Similar, but inverted, relations hold for the de-
pendence of the mean absorption time on the selective advan-
tage a of allele A1 and Ne (Figure S15).

For the parameter ranges we explored, the mean absorp-
tion time decreases with increasing continental frequency qc
of B1. As for the invasion probabilities, competition against
a fitter resident population has a negative effect on mainte-
nance of the focal mutation A1. For a given recombination
rate, the effect depends on the relative strength of migration
and selection, though: increasing qc from 0 to 0.8 decreases
the mean absorption time by a considerable amount only if m
is low or a is large enough; otherwise, genetic drift dominates
(Figure S16). This effect is more pronounced for weak than
for strong recombination (Figure S17).

So far, we assumed that the initial frequency of A1 is small,
i.e., p0 = 1/(2N), and thatNe =N. In many applications,Ne,
N holds and hence 1/(2N), 1/(2Ne). Approximations based
on the assumption of p0 being small, i.e., on the order of 1/
(2Ne) or smaller, then cause no problem.However,Ne.Nmay
hold in certain models, e.g., with spatial structure (Whitlock
and Barton 1997), and p0 = 1/(2N) may be much greater
than 1/(2Ne). We therefore investigated the effect of violating
the assumption of p0 # 1/(2Ne). For this purpose, we fixed

the initial frequency at p0 = 0.005 (e.g., a single copy of A1 in
a population of actual size N = 100) and then assessed the
relative error of our approximations for various Ne $ 100. As
expected, the approximate mean absorption times based on

the assumption of p0 small (~tQLE and ~tQLE;r�0) deviate further
from their exact conterparts (tQLE and tQLE;r�0, respectively) as
Ne increases from 100 to 104 (Figure S13, D and F). See also
Table S6 and S7. For strong migration, the relative error tends
to be negative, while it is positive for weak migration (blue vs.
red boxes in Figure S13, D and F). The assumption of r�max
(a, b, m) in M(p) does not lead to any further increase of the
relative error, though (Figure S13E; Table S7). Moreover, vio-
lation of p0 # 1/(2Ne) has almost no effect on the ratio of the
two-locus to the one-locus absorption time, tQLE=tOLM (com-
pare Table S9 to Table S5).

Invasion-effective migration rate: Comparison of the sojourn-
time densities given in Equations 15 and 17 suggests that if m
in the one-locus model is replaced by me = m(m 2 b + r)/r,
one obtains the STD for the two-locus model. Hence, me

denotes the scaled migration rate in a one-locus model such
that allele A1 has the same sojourn properties as it would have
if it arose in linkage (decaying at rate r) to a background
polymorphism maintained by selection against migration at
rate m. In other words, if the assumptions stated above hold,
we may use single-locus migration–selection theory, with m

replaced by me, to describe two-locus dynamics. Transforming
from the diffusion to the natural scale, we therefore define an
invasion-effective migration rate as

me ¼ m
mþ r2 b

r
; (19)

Figure 6 Relative error of the diffusion approximation to the mean absorption time of A1. (A) The error of tQLE from Equation 8 relative to simulations
for various parameter combinations. Squares bounded by thick lines delimit combinations of values of the recombination rate r and the effective
population size Ne. Within each of them, values of the migration rate m and the continental frequency qc of B1 are as shown in B. No negative relative
errors were observed. For better resolution, we truncated values .0.30 (the maximum was 3.396 for Ne = 1000, r = 0.05, m = 0.018, qc = 0.0). Open
(solid) circles indicate that the marginal one-locus equilibrium ~EB is unstable (stable) and A1 can (not) be established under deterministic dynamics.
Parameter combinations for which simulations were too time consuming are indicated by∅. Selection coefficients are a = 0.02 and b = 0.04. (C) The left
plot corresponds to the square in A that is framed in blue. The right plot shows the fit of the diffusion approximation to simulations conducted with
unscaled parameters twice as large and Ne half as large, as on the left side. Scaled parameters are equal on both sides. As expected, the diffusion
approximation is worse on the right side. Simulations were as described in Methods. See Table S1 for numerical values.
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which, for small m, is approximately

~me ¼ m 

�
12

b
r



(20)

(Figure S18A). Note that me and ~me are nonnegative only if
r $ b 2 m and r $ b, respectively. As we assumed quasi-
linkage equilibrium in the derivation, these conditions do
not impose any further restriction.

Petry (1983) previously derived an effective migration
rate for a neutral site linked to a selected site. In our nota-
tion, it is given by

mðPÞ
e ¼ m

�
1þ b

r


21

¼ m
r

bþ r
(21)

(see Bengtsson 1985 and Barton and Bengtsson 1986 for an
extension of the concept). Petry (1983) obtained this approx-
imation by comparing the moments of the stationary allele-
frequency distribution for the two-locus model to those for
the one-locus model. He assumed that selection and recombi-
nation are strong relative to migration and genetic drift. To first
order in r21, i.e., for loose linkage, Petry’s mðPÞ

e is equal to our
~me in Equation 20. As we derived ~me under the assumption of
QLE, convergence of mðPÞ

e to ~me is reassuring. Effective gene
flow decreases with the strength of background selection b, but
increases with the recombination rate r (Figure S18, B and C).

Long-term effect on linked neutral variation

Selection maintaining genetic differences across space impedes
the homogenizing effect of gene flow at closely linked sites
(Bengtsson 1985; Barton and Bengtsson 1986). This has con-
sequences for the analysis of sequence or marker data, as pat-
terns of neutral diversity may reveal the action of recent or past
selection at nearby sites (Maynard Smith and Haigh 1974;
Kaplan et al. 1989; Takahata 1990; Barton 1998). We investi-
gated the impact of a two-locus polymorphism contributing to
local adaptation on long-term patterns of linked genetic var-
iation. For this purpose, we included a neutral locus C with
alleles C1 and C2. Allele C1 segregates on the continent at

a constant frequency nc (0 # nc , 1), for example at drift–
mutation equilibrium. This may require that the continental
population is very large, such that extinction or fixation of
C1 occurs over sufficiently long periods of time compared to
the events of interest on the island. The neutral locus is on
the same chromosome as A and B, to the left (C–A–B), in the
middle (A–C–B), or to the right (A–B–C) of the two selected
loci (without loss of generality, A is to the left of B). We
denote the recombination rate between locus X and Y by
rXY, where rXY = rYX, and assume that the recombination
rate is additive. For example, if the configuration is A–C–B,
we set rAB = rAC + rCB.

Unless linkage to one of the selected loci is complete, under
deterministic dynamics, allele C1 will reach the equilibrium
frequency n̂ ¼ nc on the island, independently of its initial
frequency on the island. Recombination affects only the rate
of approach to this equilibrium, not its value. We focus on the
case where the continent is monomorphic at locus B (qc = 0).
Selection for local adaptation acts on loci A and B, and migra-
tion–selection equilibrium will be reached at each of them
(File S1, sect. 6). Gene flow from the continent will be effec-
tively reduced in their neighborhood on the chromosome. Al-
though the expected frequency of C1 remains nc throughout,
drift will cause variation around this mean to an extent that
depends on the position of C on the chromosome. It may take
a long time for this drift–migration equilibrium to be established,
but the resulting signal should be informative for inference.

To investigate the effect of selection at two linked loci, we
employed the concept of an effective migration rate according to
Bengtsson (1985), Barton and Bengtsson (1986), and Kobayashi
et al. (2008). As derived in File S1, sect. 8, and File S8, for
continuous time and weak migration, the effective migration
rates for the three configurations are

mCAB
e ¼ m

rCAðaþ rCBÞ
ðaþ rCAÞðaþ bþ rCBÞ; (22a)

mACB
e ¼ m

rACrCB
ðaþ rACÞðbþ rCBÞ; (22b)

Figure 7 Mean absorption time of A1 under quasi-linkage
equilibrium relative to the one-locus model (OLM). In panels
(A), (B), (D) and (E), thin solid curves show the ratio
~tQLE=

~tOLM and thick dashed curves ~tQLE;r�0=
~tOLM, as a func-

tion of the migration rate m. The effective population size
Ne increases from light to dark gray, taking values of 100,
250, 500, and 1000. Vertical lines denote the migration
rate below which A1 can invade in the deterministic one-
locus (orange) and two-locus (black) model. (A) Recombi-
nation is too weak for the assumption r � max(a, b, m) to
hold. (B) As in (A), but with recombination four times stron-
ger. (D) Evolutionary forces – other than drift – are ten times
stronger than in (B). (E) As in (D), but with recombination
ten times stronger. Panels (C) and (F) show the mean ab-
sorption time (in multiples of 2Ne) under the one-locus
model for the respective row. For m close to 0, numerical
procedures are unstable and we truncated the curves. Asm
converges to 0, ~tQLE=~tOLM and ~tQLE;r�0=

~tOLM are expected
to approach unity, however.
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mABC
e ¼ m

rBCðbþ rACÞ
ðbþ rBCÞðaþ bþ rACÞ: (22c)

We note that mACB
e has been previously derived (Bürger and

Akerman 2011, Equation 4.30). From Equation 22, we
define the effective migration rate experienced at a neutral
site as

mðnÞ
e ¼

(
mCAB

e if C2A2B holds;

mACB
e if A2C2B holds;

mABC
e if A2B2C holds:

(23)

Equation 23 subsumes the effect on locus C of selection at
loci A and B. It can be generalized to an arbitrary number of
selected loci. Let Ai (i = 1,. . . , I) and Bj (j = 1,. . . , J) be the
ith and jth locus to the left and right of the neutral locus,
respectively. We find that the effective migration rate at the
neutral locus is

mðnÞ
e ¼ m

2
4YI

i¼1

 
1þ aiXi21

k¼1
ak þ rAi

!21
3
5

3

2
4YJ

j¼1

 
1þ bjXj21

k¼1
bk þ rBj

!21
3
5;

(24)

where ai (bj) is the selection coefficient at locus Ai (Bj), and
rAi (rBj) the recombination rate between the neutral locus
and Ai (Bj). Each of the terms in the round brackets in
Equation 24 is reminiscent of Petry’s (1983) effective migra-
tion rate for a neutral linked site (Equation 21). For weak
linkage, these terms are also similar to the invasion-effective
migration rate experienced by a weakly beneficial mutation
(Equation 20). This suggests that the effective migration
rate experienced by a linked neutral site is approximately
the same as that experienced by a linked weakly beneficial
mutation, which corroborates the usefulness of Equation 24.
In the following, we study different long-term properties of
the one-locus drift-migration model by substituting effective
for actual migration rates.

Mean absorption time: Suppose that C1 is absent from the
continent (nc = 0), but present on the island as a de novo
mutation. Although any such mutant allele is doomed to
extinction, recurrent mutation may lead to a permanent
influx and, at mutation–migration equilibrium, to a certain
level of neutral differentiation between the continent and
the island. Here, we ignore recurrent mutation and focus
on the fate of a mutant population descending from a sin-
gle copy of C1. We ask how long it will survive on the
island, given that a migration–selection polymorphism is
maintained at equilibrium at both selected loci in the back-
ground (A, B). Standard diffusion theory predicts that
the mean absorption (extinction) time of C1 is approxi-

mately ~tneut ¼ N21
e

Z 1

1=ð2NÞ
n21�12 n

�2m21 dn (Ewens 2004,

pp. 171–175). We replace the scaled actual migration rate

m by m
ðnÞ
e ¼ 2Nem

ðnÞ
e , with mðnÞ

e from Equation 23. This
assumes that the initial frequency of C1 on the island is
n0 = 1/(2N) and that Ne = N. For moderately strong migration
ðmðnÞ

e � 1Þ, ~tneut is of order log(2Ne), meaning that C1 will on
average remain in the island population for a short time.
However, if locus C is tightly linked to one of the selected
loci, or if configuration A–C–B applies and A and B are suf-
ficiently close, the mean absorption time of C1 is strongly
elevated (Figure S19).

Stationary distribution of allele frequencies: In contrast to
above, assume that C1 is maintained at a constant frequency
nc 2 (0, 1) on the continent. Migrants may therefore carry
both alleles, and genetic drift and migration will lead to
a stationary distribution of allele frequencies given by

fðnÞ ¼ Gð2mÞ
Gð2mncÞGð2m½12 nc�Þ   n

2mnc21ð12 nÞ2mð12ncÞ21;

where G(x) is the Gamma function (Wright 1940, pp. 239–
241). As above, we replace m by mðnÞ

e to account for the effect
of linked selection. The mean of the distribution f(n) is nc,
independently of me, whereas the stationary variance is
varðnÞ ¼ ncð12 ncÞ=ð1þ 2mðnÞ

e Þ (Wright 1940). The ex-
pected heterozygosity is H 5 4mðnÞ

e ncð12 ncÞ=ð11 2mðnÞ
e Þ,

and the divergence from the continental population is
FST 5 varðnÞ=½ncð12 ncÞ� 5 1=ð11 2mðnÞ

e Þ (see File S9 for
details). Depending on the position of the neutral locus,
f(n) may change considerably in shape, for example, from
L- to U- to bell-shaped (Figure 8). The pattern of f(n), H
and FST along the chromosome reveals the positions of the
selected loci, and their rate of change per base pair contains
information about the strength of selection if the actual mi-
gration rate is known.

Rate of coalescence: As a third application, we study the
rate of coalescence for a sample of size two taken from the
neutral locus C, assuming that migration–selection equilib-
rium has been reached a long time ago at the selected loci A
and B. We restrict the analysis to the case of strong migra-
tion compared to genetic drift, for which results by Nagylaki
(1980) (forward in time) and Notohara (1993) (backward
in time) apply (see Wakeley 2009, for a detailed review).
The strong-migration limit follows from a separation of
timescales: going back in time, migration spreads the line-
ages on a faster timescale, whereas genetic drift causes line-
ages to coalesce on a slower one.

For a moment, let us assume that there are two demes of
size N1 and N2, and denote the total number of diploids by
N ¼ N1 þ N2. We define the relative deme size ci ¼ Ni=N
and let the backward migration rates m1 and m2 denote
the fractions of individuals in deme 1 and 2 in the current
generation that were in deme 2 and 1 in the previous genera-
tion, respectively. The strong-migration limit then requires that
Nimi ¼ Ncimi is large (Wakeley 2009). Importantly, the relative
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deme sizes ci are constant in the limit of N/N. Under these
assumptions, it can be shown that the rate of coalescence for
a sample of two is independent of whether the two lineages
were sampled from the same or different demes. The rate of
coalescence is given by

G ¼ m2
2

ðm1 þm2Þ2
 
1
c1

þ m2
1

ðm1 þm2Þ2
 
1
c2

(25)

(Wakeley 2009, p. 193). The coalescent-effective population
size is defined as the actual total population size times the
inverse of the rate of coalescence, NðcoalÞ

e ¼ N=G (Sjödin et al.
2005).

In our context, we substitute mðnÞ
e from Equation 23 for m1

in G. To be consistent with the assumption of continent–island
migration—under which we studied the migration–selection
dynamics at A and B—we require N2 � N1 and m2 � m1.
This way, the assumptions of N1m1 and N2m2 being large can
still be fulfilled. However, note that m2 � m1 does not auto-
matically imply m2 � mðnÞ

e ; depending on the strength of se-
lection and recombination, mðnÞ

e may become very small.
Hence, in applying the theory outlined here, one should bear
in mind that the approximation may be misleading if mðnÞ

e is
small (for instance, if locus C is tightly linked to either A or B).
The neutral coalescent rate G is strongly increased in the neigh-
borhood of selected sites; accordingly, NðcoalÞ

e is increased (Figure
S20). Reassuringly, this pattern parallels those for linked neutral
diversity and divergence in Figure 8.

Discussion

We have provided a comprehensive analysis of the fate of
a locally beneficial mutation that arises in linkage to
a previously established migration–selection polymorphism.
In particular, we obtained explicit approximations to the in-
vasion probability. These reveal the functional dependence
on the key parameters and substitute for time-consuming
simulations. Further, we found accurate approximations to
the mean extinction time, showing that a unilateral focus on
invasion probabilities yields an incomplete understanding of
the effects of migration and linkage. Finally, we derived the
effective migration rate experienced by a neutral or weakly
beneficial mutation that is linked to arbitrarily many migra-
tion–selection polymorphisms. This opens up a genome-
wide perspective of local adaptation and establishes a link
to inferential frameworks.

Insight from stochastic modeling

Previous theoretical studies accounting for genetic drift in
the context of polygenic local adaptation with gene flow
were mainly simulation based (Yeaman and Whitlock 2011;
Feder et al. 2012; Flaxman et al. 2013) or did not model
recombination explicitly (Lande 1984, 1985; Barton 1987;
Rouhani and Barton 1987; Barton and Rouhani 1991; but see
Barton and Bengtsson 1986). Here, we used stochastic pro-
cesses to model genetic drift and to derive explicit expressions

that provide an alternative to simulations. We distinguished
between the stochastic effects due to initial rareness of a de
novo mutation on the one hand and the long-term effect of
finite population size on the other.

For a two-locus model with a steady influx of maladapted
genes, we found an implicit condition for invasion of a single
locally beneficial mutation linked to the background locus
(Equation 9). This condition is valid for arbitrary fitnesses,
i.e., any regime of dominance or epistasis. It also represents
an extension to the case of a panmictic population in which
the background polymorphism is maintained by overdomi-
nance, rather than migration–selection balance (Ewens
1967). Assuming additive fitnesses, we derived simple ex-
plicit conditions for invasion in terms of a critical migration
or recombination rate (Equations 10 or 11, respectively).
Whereas these results align with deterministic theory
(Bürger and Akerman 2011), additional quantitative and
qualitative insight emerged from studying invasion probabil-
ities and extinction times. Specifically, invasion probabilities
derived from a two-type branching process (Equations 3 and
12) capture the ambiguous role of recombination breaking
up optimal haplotypes on the one hand and creating them
on the other. Diffusion approximations to the sojourn and
mean absorption time shed light on the long-term effect of
finite population size. A comparison between the dependence
of invasion probabilities and extinction times on migration and
recombination rate revealed important differences (discussed
further below). Deterministic theory fails to represent such
aspects, and simulations provide only limited understanding
of functional relationships.

Recently, Yeaman (2013) derived an ad hoc approximation
of the invasion probability, using the so-called “splicing ap-
proach” (Yeaman and Otto 2011). There, the leading eigen-
value of the appropriate Jacobian (Bürger and Akerman 2011)
is taken as a proxy for the selection coefficient and inserted
into Kimura’s (1962) formula for the one-locus invasion prob-
ability in a panmictic population. Yeaman’s (2013) method
provides a fairly accurate approximation to the invasion prob-
ability if A1 initially occurs on the beneficial background B1 (at
least for tight linkage). However, it does not describe the in-
vasion probability of an average mutation (Figure S22) and
hence does not predict the existence of a nonzero optimal re-
combination rate. As a consequence, Yeaman’s (2013) conclusion
that physically linked selection alone is of limited importance for
the evolution of clustered architectures is likely conservative,
because it is based on an approximation that inflates the effect
of linked selection.

Nonzero optimal recombination rate

We have shown that the average invasion probability of
a linked beneficial mutation can be maximized at a nonzero
recombination rate (ropt . 0). Equation 13 provides a gen-
eral condition for when this occurs. With additive fitnesses,
the local advantage of the focal mutation must be above
a critical value (Equation 14). Otherwise, the invasion prob-
ability is maximized at ropt = 0.
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Existence of a nonzero optimal recombination rate in the
absence of epistasis and dominance is noteworthy. For a pan-
mictic population in which the polymorphism at the back-
ground locus is maintained by overdominance, Ewens (1967)
has shown that the optimal recombination rate may be non-
zero, but this requires epistasis. In the context of migration, the
existence of ropt . 0 has been noted and discussed in a simu-
lation study (Feder et al. 2012, Figure 5), but no analytical
approximation or explanation that captures this feature has
been available. In principle, ropt . 0 suggests that the genetic
architecture of polygenic adaptation may evolve such as to
optimize the recombination rates between loci harboring adap-
tive mutations. Testing this prediction requires modifier-of-
recombination theory (e.g., Otto and Barton 1997; Martin et al.
2006; Roze and Barton 2006; Kermany and Lessard 2012).
While we expect evolution toward the optimal recombination
rate in a deterministic model (Lenormand and Otto 2000), it is
important to determine if and under which conditions this occurs
in a stochastic model and what the consequences for polygenic
adaptation are.

For instance, in a model with two demes and a quantitative
trait for which the fitness optima are different in the two
demes, Yeaman and Whitlock (2011) have shown that muta-
tions contributing to adaptive divergence in the presence of
gene flow may cluster with respect to their position on the
chromosome. Moreover, architectures with many weakly
adaptive mutations tended to become replaced by architec-
tures with fewer mutations of larger effect. Although our
migration model is different, existence of a nonzero optimal
recombination rate suggests that there might be a limit to the
degree of clustering of locally adaptive mutations. It is worth
recalling that our result of ropt . 0 applies to the average
invading mutation (black curves in Figure 1 and Figure 2).
For any particularmutation that arises on the beneficial back-
ground, r = 0 is (almost) always optimal (blue curves in
Figure 1 and Figure 2; see Figure S3D for an exception).

Long-term dynamics of adaptive divergence

Finite population size on the island eventually leads to ex-
tinction of a locally beneficial mutation even after successful

Figure 8 The effect of linked selection on neutral diversity and population divergence. Shown are top views of the stationary allele frequency distribution
on the island for a neutral biallelic locus C linked to two selected sites at (locus A) 20 and (locus B) 60 map units from the left end of the chromosome.
Density increases from light blue to yellow (high peaks were truncated for better resolution). Orange and white curves show the expected diversity
(heterozygosity H) and population divergence (FST) as a function of the position of the neutral site. Solid curves use exact, numerically computed values
of the effective migration rate and dashed curves use the approximations given in Equation 23. One map unit (cM) corresponds to r = 0.01 and the effective
size of the island population is Ne = 100. The continental frequency nc of allele C1 is indicated by a horizontal black line and, from left to right, equal to 0.2,
0.5 and 0.8. (A–C) Relatively strong drift and weak migration compared to selection: a = 4, b = 80, m = 2. (D–F) Relatively weak drift and migration on the
same order of magnitude as selection at locus A: a = 40, b = 800, m = 48. Note that H is sensitive to nc, whereas FST is not. On top of D and E, allele
frequency distributions that result from taking vertical slices at positions indicated by red arrows are shown (15, 59 and 90 cM).
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initial establishment. This is accounted for neither by de-
terministic nor branching-process theory. Employing a diffusion
approximation, we have shown that linkage of the focal
mutation to a migration–selection polymorphism can greatly
increase the time to extinction and thus alter the long-term
evolutionary dynamics. In such cases, the timescale of extinc-
tion may become similar to that on which mutations occur. This
affects the rate at which an equilibrium between evolutionary
forces is reached. We provided a rule of thumb for when the
time spent by the focal allele at a certain frequency exceeds
a given multiple of the respective time without linkage. Essen-
tially, the product of the background selection coefficient times
the migration rate must be larger than a multiple of the re-
combination rate (Equation 18).

The effect of linked selection can also be expressed in terms
of an invasion-effective migration rate (Equations 19 and 20).
Both our rule of thumb and the formula for the effective
migration rate provide a means of quantifying the importance
of linkage to selected genes in the context of local adaptation.
In practice, however, their application requires accurate esti-
mates of the recombination map, the selective advantage of the
beneficial background allele, and the actual migration rate.

A nontrivial effect of gene flow

Our stochastic modeling allows for a more differentiated
understanding of the role of gene flow in opposing adaptive
divergence. Whereas deterministic theory specifies a critical
migration rate beyond which a focal mutation of a given
advantage cannot be established (Bürger and Akerman 2011;
see also Figure S7 and Figure S8), the potential of invasion is
far from uniform if migration is below this critical value (Figure
S3, Figure S5, and Figure S14). For instance, we may define
the relative advantage of linkage to a migration–selection poly-
morphism as the ratio of the quantity of interest with a given
degree of linkage to that without linkage.

A comparison of the two quantities of interest in our case—
invasion probability and mean extinction time—with respect to
migration is instructive (Figure 7 and Figure S21). Starting
from zero migration, the relative advantage of linkage in terms
of the invasion probability initially increases with the migration
rate very slowly, but then much faster as the migration rate
approaches the critical value beyond which an unlinked focal
mutation cannot invade (Figure S21A). Beyond this critical
value, the relative advantage is infinite until migration is so
high that even a fully linked mutation cannot be established. In
contrast, we have shown that the relative advantage of linkage
in terms of the mean extinction time is maximized at an in-
termediate migration rate (Figure 7).

In conclusion, for very weak migration, the benefit of being
linked to a background polymorphism is almost negligible. For
intermediate migration rates, the potential of invasion is elevated
by linked selection; this is mainly due to a substantially increased
mean extinction time of those still rather few mutations that
successfully survive the initial phase of stochastic loss. This
argument is based on the increase of the mean extinction time
relative to unlinked selection. Because, for large populations,

absolute extinction times become very large as the migration
rate decreases (Figure 7, C and F), the biological relevance
of this comparison may be confined to cases in which the
mean extinction time of an unlinked mutation is not ex-
tremely high. For migration rates close to the critical migra-
tion rate, however, any relative advantage of linkage seems
to arise via an increased invasion probability, not via an in-
creased mean extinction time. This is because, in this case,
the latter is close to that for no linkage (compare Figure
S21A to Figure 7, A and B). A final statement about the
relative importance of invasion probability vs. mean extinc-
tion time is not appropriate at this point. This would require
extensive numerical work, along with a derivation of a diffu-
sion approximation to the mean extinction time for tight link-
age. However, for small populations, our results show that
linked selection can increase the mean extinction time to an
extent that is biologically relevant, while, at the same time,
not affecting the invasion probability much. This suggests that
invasion probabilities may not be a sufficient measure for the
importance of physical linkage in adaptive divergence.

Standing variation at the background locus

We have extended some of our analyses to the case where
the background locus is polymorphic on the continent and
immigrants may therefore carry both the locally beneficial or
deleterious allele. This represents a compromise between
the extremes of adaptation from standing vs. de novo genetic
variation. We have shown that the presence of the beneficial
background allele on the continent, and hence among immi-
grants, leads to a lower invasion probability and a shorter
extinction time for the focal de novo mutation. This effect is
due to increased competition against a fitter resident pop-
ulation. While this result is of interest as such, it should not
be abused to gauge the relative importance of standing vs. de
novo variation in the context of local adaptation. For this
purpose, invasion probabilities and extinction times of single
mutations do matter, but are not sufficient metrics on their
own. Factors such as the mutation rate, the mutational tar-
get size, and the distribution of selection coefficients must
be taken into account (Hermisson and Pennings 2005).

Footprint of polygenic local adaptation

A number of previous studies have quantified the effect of
divergent selection or genetic conflicts on linked neutral variation
in discrete (Bengtsson 1985; Charlesworth et al. 1997) and con-
tinuous space (Barton 1979; Petry 1983). They all concluded
that a single locus under selection leads to a pronounced reduc-
tion in effective gene flow only if selection is strong or if linkage
to the neutral site is tight. Whereas Bengtsson (1985) found that
additional, physically unlinked, loci under selection had no sub-
stantial effect on neutral differentiation, Feder and Nosil (2010)
recently suggested that such loci may have an appreciable effect
as long as they are not too numerous. When these authors added
a large number of unlinked loci under selection, this resulted in
a genome-wide reduction of the effective migration rate, such
that the baseline level of neutral divergence was elevated and
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any effect of linkage to a single selected locus unlikely to be
detected. However, for large numbers of selected loci, it is no
longer justified to assume that all of them are physically un-
linked. This was noted much earlier by Barton and Bengtsson
(1986), who therefore considered a linear genome with an
arbitrary number of selected loci linked to a focal neutral site.
They showed that a large number of linked selected loci is
needed to cause a strong reduction in effective migration rate.
In such cases, the majority of other genes must be linked to
some locus under selection.

The concept of an effective migration rate has played a key
role in most of the studies mentioned above (see Barton and
Bengtsson 1986, and Charlesworth et al. 1997 for a more
comprehensive review). However, for models with more than
one linked locus under selection, previous studies relied on
numerical solutions or simulations to compute the effective
migration rate. Recently, Bürger and Akerman (2011) derived
an analytical approximation for a neutral site that is flanked
by two selected loci. We have generalized their result to al-
ternative genetic architectures and an arbitrary number of
selected loci (Equation 24). From this, we predicted the
long-term footprint of polygenic local adaptation in terms of
the distribution of allele frequencies, population divergence,
and coalescent rate at the neutral site. When considered as
a function of the position of the neutral site on the chromo-
some, these quantities reveal patterns that can hopefully be
used for inference about the selective process (Figure 8 and
Figure S20).

We have considered only the case where migration–selection
equilibrium has been reached at the selected loci. It would be
interesting, although more demanding, to study the transient
phase during which locally beneficial mutations (such as A1 in
our case) rise in frequency from p0 = 1/(2N) to the (pseudo-)
equilibrium frequency. We expect this to create a temporary
footprint similar to that of a partial sweep (Pennings and
Hermisson 2006a,b; Pritchard et al. 2010; Ralph and Coop
2010). Theoretical progress hinges on a description of the tra-
jectory of the linked sweeping alleles, accounting in particular
for the stochastic “lag phase” at the beginning. It will then be of
interest to study recurrent local sweeps and extend previous
theory for panmictic populations (Coop and Ralph 2012; Lessard
and Kermany 2012) to include population structure, migration,
and spatially heterogeneous selection. The hitchhiking effect of
a beneficial mutation in a subdivided population has been de-
scribed in previous studies (e.g., Slatkin and Wiehe 1998; Kim
and Maruki 2011), but these did not account for additional
linked loci under selection.

One limitation to our prediction of the coalescence rate at
linked neutral sites is the assumption of strong migration
relative to genetic drift (Nagylaki 1980; Notohara 1993). As
the effective migration rate decays to zero if the neutral site
is very closely linked to a selected site (Figure S18C), this
assumption will be violated. Therefore, our predictions
should be interpreted carefully when linkage is tight. More-
over, and even though this seems widely accepted, we are
not aware of a rigorous proof showing that an effective

migration rate can sufficiently well describe the effect of
local selection on linked neutral genealogies (cf. Barton
and Etheridge 2004).

Another limitation is that our prediction of linked neutral
diversity and divergence (Figure 8) holds only for drift–migration
equilibrium. For closely linked neutral sites, which experience
very low rates of effective migration, it may take a long time
for this equilibrium to be reached. By that time, other evolu-
tionary processes such as background selection and mutation
will have interfered with the dynamics at the focal site.

Further limitations and future extensions

We assumed no dominance and no epistasis. Both are
known to affect the rate of adaptation and the maintenance
of genetic variation (e.g., Charlesworth et al. 1987; Bank
et al. 2012). Empirical results on dominance effects of ben-
eficial mutations are ambiguous (Vicoso and Charlesworth
2006). Some studies showed no evidence for a deviation
from additivity, whereas others suggested weak recessivity
(reviewed in Orr 2010 and Presgraves 2008). Empirical ev-
idence for epistasis comes from studies reporting genetic
incompatibilities between hybridizing populations (Lowry
et al. 2008; Presgraves 2010). In the classical Dobzhansky–
Muller model (Bateson 1909; Dobzhansky 1936; Muller
1942), such incompatibilities may become expressed during
secondary contact after allopatry, even if divergence is neu-
tral. With gene flow, genetic incompatibilities can be main-
tained only if the involved alles are locally beneficial (Bank
et al. 2012). Bank et al. (2012) derived respective conditions
using deterministic theory. An extension to a stochastic model
focusing on invasion probabilities and extinction times would
be desirable.

Our model assumed one-way migration. While this is an
important limiting case and applies to a number of natural
systems (e.g., King and Lawson 1995), an extension to two-
way migration is of interest, because natural populations or
incipient species often exchange migrants mutually (e.g.,
Janssen and Mundy 2013; Nadeau et al. 2013). Such theory
will allow for a direct comparison to recent simulation stud-
ies (Feder and Nosil 2010; Yeaman and Whitlock 2011;
Feder et al. 2012; Flaxman et al. 2013; Yeaman 2013). It
will also have a bearing on the evolution of suppressed re-
combination in sex chromosomes (e.g., Rice 1984, 1987; Fry
2010; Jordan and Charlesworth 2012; Charlesworth 2013).
Deterministic theory suggests that linkage becomes less cru-
cial for the maintenance of locally beneficial alleles the more
symmetric gene flow is (Akerman and Bürger 2014).

When describing the distribution of fitness effects of success-
ful beneficial mutations, we considered only a single mutation.
Future studies should investigate a complete adaptive walk,
allowing for mutations at multiple loci to interact via domi-
nance, epistasis, and linkage. Moreover, it would then seem
justified to relax the assumption of a constant fitness gradient,
especially in the proximity of an optimum, and to account for
the fact that the input DFE is not necessarily exponential
(Martin and Lenormand 2008).
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In our derivations of sojourn and mean absorption times,
we assumed QLE. As expected, the approximations break
down if recombination is weak (e.g., Figure 6). For tight
linkage, when linked selection is most beneficial, an alter-
native diffusion process needs to be developed. However, to
determine how weak physical linkage may be such that an
invading mutation still has an advantage, an approximation
that is accurate for moderate and loose linkage is required.
Therefore, the assumption of QLE does not restrict the scope
of our results that address the limits to the importance of
linked selection.

Conclusion

This study advances our understanding of the effects of
physical linkage and maladaptive gene flow on local adapta-
tion. We derived explicit approximations to the invasion
probability and extinction time of benefical de novomutations
that arise in linkage to an established migration–selection
polymorphsim. In addition, we obtained an analytical for-
mula for the effective migration rate experienced by a neutral
or weakly beneficial site that is linked to an arbitrary number
of selected loci. These approximations provide an efficient
alternative to simulations (e.g., Feder and Nosil 2010; Feder
et al. 2012). Our results strengthen the emerging view that
physically linked selection (and hence so-called divergence
hitchhiking) is biologically relevant only if linkage is tight
or if selection at the background locus is strong (Petry
1983; Barton and Bengtsson 1986; Feder et al. 2012; Flaxman
et al. 2013). When these conditions are met, however, the
effect of linkage can be substantial. A definite statement
about the importance of “divergence hitchhiking” vs. “genome
hitchhiking” and complementary processes (cf. Yeaman 2013)
seems premature, though; it will require further empirical and
theoretical work. We suggest that future theoretical studies (i)
obtain analogous approximations for bi- rather than unidirec-
tional gene flow, (ii) account for epistasis and dominance, (iii)
incorporate the distribution of fitness effects of beneficial muta-
tions, and (iv) employ a stochastic modifier-of-recombination
model to assess the importance of nonzero optimal recombi-
nation rates. Extensions of this kind will further enhance our
understanding of polygenic local adaptation and its genetic
footprint.
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Figure S1 CriƟcal migraƟon rates and invasion of A1 for a monomorphic conƟnent. Dark grey: invasion of A1 via the
unstablemarginal equilibriumEB; light grey: no invasion ofA1, stablemarginal equilibriumEB; white: no invasion, fixaƟon
of conƟnental haplotype A2B2 and convergence to the monomorphic equilibrium EC , at which the island populaƟon
is fixed for the conƟnental haplotype A2B2. Numerical iteraƟons of invasion dynamics where performed at coordinates
indicated by grey symbols (File S2). Different symbols showwhich equilibrium is reached: ●E+; ○EB; ◽EC . IniƟal values for
iteraƟons were {p0, q0,D0} = {0, q̂B,0}, where q̂B is the frequency ofB1 atEB. IteraƟons were stopped when successive
changes in each coordinate became smaller than the numerical machine precision. The thick, almost-verƟcal line close to
r = 0 is for the criƟcal migraƟon ratem∗. This curve crosses the r axis at r = a(b − a)/(1 − 2a + b), which is denoted by a
verƟcal dashed line that can hardly be seen. The second verƟcal dashed line corresponds to r = a. (A) a = 0.01, b = 0.04.
(B) a = 0.02, b = 0.04. (C) a = 0.03, b = 0.04.
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Figure S2 CriƟcal recombinaƟon rate and invasion of A1 for a polymorphic conƟnent. Dark grey: invasion of A1 via the
unstable marginal equilibrium EB; light grey: no invasion of A1, stable marginal equilibrium EB. Numerical iteraƟons
of invasion dynamics where performed at coordinates indicated by grey symbols (File S2). Different symbols show which
equilibrium is reached: ● E+; ○ EB. IniƟal values for iteraƟons were {p0, q0,D0} = {0, q̂B,0}, where q̂B is the frequency
of B1 at EB. The verƟcal dashed line indicates the pole of the funcƟon r∗(m) from Eq. (41). In the leŌ column (A, D, G,
and J), the selecƟon coefficients are a = 0.01, b = 0.04 (a < b/2), in the middle column (B, E, H, and K) they are a = 0.02,
b = 0.04 (a = b/2), and in the right column (C, F, I, and L) they are a = 0.03, b = 0.04 (a > b/2). From top to boƩom, the
conƟnental frequency of B1 increases and takes values of qc = 0.01 in (A)–(C), qc = 0.2 in (D)–(F), qc = 0.5 in (G)–(I), and
qc = 0.8 in (J)–(L).
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Figure S3 Invasion probability ofA1 as a funcƟon of the migraƟon rate for a monomorphic conƟnent. Shown are numer-
ical soluƟons to the branching process, condiƟonal on iniƟal occurrence of A1 on background B1 (blue), on background
B2 (red), and when averaged across backgrounds with weights determined by the equilibrium frequency q̂B ofB1 (black).
The verƟcal dashed line showsmA = a/(1 − b), the criƟcal migraƟon rate below which A1 can invade without linkage to
the background locus. The shaded area thus indicates where A1 has a non-zero average invasion probability exclusively
due to linkage to locus B. (A)–(C) Weak selecƟon: a = 0.02, b = 0.04 and r as given in the panels. (D)–(F) Strong selecƟon:
a = 0.2, b = 0.4 and r as given in the panels. In this case, if linkage is Ɵght (r small), the invasion probability condiƟonal on
the beneficial background increases withm as long asm is sufficiently small, and only starts decreasing ifm is much larger
(blue curve in panel D). This is because migraƟon reduces the fitness of the resident populaƟon (consisƟng of A2B1 and
A2B2) more strongly than it reduces the marginal fitness of type A1B1, which is favourable to type A1B1. As migraƟon
becomes stronger, though, the reducƟon in marginal fitness of A1B1 becomes dominant. The parameter combinaƟon in
(D) was arbitrarily chosen to illustrate this effect (for a detailed explanaƟon, see secƟon 5 of File S1). For r < 0.07, the
maximum of the blue curve is shiŌed further to the right.
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Figure S4 Invasion probability ofA1 as a funcƟon of the recombinaƟon rate and the conƟnental frequency ofB1. Panels
are for different values of the conƟnental frequency qc of the beneficial background allele (B1). Curves show numerical
soluƟons to the branching process (Eq. 61), condiƟonal on iniƟal occurrence ofA1 on backgroundB1 (blue), on background
B2 (red), and when averaged across backgrounds with weights determined by the equilibrium frequency q̂B ofB1 (black).
Dots represent the point esƟmates across 106 simulaƟons under the branching-process assumpƟons (see Methods). Error
bars span twice the standard error on each side of the point esƟmates, but are too short to be visible. Parameters other
than qc are the same in all panels: a = 0.03, b = 0.04 andm = 0.032.
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Figure S5 Invasion probability of A1 as a funcƟon of the migraƟon rate. Panels are for varying selecƟve advantage a
and conƟnental frequency qc of the beneficial background alleleB1. Invasion probabiliƟes are shown condiƟonal on iniƟal
occurrence ofA1 on backgroundB1 (blue), on backgroundB2 (red), and as aweighted average across the two backgrounds
(black). Solid curves show exact numerical soluƟons to the branching process, whereas thick dashed curves show the
analyƟcal approximaƟons valid for weak evoluƟonary forces and a slightly supercriƟcal branching process (see secƟon 4 of
File S1, and Eqs. 7–9 in File S5). In all panels, b = 0.04 and r = 0.01. The selecƟve advantage a of A1 increases from leŌ
to right, taking values of a = 0.01 in panels (A), (D), (G), (J), a = 0.02 in panels (B), (E), (H), (K), and a = 0.03 in panels (C),
(F), (I) and (L). The conƟnental frequency qc of B1 increases from top to boƩom, taking values of qc = 0 in panels (A)–(C),
qc = 0.2 in panels (D)–(F), qc = 0.5 in panels (G)–(I), and qc = 0.8 in panels (J)–(L).
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Figure S6 Invasion probability ofA1 as a funcƟon of the conƟnental frequency ofB1. Panels are for varyingmigraƟon and
recombinaƟon rates. Invasion probabiliƟes are shown condiƟonal on iniƟal occurrence ofA1 on backgroundB1 (blue), on
background B2 (red), and as a weighted average across the two backgrounds (black). Solid curves show exact numerical
soluƟons to the branching process, whereas thick dashed curves show the analyƟcal approximaƟons valid for weak evolu-
Ɵonary forces and a slightly supercriƟcal branching process (see secƟon 3 of File S1, and Eqs. 7–9 in File S5). In all panels,
a = 0.02 and b = 0.04. The migraƟon rate m increases from leŌ to right, taking values of m = 0.022 in panels (A), (D),
(G), m = 0.03 in panels (B), (E), (H), and m = 0.038 in panels (C), (F), and (I). The recombinaƟon rate increases from top
to boƩom, taking values of r = 0.005 in panels (A)–(C), r = 0.01 in panels (D)–(F), and r = 0.02 in panels (G)–(I). Arrows
indicate where the opƟmal qc is non-zero.
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Figure S7 AsymptoƟc stability of the marginal one-locus migraƟon–selecƟon equilibrium ẼB in conƟnuous Ɵme I. Light
blue areas indicate where ẼB is asymptoƟcally stable and A1 cannot invade (ν̃ < 0; ν̃ as in Eq. 91, File S1). Orange areas
indicate where ẼB is unstable andA1 may potenƟally invade (ν̃ > 0). The black curve represents the criƟcal recombinaƟon
rate r̃B given in Eq. (93), as a funcƟon of the migraƟon rate. The selecƟon coefficient a in favour ofA1 is 0.02 throughout,
the selecƟon doefficient b in favour of B1 is 0.03 in the first row (A–C) and 0.1 in the second (D–F). In each row, the
conƟnental frequency ofB1 increases from leŌ to right, taking values of qc = 0.01 in (A) and (D), qc = 0.2 in (B) and (E), and
qc = 0.8 in (C) and (F).
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Figure S8 AsymptoƟc stability of the marginal one-locus migraƟon–selecƟon equilibrium ẼB in conƟnuous Ɵme II. Light
blue areas indicate where ẼB is asymptoƟcally stable and A1 cannot invade (ν̃ < 0; ν̃ as in Eq. 91, File S1). Orange areas
indicate where ẼB is unstable andA1 may potenƟally invade (ν̃ > 0). The black curve corresponds to a combinaƟon of q̃∗∗c−
and q̃∗∗c+ as described in secƟon 6 of File S1, as a funcƟon of the migraƟon rate. The selecƟon coefficient a in favour of A1

is 0.02 throughout, the selecƟon doefficient b in favour ofB1 is 0.03 in the first row (A–C) and 0.05 in the second (D–F). In
each row, the recombinaƟon rate increases from leŌ to right, taking values of r = 0.005 in (A) and (D), r = 0.025 in (B) and
(E), and r = 0.045 in (C) and (F).
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Figure S9 AsymptoƟc stability of the marginal one-locus migraƟon–selecƟon equilibrium ẼB in conƟnuous Ɵme III. Light
blue areas indicate where ẼB is asymptoƟcally stable and A1 cannot invade (ν̃ < 0; ν̃ as in Eq. 91, File S1). Orange areas
indicate where ẼB is unstable andA1 may potenƟally invade (ν̃ > 0). The black curve corresponds to a combinaƟon of q̃∗∗c−
and q̃∗∗c+ as described in secƟon 6 of File S1, as a funcƟon of the recombinaƟon rate. The selecƟon coefficient a in favour of
A1 is 0.02 throughout, the selecƟon doefficient b in favour ofB1 is 0.03 in the first row (A–C) and 0.05 in the second (D–F).
In each row, the migraƟon rate increases from leŌ to right, taking values ofm = 0.022 in (A) and (D),m = 0.025 in (B) and
(E), andm = 0.028 in (C) and (F).

S. Aeschbacher and R. Bürger 19 SI



Figure S10 Diffusion approximaƟon to the sojourn-Ɵme density ofA1 under quasi-linkage equilibrium for a polymorphic
conƟnent. Comparison of the sojourn-Ɵme density (STD) t2,QLE(p;p0) (thin curves, Eq. 7b) to the approximaƟon valid for
small p0, t̃2,QLE(p;p0) (dashed curves, analogous to Eq. 109 in File S1) and the one based on the addiƟonal assumpƟon
of ρ≫ 0, t̃2,QLE,ρ≫0(p;p0) (doƩed curves, Eq. 119b) assuming a polymorphic conƟnent. The conƟnental frequency qc of
B1 increases from light to dark grey, taking values of 0.2, 0.5, and 0.8. The STD for the one-locus model, t̃2,OLM(p;p0), is
shown in orange as a reference. VerƟcal lines give the determinisƟc frequency p̂+ ofA1 at the respecƟve fully-polymorphic
equilibrium (computed in File S7). (A) Strong evoluƟonary forces relaƟve to geneƟc driŌ. (B) Strong asymmetry in selecƟon
coefficients, and moderate migraƟon. (C) RecombinaƟon ten Ɵmes stronger than selecƟon at locus B. In all panels, p0 =
0.005, which corresponds to an island populaƟon of size N = 100 and a single iniƟal copy of A1. Panels (A), (B) and (C)
correspond to Figures 5C, 5D and 5E for a monomorphic conƟnent (qc = 0), respecƟvely.
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Figure S11 Comparison of analyƟcal and simulated sojourn-Ɵme densites of A1 for a monomorphic conƟnent. Results
are shown for various recombinaƟon rates r. Histograms were obtained from 106 simulaƟons (see Methods) and curves
give the diffusion approximaƟon t̃2,QLE(p;p0) from Eq. (109). Throughout, a = 0.02, b = 0.04 and p0 = 1/(2N) (we
assumedNe = N ). In the first row, migraƟon is relaƟvely strong compared to selecƟon in favour of A1 (m = 0.024 > a), in
the second row it is relaƟvely weak (m = 0.018 < a). In the leŌ column, the effecƟve populaƟon size is small (Ne = 100)
and driŌ dominates, whereas in the right column,Ne = 1000 and determinisƟc forces become more important.
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Figure S12 Comparison of analyƟcal and simulated sojourn-Ɵme densites of A1 for a polymorphic conƟnent. Results
are shown for various migraƟon ratesm and conƟnental frequencies qc of B1. Histograms were obtained from 106 sim-
ulaƟons (see Methods) and curves give the diffusion approximaƟon under the assumpƟon of quasi-linkage equilibrium,
t̃2,QLE(p;p0), from Eq. (109). Throughout, a = 0.02, b = 0.04, r = 0.1 and p0 = 1/(2N) (we assumed Ne = N ). From
the top to the boƩom row, the effecƟve populaƟon sizeNe increases and therefore geneƟc driŌ becomes less important.
From the leŌ to the right column, the migraƟon ratem increases, making it more difficult forA1 to survive. No simulaƟons
were completed for the parameter combinaƟon in panel (M), as they were too Ɵme-consuming.
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Figure S13 Comparison of various diffusion approximaƟons of the mean absorpƟon Ɵme of A1. (A) The error of ˜̄tQLE

(Eq. 110 in File S1) relaƟve to t̄QLE (Eq. 8) for various parameter combinaƟons and an iniƟal frequency of A1 equal to
p0 = 1/(2N) (we assumedNe = N ). Squares bounded by thick lines delimit combinaƟons of values of the recombinaƟon
rate r and the effecƟve populaƟon sizeNe. Within each of them, squares bounded by thin lines correspond to combinaƟons
of values of the migraƟon ratem and the conƟnental frequency qc of A1, as shown in the small panels on top. The colour
code assigns deeper blue to more negaƟve, and deeper red to more posiƟve values. Empty (filled) circles indicate that
the marginal one-locus equilibrium ẼB is unstable (stable) and A1 can (not) be established under determinisƟc dynamics.
SelecƟon coefficients are a = 0.02 and b = 0.04. (B) The error of t̄QLE,ρ≫0 (Eq. 114 in File S1) relaƟve to t̄QLE for p0 =
1/(2N). Other details as for panel (A). (C) The error of ˜̄tQLE,ρ≫0 (Eq. 115 in File S1) relaƟve to t̄QLE,ρ≫0 for p0 = 1/(2N).
Other details as for panel (A). (D) As in panel (A), but for an iniƟal frequency of A1 equal to p0 = 0.005, independently of
N . (E) As in panel (B), but for p0 = 0.005 fixed. (F) As in panel (C), but for p0 = 0.005 fixed. SimulaƟons were as described
in Methods. Numerical values for errors represented in panels (A) to (C) and (D) to (F) are shown in Tables S2 to S4 and S6
to S8, respecƟvely.
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Figure S14 Mean absorpƟon Ɵme of A1 as a funcƟon of the migraƟon rate. Two approximaƟons derived under the as-
sumpƟon of quasi-linkage eqilibrium (QLE) are compared. Solid curves show t̄QLE (Eq. 8) and thick dashed curves t̄QLE,ρ≫0

(Eq. 114 in File S1). The effecƟve populaƟon size Ne increases from light to dark grey, taking values of 100, 250, 500, and
1000. The verƟcal doƩed lines denote the criƟcal values ofm below which A1 can invade in the determinisƟc one-locus
(orange) and two-locus (black) model. Dots and whiskers show the mean and 95% empirical interquanƟle range across
1000 runs of the mean absorpƟon Ɵme in 1000 replicates per run. Where points and whiskers are missing, simulaƟons
could not be completed within the Ɵme limit of 72 hours per replicate on the computer cluster. Data points labelled by
1) are from parameter combinaƟons for which fewer than 1000 replicates per run could be realised, because some took
longer than the limit of 72 hours. (A) Monomorphic conƟnent: qc = 0. (B)–(D) Polymorphic conƟnent with conƟnental
frequency of B1 equal to qc = 0.2, qc = 0.5, and qc = 0.8, respecƟvely. Other parameters are a = 0.02, b = 0.04, r = 0.1,
and p0 = 1/(2N) (we assumedNe = N ). Time is in mulƟples of 2Ne generaƟons and ploƩed on the log scale.
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Figure S15 Mean absorpƟon Ɵme of A1 as a funcƟon of its selecƟve advantage. Two approximaƟons derived under
the assumpƟon of quasi-linkage eqilibrium (QLE) are compared. Solid curves show t̄QLE (Eq. 8) and thick dashed curves
t̄QLE,ρ≫0 (Eq. 114 in File S1). The effecƟve populaƟon sizeNe increases from light to dark grey, taking values of 100, 250,
500, and 1000. The verƟcal doƩed lines denote the criƟcal values of a above which A1 can invade in the determinisƟc
one-locus (orange) and two-locus (black) model. (A) Monomorphic conƟnent (qc = 0). (B)–(D) Polymorphic conƟnent with
qc equal to 0.2 in (B), 0.5 in (C) and 0.8 in (D). Other parameters are b = 0.04, m = 0.024, r = 0.1, and p0 = 1/(2N) (we
assumedNe = N ). Time is in mulƟples of 2Ne generaƟons and ploƩed on the log scale.
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Figure S16 Effect of the conƟnental frequency qc of B1 on the mean absorpƟon Ɵme of A1. Curves show the diffusion
approximaƟon t̄QLE (Eq. 8), derived under the assumpƟon of quasi-linkage equilibrium. The conƟnental frequency qc ofB1

increases from light to dark grey, taking values of 0, 0.2, 0.5, and 0.8. (A) The mean absorpƟon Ɵme is given in mulƟples
of 2Ne generaƟons as a funcƟon of the migraƟon rate. VerƟcal doƩed lines denote the criƟcal values of m below which
A1 can invade in the respecƟve determinisƟc two-locus model (grey) and, as a reference, in the one-locus model (orange).
The selecƟon coefficient in favour of A1 is a = 0.02. (B) As in (A), but as a funcƟon of the selecƟve advantage of allele A1.
The migraƟon rate ism = 0.024. In both panels, b = 0.04, r = 0.1,Ne = 500, and p0 = 1/(2N) (we assumedNe = N ).
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Figure S17 Mean absorpƟon ƟmeofA1 as a funcƟon of the conƟnental frequencyB1. Two approximaƟons derived under
the assumpƟon of quasi-linkage eqilibrium (QLE) are compared. Solid curves show t̄QLE (Eq. 8) and thick dashed curves
t̄QLE,ρ≫0 (Eq. 114 in File S1). The effecƟve populaƟon sizeNe increases from light to dark grey, taking values of 100, 250,
500, and 1000. Dots and whiskers show the mean and 95% empirical interquanƟle range across 1000 runs of the mean
absorpƟon Ɵme in 1000 replicates per run. Where points and whiskers are missing, simulaƟons could not be completed
within the Ɵme limit of 72 hours per replicate on the computer cluster. Data points labelled by 1) represent parameter
combinaƟons for which fewer than 1000 replicates per run could be realised, because some took longer than the limit of
72 hours. The migraƟon ratem increases from the leŌ to the right column, taking values of 0.012, 0.018, and 0.024. The
recombinaƟon rate r increases from the top to the boƩom row, taking values of 0.1, r=0.2, and r=0.4. Other parameters
are a = 0.02, b = 0.04, and p0 = 1/(2N) (we assumedNe = N ). Time is in mulƟples of 2Ne generaƟons and ploƩed on the
log scale.
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Figure S18 EffecƟve migraƟon rate at a weakly beneficial mutaƟon arising in linkage to a migraƟon–selecƟon polymor-
phism. (A) The effecƟve migraƟon rate under the QLE approximaƟon up to second (me, Eq. 19, solid) and first (m̃e, Eq. 20,
dashed) order of the actual migraƟon ratem. The orange curve has a slope of 1 and represents themarginal case of linkage
to a neutral background (b = 0). Parameter values are b = 0.02 (light grey), b = 0.04 (medium grey), b = 0.08 (black), and
r = 0.1. (B) The gene-flow factor (raƟo of effecƟve to actual migraƟon rate, Bengtsson 1985) as a funcƟon of the selecƟve
advantage b of the beneficial background allele B1. Grey solid and dashed curves show the gene-flow factor computed
usingme and m̃e, respecƟvely. The curves cross the horizontal axis at b =m+ r and b = r, respecƟvely (verƟcal lines). The
blue dashed curve gives the gene-flow factor for Petry's (1983)m(P )e in Eq. (21). Parameters arem = 0.02 and r = 0.1. (C)
As in panel (B), but as a funcƟon of the recombinaƟon rate. VerƟcal doƩed lines indicate r = b −m and r = b forme/m
and m̃e/m, respecƟvely. Parameters are b = 0.04 andm = 0.02.
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Figure S19 Effect of linkage to two selected sites on the absorpƟon Ɵme of a neutral mutaƟon. The mutaƟon occurs at
the neutral locusC. The lociA andB under selecƟon are located 20 and 60map units from the leŌ end of the chromosome
in panels (A)–(C), whereas locus A is located 40map units from the leŌ end of the chromosome in panels (D)–(F). One map
unit (cenƟmorgan) corresponds to a recombinaƟon rate of r = 0.01 and the effecƟve populaƟon size is Ne = 100. The
scaled selecƟon coefficient in favour ofB1 is β = 80 and the scaled migraƟon rate increases from leŌ to right from µ = 0.2
in (A) and (D) to µ = 4.8 in (B) and (E) and µ = 48 in (C) and (F). From light to dark, α/β takes values of 0.005, 0.05, and 0.5,
where α is the scaled selecƟon coefficient in favour of A1. Points show values computed using the approximate effecƟve
migraƟon rates in Eq. (23) and curves are based on numerically computed exact effecƟve migraƟon rates (Procecure S9).
For µ large and α small (light grey curves in F), the laƩer were affected by numerical errors causing strong deviaƟon. The
horizontal black line denotes the baseline for free recombinaƟon between locus C and the selected sites.
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Figure S20 Effect on neutral coalescence of linkage to two sites at migraƟon–selecƟon balance. The rate of coalescence
G (orange, see Eq. 25) and the coalescent effecƟve size of the island populaƟon, c1N̄/G, are given as a funcƟon of the
posiƟon (in map units) of the neutral locus C. Solid and thick dashed curves are for values computed using the exact and
approximate (Eq. 23) effecƟve migraƟon rate, respecƟvely (they overlap almost completely). One map unit (cenƟmorgan)
corresponds to a recombinaƟon rate of r = 0.01 and the posiƟon of the sites under selecƟon is indicated by verƟcal dashed
lines. The total populaƟon size is N̄ = 108, the fracƟon of the island is N1/N̄ = c1 = 0.01 and the selecƟon coefficient at
locus B (posiƟon 60) is b = 0.4. (A) and (B) The migraƟon rate to the island is of the same order of magnitude as selecƟon
at locus A: a = 0.02,m1 = 0.024. (C) and (D) ImmigraƟon is weak compared to selecƟon at locus A: a = 0.2,m1 = 0.024.
Throughout, m1/m2 = c2/c1 = (1 − c1)/c1, so actual migraƟon is conservaƟve (Wakeley 2009, p. 194). The horizontal
black line gives the baseline-effecƟve populaƟon size at the neutral locus in the absence of linked selecƟon. For alternaƟve
parameter combinaƟons, see File S9.
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Figure S21 Mean invasion probability ofA1 with linkage to a background polymorphism compared to no linkage. Curves
show the raƟo of the weighted mean invasion probability, π̄, divided by that of the one-locus model, πOLM (r = 0.5). The
raƟo was computed from numerical soluƟons to the branching process (Eq. 3) and is shown as a funcƟon of the migraƟon
(m) and recombinaƟon (r) rate in panels (A) and (B), respecƟvely. The verƟcal dashed line in panel (A) shows the criƟcal
migraƟon rate a/(1− b), beyond which alleleA1 cannot be established under the determinisƟc one-locus model. In panel
(B), form = 0.018 (blue curve), alleleA1 can be established independently of r. For stronger migraƟon (green and orange
curves), A1 can be established only if r is below a criƟcal value (where the green and orange curves cross the x-axis,
respecƟvely). Other parameter values are a = 0.02, b = 0.04, and qc = 0. Compare to Figure 7 for the relaƟve effect ofm
on mean exƟncƟon Ɵme.
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Figure S22 Comparison of branching-proccess and `splicing' approximaƟons to the invasion probability ofA1 as a funcƟon
of the recombinaƟon rate. Black curves represent the branching-process soluƟon averaged across the two backgrounds
(B1 and B2). The solid curve gives the exact numerical soluƟon and the dashed curve the analyƟcal approximaƟon for
a slighty-supercriƟcal process (based on Eq. 12). The dashed purple curve represents the approximaƟon based on the
`splicing approach' as proposed by Yeaman (2013). As a reference, the thin blue curve gives the numerical branching-
process soluƟon condiƟonal onA1 arising on the beneficial backgroundB1. (A) A casewhere ropt = 0; a = 0.02,m = 0.024.
(B) A case where ropt > 0; a = 0.03, m = 0.032. In both panels, b = 0.04, and the verƟcal doƩed line gives the criƟcal
recombinaƟon rate below which A1 can invade according to determinisƟc conƟnuous-Ɵme theory.
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File S1
AddiƟonal Methods

1 Details of the model

We denote the frequencies on the island of haplotypesA1B1,A1B2,A2B1, andA2B2 by x1, x2, x3, and x4, respecƟvely.
The haplotype frequencies are related to the allele frequencies (p, q) and the linkage disequilibrium (D) as follows (e.g.
Bürger 2000). The frequencies of A1 and B1 on the island can be expressed as p = x1 + x2 and q = x1 + x3. Accordingly,
the frequencies of A2 and B2 are 1 − p = x3 + x4 and 1 − q = x2 + x4. Moreover, x1 = pq + D, x2 = p(1 − q) − D,
x3 = (1− p)q −D, and x4 = (1− p)(1− q)+D, and the linkage disequilibrium can be expressed in terms of the haplotype
frequencies asD = x1x4 − x2x3. Thereby, we must recall the constraints xi ≥ 0 (i = 1, . . . ,4) and∑4

i=1 xi = 1, which are
equivalent to 0 ≤ p, q ≤ 1 and

−min{pq, (1 − p)(1 − q)} ≤D ≤min{p(1 − q), (1 − p)q} . (26)

The matrix of relaƟve fitnesses on the island is

W =
⎛
⎜
⎝

B1B1 B1B2 B2B2

A1A1 w11 w12 w22

A1A2 w13 w14 = w23 w24

A2A2 w33 w34 w44

⎞
⎟
⎠
, (27)

wherewij is the relaƟve fitness of the genotype composed of haplotypes i and j (i, j ∈ {1,2,3,4}). For addiƟve fitnesses,
we use Eq. (1) in the main text. The marginal fitness of haplotype i on the island is defined as wi q = ∑4

j=1wijxj and the
mean fitness of the island populaƟon as ¯̄w = ∑i,j wijxixj = ∑4

i=1wi qxi.

Straighƞorward extension of two-locus models without migraƟon (cf. LewonƟn and Kojima 1960 or Bürger 2000, chap.
2) yields the recursion equaƟons for the haplotype frequencies,

x′1 = (1 −m)(x1w1 q− rw14D)/ ¯̄w, (28a)

x′2 = (1 −m)(x2w2 q+ rw14D)/ ¯̄w, (28b)

x′3 = (1 −m)(x3w3 q+ rw14D)/ ¯̄w +mqc, (28c)

x′4 = (1 −m)(x4w4 q− rw14D)/ ¯̄w +m(1 − qc), (28d)

where r is the recombinaƟon rate,m the migraƟon rate, and qc the frequency ofB1 on the conƟnent. For a monomorphic
conƟnent, qc = 0. For this case, a conƟnuous-Ɵme version of Eq. (28) has been fully described (Bürger and Akerman 2011).

2 ApproximaƟng the dynamics for rare A1

Because A1 arises as a novel mutaƟon in our scenario (see main text), the haplotype frequencies x1 and x2 are iniƟally
small. We therefore ignore terms of order xixj (i, j ∈ {1,2}) and higher in Eq. (28). Moreover, we assume that, upon
invasion of A1, the frequency of B1 stays constant at the one-locus migraƟon–selecƟon equilibrium (q = q̂B). In principle,
q approaches an internal equilibrium q̂+, but the change is small compared to the change in p (Bürger and Akerman 2011).
We then have x3 = q − x1 ≈ q̂B and x4 = 1 − q − x2 ≈ 1 − q̂B for x1 and x2 small. As a consequence, the dynamics in Eq.
(28) reduces to a system with only two equaƟons in x1 and x2,

x′1 = (1 −m) [w1x1 + rw14x2q̂B − rw14x1(1 − q̂B)] /w̄, (29a)

x′2 = (1 −m) [w2x2 − rw14x2q̂B + rw14x1(1 − q̂B)] /w̄, (29b)

where w1 and w2 are the marginal fitnesses of the A1B1 and A1B2 haplotypes, respecƟvely. These are given by

w1 = w13q̂B +w14(1 − q̂B), (30a)

w2 = w24(1 − q̂B) +w14q̂B. (30b)
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Moreover, w̄ is the mean fitness of the resident populaƟon on the island, which is assumed to be monomorphic at locus A:

w̄ = q̂2Bw33 + 2q̂B(1 − q̂B)w34 + (1 − q̂B)2w44. (31)

This holds approximately ifA1 is rare on the island. EquaƟon (29) can bewriƩenmore compactly inmatrix form as x′ = xL,
where x = (x1, x2) is a row vector, and

L = (λ11 λ12

λ21 λ22
) , (32)

with

λ11 = (1 −m) [w1 − r(1 − q̂B)w14] /w̄, (33a)

λ12 = (1 −m)r(1 − q̂B)w14/w̄, (33b)

λ21 = (1 −m)rq̂Bw14/w̄, (33c)

λ22 = (1 −m) [w2 − rq̂Bw14] /w̄. (33d)

Seƫngm = 0, we recover the dynamics derived by Ewens (1967) for a panmicƟc populaƟon and a focal mutaƟon occurring
in linkage to a background locus at which overdominant selecƟon maintainsB1 at frequency q̂B. We note that Eqs. (29) to
(33) are valid for both a monomorphic and a polymorphic conƟnent. The difference comes in only via q̂B, which is derived
in the following secƟon. Matrix L will be encountered again as the mean matrix of the two-type branching process used
to study the invasion probability of A1 (see also the following secƟon).

Note the difference between wi and wi q: the former refers to the resident populaƟon under the assumpƟon of the
branching process (this secƟon), whereas the laƩer applies to the island populaƟon in the general two-locus model (previ-
ous secƟon). The same disƟncƟon holds for w̄ and ¯̄w.

3 Marginal one-locus migraƟon–selecƟon model
We denote the marginal one-locus migraƟon–selecƟon equilibrium by EB = (p = 0, q = q̂B,D = 0). This equilibrium is
assumed to be realised on the island before occurrence of theA1 mutaƟon. The equilibrium frequency q̂B of alleleB1 plays
an important role. It determines the division of the resident island populaƟon into two geneƟc backgrounds and provides
the weights for compuƟng the average invasion probability of A1 given the haplotype-specific invasion probabiliƟes (see
secƟons 2 and 4). Analysis of the one-locus dynamics (File S2) shows that q̂B is obtained by solving

q′B = (1 −m) w̃1

˜̄w
qB +mqc = qB (34)

for qB, where w̃1 = w33qB +w34(1 − qB) is the marginal relaƟve fitness of theB1 allele and

˜̄w = q2Bw33 + 2qB(1 − qB)w34 + (1 − qB)2w44 (35)

the mean fitness in the island populaƟon. From Eq. (34), one obtains

q̂B =
w34(1 −m) − ˜̄w +√4(1 −m)mqc(w34 −w33) ˜̄w + [ ˜̄w − (1 −m)]2

2(1 −m)(w34 −w33)
, (36)

which simplifies to q̂B = [w34(1 −m) − ˜̄w] / [(1 −m)(w34 −w33)] for a monomorphic conƟnent (qc = 0). The equilibrium
EB is asymptoƟcally stable if the migraƟon rate is smaller than a criƟcal value,

m < w34 − ˜̄w
w34

. (37)

We note that ˜̄w is a (non-linear) funcƟon of qB, and hence of m. Therefore, Eq. (36) is only an implicit soluƟon and
condiƟon (37) not immediately informaƟve. However, for addiƟve fitnesses (see Eq. 1 of themain text) and amonomorphic
conƟnent (qc = 0) wefind the explicit soluƟon given in Eq. (2). This is an admissible polymorphic equilibrium (i.e. 0 < q̂B < 1),
if the migraƟon rate is below a criƟcal value,

m < b

1 − a =∶mB. (38)
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Because a < 1 was assumed, mB is always posiƟve. Straighƞorward calculaƟons show that Eq. (38) is also the condiƟon
for asymptoƟc stability of EB within its marginal one-locus system. That is, under the marginal one-locus dynamics, EB is
stable whenever it is admissible (see File S2, or Nagylaki 1992, chap. 6.1).

When the mutaƟonA1 occurs, there is a transiƟon from one- to two-locus dynamics. It is therefore crucial to study the
stability of EB also under the full two-locus dynamics. We find that EB is not hyperbolic ifm = m∗ or ifm = mB > m∗,
with m∗ given in Eq. (10). In the first case, EB changes stability from unstable to asymptoƟcally stable as m increases
abovem∗; in the second case, EB leaves the state space asm increases beyondmB. We do not have a complete stability
and bifurcaƟon analysis of EB. However, some numerical and analyƟcal results suggest that the qualitaƟve behaviour is
the same as in the conƟnuous-Ɵme model (Bürger and Akerman 2011). Then, the following holds. If EB exists and is
asymptoƟcally stable under the one-locus dynamics, (i.e. m < min(b,mB)), but unstable under the two-locus dynamics
(i.e. m < m∗), then a fully-polymorphic internal equilibrium E+ (0 < p̂+, q̂+ < 1 and D̂+ > 0) exists and is asymptoƟcally
stable. Therefore, ifm <m∗, a novel mutaƟon A1 can invade via EB. Presumably, the internal equilibrium E+ is reached.
Comprehensive numerical computaƟons under the discrete-Ɵme dynamics corroborate this conjecture (see File S2 and
Figure S1).

With a polymorphic conƟnent (0 < qc < 1) and addiƟve fitnesses, the frequency of B1 at the marginal one-locus
migraƟon–selecƟon polymorphism (EB) is

q̂B =
b − (1 − a)m + 2bmqc +√R

2b(1 +m) , (39)

where
R = 4b(1 − a − b)m(1 +m)qc + [b − (1 − a)m + 2bmqc]2 ≥ 0. (40)

In contrast to the case of a monomorphic conƟnent, where EB exists only ifm <mB, with a polymorphic conƟnent, both
alleles B1 and B2 are introduced by migraƟon and hence EB always exists and is always asymptoƟcally stable under the
one-locus dynamics if 0 < qc < 1 and 0 <m < 1.

A comprehensive analysis of the stability of EB involves solving a complicated cubic equaƟon, which results in expres-
sions that are not informaƟve. We could not accomplish a complete analyƟcal treatment, but a combinaƟon of analyƟcal,
numerical and graphical approaches suggests the following. Upon occurrence ofA1 at locus A,EB may either become un-
stable, in which caseA1 can invade and a fully-polymorphic internal equilibriumE+ is reached, orEB may stay asymptoƟ-
cally stable, in which caseA1 cannot invade. The transiƟon between these two scenarios occurs at a criƟcal recombinaƟon
rate

r∗ = {
1
2

ifm ≤mr∗ ,
r̃∗(m) otherwise,

(41)

where r̃∗(m) is a complicated funcƟon ofm that we do not present here (but see Eq. 3 in File S2, and Eq. 92 in secƟon 6),
andmr∗ is the migraƟon rate at which r̃∗(m) has a pole. Then, for a given combinaƟon of values for a, b, m and qc, A1

can invade if and only if r < r∗ (Figure S2). A similar argument holds for a criƟcal conƟnental frequency q∗c ofB1, such that
for a given combinaƟon of values for a, b,m and r, A1 can invade if and only if qc < q∗c (see File S2 for details). We were
not able to find an explicit expression for a criƟcal migraƟon ratem∗ with an interpretaƟon analogous to that of r∗ or q∗c .
However,m∗ is implicitly defined by r∗ or q∗c and can be computed numerically.

As a final remark, we note that for weak evoluƟonary forces, Eqs. (2), (38) and (10) can be approximated by the corre-
sponding equaƟons derived by Bürger and Akerman (2011) for the conƟnuous-Ɵmemodel with a monomorphic conƟnent.
Specifically, scaling a, b,m and r by ϵ and expanding Eqs. (2), (38) and (10) into a Taylor series around ϵ = 0 yields

q̂B ≈ 1 − m
b
, (42)

mB ≈ b, (43)

and

m∗ ≈ a(1 + b − a
r
) (44)

to first order of ϵ and aŌer rescaling. EquaƟons (42) and (44) correspond to Eqs. (3.9) and (3.11) in Bürger and Akerman
(2011).
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4 Branching-process approximaƟon to the invasion probability

For a proper stochasƟc treatment, the evoluƟon of haplotype frequencies has to be modelled by a Markov process. In
the context of invasion of novel mutaƟons, parƟcularly useful approximaƟons can be obtained using branching processes
(Fisher 1922) and diffusion processes (Kimura 1962). Both approaches deal with the probabilisƟc effect due to the iniƟally
small absolute number of copies of the mutant allele. The effect of finite populaƟon size is only accounted for by the
diffusion approximaƟon, however. In the first part of the main paper, we are concerned only with iniƟal rareness of the
mutaƟon.

We employ a two-type branching process (Harris 1963; Ewens 1968, 1967) to study the dynamics of the two haplotypes
of interest, A1B1 (type 1) and A1B2 (type 2) aŌer occurrence of mutaƟon A1 (see secƟon 2 above). Let λij be the mean
number of j-type offspring produced by an i-type parent each generaƟon, and xi the proporƟon of type i in the island
populaƟon. Then the expected proporƟon of types A1B1 and A1B2 in the next generaƟon is

E [x′1] = λ11x1 + λ21x2, (45a)

E [x′2] = λ12x1 + λ22x2, (45b)

or, in matrix form
E [x′] = xL, (46)

where x = (x1, x2), and L = (λij), i, j ∈ {1,2}, is called the mean matrix (cf. Eq. 32 in secƟon 2). The leading eigenvalue
ν of L determines whether the branching process is supercriƟcal (ν > 1) andA1 has a strictly posiƟve invasion probability,
or subcriƟcal (ν < 1), in which case A1 goes exƟnct with probability 1. Expressions for the λij were given in Eq. (33).

The leading eigenvalue of L is

ν = 1 −m
2w̄

[w1 +w2 − rw14 +√(w1 −w2)2 + 2rw14(2q̂B − 1)(w1 −w2) + r2w2
14] , (47)

wherew1 andw2 are themarginal fitnesses of type 1 and type 2 defined in Eq. (30), and w̄ is themean fitness of the resident
populaƟon on the island as defined in Eq. (31) (secƟon 2). AŌer some algebra (see File S3), the condiƟon for invasion of
A1, ν > 1, is found to be equivalent to Eq. (9) in the main text. EquaƟons (47) and (9) hold for both a monomorphic and a
polymorphic conƟnent.

Let ζij be the random number of j-type offspring produced by a single i-type parent. We assume that ζi1 and ζi2 are
independent and Poisson-distributed with mean λi1 and λi2, respecƟvely (i ∈ {1,2}). Then, the probability-generaƟng
funcƟon (pgf) of ζij is

fij(sj) = E[sζij

j ] =
∞
∑
k=0

pks
k
j = e−λij(1−sj), i, j ∈ {1,2}, (48)

where pk = P[ζij = k] is the probability that an i-type parent has k offspring of type j. The first two equaliƟes follow
from the definiƟon of the pgf (e.g. Harris 1963), and the third from the properƟes of the Poisson distribuƟon. Because of
independent offspring distribuƟons for each type, the pgf for the number of offspring (of any type) produced by an i-type
parent is given by

fi(s1, s2) =
2

∏
j=1

fij(sj). (49)

InserƟng Eq. (48) into Eq. (49), we obtain

f1(s1, s2) = e−λ11(1−s1) ⋅ e−λ12(1−s2), (50a)

f2(s1, s2) = e−λ21(1−s1) ⋅ e−λ22(1−s2). (50b)

We useQi for the exƟncƟon probability of alleleA1 condiƟonal on iniƟal occurrence on backgroundBi, and πi = 1−Qi

for the respecƟve probability of invasion. The exƟncƟon probabiliƟesQi are found as the smallest posiƟve soluƟon to Eq.
(3) in the main text. The average invasion probability π̄ is found as the weighted average of π1 and π2 (see Eq. 4 in the
main text). As the problem stated in Eq. (3) amounts to solving a system of transcendental equaƟons, an explicit soluƟon
cannot be found in general. Numerical soluƟons can be obtained, however (see File S3).
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We proceed by assuming addiƟve fitnesses as defined in Eq. (1) of the main text. The entries λij of the mean matrix L
in Eq. (32) are then given by

λ11 = E + Fr, (51a)

λ12 = −Fr, (51b)

λ21 =Hr, (51c)

λ22 = J −Hr, (51d)

where

E = 1 + b + am
1 − a + b , (52a)

F = −m
b
, (52b)

H = b − (1 − a)m
b(1 − a + b) , (52c)

J = 1 +m(a − b)
1 − a + b . (52d)

Assuming weak evoluƟonary forces, i.e. replacing a, b,m and r by αϵ, βϵ, µϵ and ρϵ, respecƟvely, and expanding into
a Taylor series around ϵ = 0, the terms in Eq. (51) are approximated to first order in ϵ by

λ11 ≈ 1 + a − m
b
r, λ12 ≈

m

b
r,

λ21 ≈ (1 − m
b
) r, λ22 ≈ 1 + a − b − (1 − m

b
) r,

aŌer resubsƟtuƟng α→ a/ϵ, β → b/ϵ, µ→m/ϵ and ρ→ r/ϵ.
With addiƟve fitnesses and a monomorphic conƟnent, the dominant eigenvalue of L is

ν = 2 + b − r +m(2a − b − r) +√R1

2(1 − a + b) , (53)

where
R1 = (1 +m) {b2(1 +m) + 2b(1 −m)r + r [r −m(4 − 4a − r)]} . (54)

The branching process is supercriƟcal (ν > 1) if m < m∗ or, alternaƟvely, if r < r∗, with m∗ and r∗ the criƟcal migraƟon
and recombinaƟon rates defined in Eqs. (10) and (11) of the main text, respecƟvely (see File S3 for details). Assuming weak
evoluƟonary forces, ν simplifies to

ν ≈ 1 + 1
2
(2a − b − r +√R2) ,

where
R2 = b2 + 2br − 4mr + r2. (55)

Then,m∗ is approximated by Eq. (44) and

r∗ ≈ r̃∗ = {
∞ ifm ≤ a,
a(b−a)
m−a otherwise

(56)

(see File S3). Note that the criƟcal migraƟon and recombinaƟon rates for invasion of A1 obtained under the determinisƟc
model (secƟon 3) and the corresponding two-type branching process are idenƟcal. In File S4 we show that this agreement
is generically expected.

To obtain the exƟncƟon probabiliƟes ofA1 given iniƟal occurrence on backgroundB1 orB2, we plug Eq. (51) into (50)
and solve

f1 (s1, s2) = e(E+Fr)s1−Frs2−E = s1 (57a)

f2 (s1, s2) = eHrs1+(J−Hr)s2−J = s2 (57b)
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for s1 and s2. The smallest soluƟons between 0 and 1 are the exƟncƟon probabiliƟesQ1 = 1 − π1 andQ2 = 1 − π2 (cf. Eq.
3 in the main text). An explicit soluƟon is not available and we need to use numerical methods to obtain exact results (File
S3).

We now turn to the case of a polymorphic conƟnent (0 < qc < 1), sƟll assuming addiƟve fitnesses. Then,

λ11 = Ẽ + F̃ r, (58a)

λ12 = G̃r, (58b)

λ21 = H̃r, (58c)

λ22 = J̃ + Ĩr, (58d)

with

Ẽ =
(1 −m) (2 + b +m + am + 2bmqc +√R)

2 [1 − a − bm(1 − 2qc) +√R] ,

F̃ = −(1 −m) [b + (1 − a)m + 2bm(1 − qc) −√R]
2b [1 − a − bm(1 − 2qc) +√R] ,

G̃ = b +m [1 − a − 2b(1 − qc)] −√R
2b(1 − a − b) ,

H̃ = b − (1 − a)m − 2bmqc +√R
2b(1 − a + b) ,

Ĩ = −(1 −m) [b − (1 − a)m + 2bmqc +√R]
2b [1 − a − bm(1 − 2qc) +√R] ,

J̃ =
(1 −m) [2 +m + am − b(1 + 2m(1 − qc)) +√R]

2 [1 − a − bm(1 − 2qc) +√R] .

Here, R is as defined in Eq. (40). Assuming weak evoluƟonary forces, i.e. scaling a, b, m and r by ϵ and expanding into a
Taylor series around ϵ = 0, Eq. (58) is approximated to first order in ϵ by

λ11 ≈
1
2
(2 + 2a + b −m −√R3) − b +m −

√
R3

2b
r, λ12 ≈

b +m −√R3

2b
r,

λ21 ≈
b −m +√R3

2b
r, λ22 ≈

1
2
(2 + 2a − b −m −√R3) − b −m +

√
R3

2b
r,

where
R3 = (b −m)2 + 4bmqc > 0. (59)

Note that the conƟnental frequency qc of B1 enters these equaƟons only via 4bmqc in the radicand R3. For a poly-
morphic conƟnent, the eigenvalues of L are complicated expressions, which we do not show here (but see File S3). The
leading eigenvalue can be idenƟfied, though. For weak evoluƟonary forces, and to first order in ϵ, it is approximately

ν ≈ 1 + 1
2
[2a −m − r −√R3 +

√
b2 − r (2m − r − 2

√
R3)] (60)

(see File S5). Finally, the system of transcendental equaƟons to be solved in order to obtain the exƟncƟon probabiliƟes of
A1 becomes

f1 (s1, s2) = e−(Ẽ+F̃ r)(1−s1)−G̃r(1−s2) = s1 (61a)

f2 (s1, s2) = e−H̃r(1−s1)−(J̃+Ĩr)(1−s2) = s2 (61b)

(cf. Eq. 3 of main text).
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To obtain analyƟcal approximaƟons to the invasion probability ofA1, we followHaccou (2005, pp. 127–128) and assume
that the branching process is slightly supercriƟcal (see also Eshel 1984; Hoppe 1992; Athreya 1992, 1993). This means that
the leading eigenvalue of the mean matrix L is of the form

ν = ν(ξ) = 1 + ξ, (62)

where ξ is small and posiƟve. Tomake explicit the dependence on ξ, we writeQi = Qi(ξ) and πi = πi(ξ) for the exƟncƟon
and invasion probabiliƟes, respecƟvely (i ∈ 1,2). Using the Ansatz in Eq. (62), Haccou et al. state in their Theorem 5.6 that,
as ξ → 0, qi(ξ) converges to 1 and

πi(ξ) = 1 − qi(ξ) = 2 [ν(ξ) − 1]
B(ξ)

vi(ξ) + o(ξ). (63)

Here, vk = i is the ith entry of the right eigenvector v = (v1, v2)⊺ pertaining to the leading eigenvalue ν of themeanmatrix
L. The matrix B(ξ) is defined as

B(ξ) =
2

∑
i=1
ui

2

∑
j=1

vjλij + ν(ξ) [1 − ν(ξ)] 2

∑
j=1

ujv
2
j , (64)

where ui is the ith entry of the normalised leŌ eigenvector u = (u1, u2) associated with the leading eigenvalue ν of L. By
normalised we mean that∑2

k uk = 1. For Eq. (63) to hold, u and v must in addiƟon fulfill∑2
k=1 ukvk = 1.

For addiƟve fitnesses (Eq. 1) and a monomorphic conƟnent (qc = 0), we combine Eqs. (53) and (62) to idenƟfy ξ as

ξ = 2a(1 +m) − b − r −m(b + r) +√R1

2(1 − a + b) , (65)

where R1 is defined in Eq. (54). Therefore, the assumpƟon of a slightly supercriƟcal branching process will hold for all
parameter combinaƟons that result in a small posiƟve ξ in Eq. (65). For weak evoluƟonary forces, Eq. (65) is approximated
by the simpler expression below Eq. (12) in the maint text. AŌer some algebra usingMathemaƟca (File S5), we obtain the
appropriately normalised leŌ and right eigenvectors of L as

u =
⎛
⎜
⎝

b(1+m)−(1+m)r+
√

R1
2b(1+m)

2(1−a+b)mr

b[b+r+m(b+r)+
√

R1]

⎞
⎟
⎠

⊺

(66)

and

v =
⎛
⎜
⎝

b2(1+m)−2(1−a)mr+b(r−mr+
√

R1)
(b+r)2+m[(b−r)2−4(1−a)r]+(b−r)

√
R1

2[b−(1−a)m]r
(b+r)2+m[(b−r)2−4(1−a)r]+(b−r)

√
R1

⎞
⎟
⎠
, (67)

respecƟvely. Combining Eqs. (51), (53), (66), (67), and (64), we find analyƟcal expressions for the condiƟonal invasion
probabiliƟes π1(ξ) and π2(ξ) under a slightly supercriƟcal branching process. The weighted average invasion probability
π̄(ξ) is obtained according to Eq. (4) with q̂B given in Eq. (2). The resulƟng expressions are long and not very informaƟve
(see File S5 for details and Figure 2 for a graphical comparison to numerical soluƟons). However, if we assume weak
evoluƟonary forces, we obtain the analyƟcal approximaƟons π̃1(ξ) and π̃2(ξ) given in Eq. (12) of the main text. The
corresponding average invasion probability ¯̃π(ξ) is obtained by inserƟon of Eqs. (12) and (2) into Eq. (4) (see main text).

For a polymorphic conƟnent (0 < qc < 1), the procedure is analogous to the one outlined above. Intermediate and final
expressions are more complicated as those obtained for the monomorphic conƟnent, though. We therefore refer to File
S5 for details and to Figures S5 and S6 for a graphical comparison to numerical soluƟons. The approximaƟons π̃1(ξ), π̃1(ξ)
and ¯̃π(ξ) given in Eqs. (7)–(9) in File S5 for weak evoluƟonary forces and 0 < qc < 1 are accurate if ξ is small, where

ξ ≈ 1
2
[m + r√R3 −

√
b2 − r (2m − r − 2

√
R3)]

andR3 is defined in Eq. (59). Then, the branching process is slightly supercriƟcal (cf. Eq. 62). In pracƟce, the approximaƟons
derived for a polymorphic conƟnent are useful for efficient ploƫng, but otherwise not very intuiƟve. Leƫng qc → 0 and
assumingm <mB (cf. Eq. 38 in secƟon 3), we recover the respecƟve analyƟcal expressions for the case of a monomorphic
conƟnent.
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5 CondiƟon for a non-zero opƟmal recombinaƟon rate
ObservaƟon of the mean invasion probability π̄ of allele A1 as a funcƟon of the recombinaƟon rate r suggests that π̄(r)
may have a maximum at a non-zero recombinaƟon rate (ropt > 0) in some cases, whereas it is maximised at ropt = 0 in
other cases (Figures 1A and 1B). To disƟnguish between these two regimes, we note that ropt > 0 holds whenever the
derivaƟve of π̄(r) with respect to r, evaluated at r = 0, is posiƟve. This is because π̄(r) will always decay for sufficiently
large r. We denote the derivaƟve of interest by

π̄′(0) ∶= d

dr
[q̂Bπ1(r) + (1 − q̂B)π2(r)] ∣

r=0
= q̂B

dπ1(r)
dr

∣
r=0
+ (1 − q̂B)dπ2(r)

dr
∣
r=0
, (68)

where π1 and π2 are the invasion probabiliƟes of A1 condiƟonal on iniƟal occurrence on the B1 and B2 background,
respecƟvely, and q̂B is the equilibrium frequency ofB1 before invasion ofA1. In the following, we obtain π̄′(0) via implicit
differenƟaƟon. We will first derive a general, implicit condiƟon for π̄′(0) > 0, and then proceed by assuming addiƟve
fitnesses to obtain explicit condiƟons. Wewill do so first for amonomorphic (qc = 0) and then for a polymorphic (0 < qc < 1)
conƟnent.

We start from Eq. (3) of the main text with probability generaƟng funcƟons fi(s1, s2) (i ∈ 1,2) as defined in Eq. (50) in
secƟon 4. Recall that the exƟncƟon probabiliƟes Qi = 1 − πi are the smallest posiƟve soluƟons to Eq. (3). Assuming that
these soluƟons have been idenƟfied, we know that the invasion probabiliƟes πi saƟsfy

1 − π1 = e−λ11π1 ⋅ e−λ12π2

1 − π2 = e−λ21π1 ⋅ e−λ22π2 .

Taking the logarithm on both sides and making the dependence of both πi and λij on r explicit, we have

ln [1 − π1(r)] = −λ11(r)π1(r) − λ12(r)π2(r) (69a)

ln [1 − π2(r)] = −λ21(r)π1(r) − λ22(r)π2(r). (69b)

Applying the formulae for the λij(r) given in Eq. (33), Eq. (69) becomes

ln [1 − π1(r)] = −1 −m
w̄
{[w1 − (1 − q̂B)rw14]π1(r) + (1 − q̂B)rw14π2(r)} (70a)

ln [1 − π2(r)] = −1 −m
w̄
{q̂Brw14π1(r) + (w2 − q̂Brw14)π2(r)}. (70b)

DifferenƟaƟng both sides with respect to r, and seƫng r = 0 yields

π′1(0)
1 − π○1 = (1 −m)

w1π
′
1(0) − (1 − q̂B)w14 (π○1 − π○2)

w̄
(71a)

π′2(0)
1 − π○2 = (1 −m)

w2π
′
2(0) + q̂Bw14 (π○1 − π○2)

w̄
, (71b)

where π′i(0) =
dπi(r)

dr
∣
r=0

for i ∈ {1,2}. Moreover, π○1 = π1(0) and π○2 = π2(0) are the condiƟonal invasion probabiliƟes of
A1 if it iniƟally occurs on backgroundB1 andB2, respecƟvely, and if there is no recombinaƟon (r = 0). Solving the system
in Eq. (71) for π′1(0) and π′2(0), and plugging the soluƟons into Eq. (68), we find aŌer some algebra

π̄′(0) = (1 −m)q̂B(1 − q̂B)(π○2 − π○1)w14

w̄
( 1 − π○1

1 − (1 −m)(1 − π○1)w1/w̄
− 1 − π○2

1 − (1 −m)(1 − π○2)w2/w̄
) . (72)

Seƫng r = 0 in Eq. (70) and rearranging, we obtain

(1 −m)wi

w̄
= − ln (1 − π○i )/π○i i ∈ {1,2}. (73)

InserƟon of Eq. (73) into Eq. (72) yields

π̄′(0) = (1 −m)q̂B(1 − q̂B)(π○2 − π○1)w14

w̄
( 1 − π○1

1 + ln (1 − π○1)(1 − π○1)/π○1 −
1 − π○2

1 + ln (1 − π○2)(1 − π○2)/π○2 ) . (74)
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At this point, a closer inspecƟon of Eq. (73) is worthwhile. Straighƞorward rearrangement leads to

1 − π○i = exp [−(1 −m)wi

w̄
π○i ] i ∈ {1,2}, (75)

which has a soluƟon π○i in (0,1] if and only if (1 −m)wi/w̄ > 0. Otherwise, the only soluƟon is π○i = 0. In our seƫng,
we always assumed that when A1 occurs on the deleterious background (B2), it will form a subopƟmal haplotype (A1B2

less fit on the island than A1B1) and go exƟnct in the absence recombinaƟon. This assumpƟon translates into w2 < w̄.
As 0 < m < 1, we immediately note that for i = 2, the only possible soluƟon of Eq. (75) is π○2 = 0. Therefore, whenever
w1 > w̄/(1 −m) holds, the derivaƟve of interest in Eq. (72) simplifies to

π̄′(0) = (1 −m)q̂B(1 − q̂B)π○1w14

w̄
( w̄

w̄ − (1 −m)w2
− 1 − π○1

1 − (1 −m)(1 − π○1)w1/w̄
) . (76)

AŌer some algebra (File S6), we find that π̄′(0) > 0, and hence ropt > 0, is equivalent to Eq. (13) in the main text. Again,
if we setm = 0 in the derivaƟon above, we obtain expressions previously derived by Ewens for a panmicƟc populaƟon in
which the background locus is maintained polymorphic by heterozygote superiority (Ewens 1967).

To obtain more explicit condiƟons, we assume addiƟve fitnesses (Eq. 1). We start directly from Eq. (57), replacing si

by the smallest soluƟon Qi between 0 and 1. Taking the logarithm on both sides and making the dependence of Qi on r
explicit, we find

lnQ1(r) = (E + Fr)Q1(r) − FrQ2(r) −E (77a)

lnQ2(r) =HrQ1(r) + (J −Hr)Q2(r) − J, (77b)

where E, F , J andH are independent of r and as defined in Eq. (52). DifferenƟaƟng Eq. (77) on both sides, seƫng r = 0
and rearranging, we obtain

Q′1(0)
Q○1

= F (Q○1 −Q○2) +EQ′1(0)
Q′2(0)
Q○2

=H (Q○1 −Q○2) + JQ′2(0),
withQ′i(0) =

dQ1(r)
dr
∣
r=0. Here, we usedQ

○
i = Qi(0) for the exƟncƟon probability ofA1 condidƟonal on iniƟal occurrence

on backgroundBi (i ∈ {1,2}). Solving forQ′1(0) andQ′2(0) yields

Q′1(0) =
FQ○1(Q○1 −Q○2)

1 −EQ○1 (78a)

Q′2(0) =
HQ○2(Q○1 −Q○2)

1 − JQ○2 . (78b)

To obtain an explicit soluƟon, we aim at approximaƟng theQ○i in the following. Going back to Eq. (57) again, but seƫng
r = 0 directly, we find

Q○i = e−Zi(1−Q○i) i ∈ {1,2}, (79)

where

Z1 ∶= E = 1 + b + am
1 − a + b , (80a)

Z2 ∶= J = 1 +m(a − b)
1 − a + b . (80b)

Importantly, the equaƟons forQ○1 andQ
○
2 in (79) are now decoupled. Moreover, we note that Eq. (79) has a soluƟonQ○i in

[0,1) if and only if Zi > 1; if Zi ≤ 1, the soluƟon is Q○i = 1. In other words, in the case of complete linkage (r = 0), type i
has a non-zero invasion probability if and only if Zi > 1 (recall that π○i = 1 −Q○i ). Closer inspecƟon of Eq. (80) shows that,
given our assumpƟons of a < b and 0 < m < 1, Z1 > 1 and Z2 < 1 hold always. Hence, we have π○2 = 1 −Q○2 = 0, and we
are leŌ with finding an approximate soluƟon of Eq. (79) for i = 1. For this purpose, we focus on the case where invasion is
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just possible, i.e. π○1 is close to 0 and hence Q○1 close to 1. This is equivalent to Z1 being close to, but larger than, 1. We
therefore use the Ansatz

Z1 = 1 + ϵ (81)

with ϵ > 0 small. We then have Q○1 = e−(1+ϵ)(1−Q
○
1). NoƟng that Q○1(ϵ) must be close to 1 for ϵ small, we expand the

right-hand side into a Taylor series aroundQ○1 = 1, which results in

Q○1 = 1 − (1 −Q○1)(1 + ϵ) + 1
2
(1 −Q○1)2(1 + ϵ)2 +O(Q○1)3 (82)

NeglecƟng terms beyond O(Q○1)2 and solving for Q○1, we obtain Q○1 = (1 + ϵ2)/(1 + ϵ)2 (excluding the trivial soluƟon
Q○1 = 1). To first order in ϵ, this is approximated by

Q○1 = 1 − π○1 ≈ 1 − 2ϵ. (83)

We idenƟfy ϵ by inserƟng Eq. (80a) into Eq. (81) and solving for ϵ. To first order in a, this yields ϵ ≈ a(1 +m)/(1 + b)
and hence, from Eq. (83), we find

Q○1 = 1 − 2
a(1 +m)
(1 + b) +O(a)2. (84)

Note that if we set m = 0 (no migraƟon) and b = 0 (no background selecƟon), we recover Haldane's (1927) well-known
approximaƟon π ≈ 2a.

Comparison of Eqs. (83) and (84) suggests that the invasion probability π○1 increases with the migraƟon rate m. This
may seem counterintuiƟve. However, with complete linkage (r = 0), the cases ofA1 occurring on backgroundB1 orB2 can
be considered separately. IfA1 occurs on backgroundB1, it forms haplotypeA1B1. From then on it competes against the
resident populaƟon consisƟng of haplotypesA2B1 andA2B2 at frequencies q̂B and 1− q̂B, respecƟvely. Because, iniƟally,
A1B1 types do not interfere nor contribute to the resident populaƟon, what maƩers is the raƟo of the marginal fitnessw1

of A1B1 to the mean fitness w̄ of the resident populaƟon. This follows directly from Eq. (73). EquaƟons (30a) and (31) in
secƟon 2 show that both w1 and w̄ depend on q̂B. For addiƟve fitnesses, q̂B is given by Eq. (2) in the main text; it depends
onm. Therefore, to understand the apparently paradoxical increase of π○1 onm, we must compare the dependence onm
ofw1 and w̄. We havew1 = (1+b+am)/(1+m) and w̄ = (1−m)(1−a+b)/(1+m). Both decrease withm, but w̄ does so
faster. The raƟow1/w̄ = (1+b+am)/ [(1 − a + b)(1 −m)] increases quickly withm (File S6). This explains why π○1 increaes
withm. It also explains why π1 increases with smallm in Figure S3D for very weak recombinaƟon. If recombinaƟon is too
strong, the effect vanishes (Figures S3E and S3F).

Finally, plugging Eq. (52) from secƟon 4 and Eq. (84) into Eq. (78), we obtain the explicit approximaƟons

Q′1(0) ≈
2m(1 − a + b) [1 + b − 2a(1 +m)]

b(1 + b)(1 + b + 2am)
, (85a)

Q′2(0) ≈
2a [b − (1 − a)m]
b(1 + b)(a − b) , (85b)

valid for a small relaƟve to m and b. NoƟng that π̄′(0) = − [q̂BQ′1(0) + (1 − q̂B)Q′2(0)] and using q̂B from Eq. (2) of the
main text for addiƟve fitnesses and a monomorphic conƟnent, we find the approximate derivaƟve of the mean invasion
probability π̄ at r = 0 as

π̄′(0) ≈
2m(1 − a + b) [b − (1 − a)m] {2a2 + b + b2 − 2a [1 + b(2 +m)]}

b2(1 + b)(a − b)(1 +m)(1 + b + 2am)
. (86)

AŌer some algebra, one can show that π̄′(0) > 0, and hence ropt > 0, if a > 1 − b/m and a > a∗, with a∗ defined in Eq.
(14) of the main text. CombinaƟon of Eq. (14) with our assumpƟon a < b and the condiƟon for existence of the marginal
one-locus equilibrium EB (a > 1 − b/m, from Eq. 38 in secƟon 3) yields a sufficient condiƟon for ropt > 0 (Figure 3). For
further details, we refer to File S6.

For the case of a polymorphic conƟnent (qc > 0), we were not able to derive informaƟve analyƟcal condiƟons for
ropt > 0. AnalyƟcal and numerical computaƟons in File S6 suggest that if we start with a monomorphic conƟnent (qc = 0)
in a constellaƟon where ropt > 0 holds, and then increase qc, the maximum in π̄(r) shiŌs to 0 (ropt → 0). There must be a
criƟcal value of qc at which the shiŌ from ropt > 0 to ropt = 0 occurs, but we could not determine it analyƟcally.
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6 Analysis of the determinisƟc model in conƟnuous Ɵme

For the diffusion approximaƟon in the following secƟon we will need a conƟnuous-Ɵme version of our model as a starƟng
point. Here, we derive this model from the discrete-Ɵme version. We will analyse some properƟes of interest in the
context of invasion and survival of a weakly beneficial mutaƟon arising in linkage to a migraƟon–selecƟon polymorphism.
The conƟnuous-Ɵme version with amonomorphic conƟnent (qc = 0) has been completely analysed by Bürger and Akerman
(2011). Therefore, we only summarise some of their results and focus on the extension to a polymorphic conƟnent (0 <
qc < 1). We use a Ɵlde (∼) to disƟnguish conƟnuous-Ɵme expressions from their analogous terms in discrete Ɵme. For ease
of typing, though, this disƟncƟon is not made in allMathemaƟca Notebooks provided in the SupporƟng InformaƟon.

We start from the recursion equaƟons for the haplotype frequencies given in Eq. (28) of this text, with relaƟve fitnesses
wij according to Eq. (1). As wewill assume quasi-linkage equilibrium (QLE) in the following secƟon, it is more convenient to
express the dynamics in terms of allele frequencies (p, q) and linkage disequilibrium (D), rather than haplotype frequencies.
This is achieved by recalling the relaƟonships between D, p, q, and the xi (i = 1, . . . ,4) given in secƟon 1. The resulƟng
difference equaƟons are complicated and only shown in File S7. We obtain the differenƟal equaƟons by assuming that the
changes due to selecƟon, migraƟon and recombinaƟon are small during a short Ɵme interval ∆t. Scaling a, b,m and r by
∆t and taking the limit lim∆t→0

∆x
∆t

for x ∈ {p, q,D} results in

ṗ = dp
dt
= ap(1 − p) −mp + bD, (87a)

q̇ = dq
dt
= bq(1 − q) −m(q − qc) + aD, (87b)

Ḋ = dD
dt
= [a(1 − 2p) + b(1 − 2q)]D +m [p(q − qc) −D] − rD. (87c)

For a monomorphic conƟnent (qc = 0), one finds the marginal one-locus migraƟon–selecƟon equilibrium ẼB for locus
B by seƫng p =D = 0 and solving q̇ = 0 for q, which yields

ˆ̃qB = 1 − m
b

(88)

as the soluƟon of interest (cf. Eq. 42). Bürger and Akerman (2011) have shown that this equilibrium is asymptoƟcally stable
in its one-locus dynamics whenever it exists, i.e. whenm < b = m̃B. Moreover, it is asymptoƟcally stable under the two-
locus dynamics if andonly if m̃∗ <m < b, where m̃∗ = a (1 + b−a

r
) (cf. Eq. 44 in secƟon3, and Eq. 3.13 in Bürger andAkerman

2011). Note that Bürger and Akerman usedmB for what we call m̃∗. Invasion ofA1 via ẼB requiresm <min(b, m̃∗). AŌer
invasion, the system reaches an asymptoƟcally stable, fully-polymorphic equilibrium Ẽ+. There may exist a second fully-
polymorphic equilibrium Ẽ−, but this is never stable and does not exist when ẼB is unstable. It is therefore of limited
interest to us. Bürger and Akerman give the coordinates of these equilibria in their Eq. (3.15).

For a polymorphic conƟnent (0 < qc < 1), we find the frequency ˆ̃qB ofB1 at the marginal one-locus migraƟon–selecƟon
equilibrium ẼB as

ˆ̃qB =
b −m +√R3

2b
, (89)

with R3 = (b −m)2 + 4bmqc > 0 as previously encountered in Eq. (59) in secƟon 4. Equilibrium ẼB always exists and is
always asymptoƟcally stable under its one-locus dynamics (File S7). To know when a weakly beneficial mutaƟon at locus A
can invade, we invesƟgate the stability properƟes of ẼB under the two-locus dynamics. The Jacobian matrix evaluated at
ẼB = (p = 0, q = ˆ̃qB,D = 0) is

JẼB
=
⎛
⎜
⎝

a −m 0 b
0 −√R3 a

m (b −m − 2bqc +√R3) /(2b) 0 a − r −√R3

⎞
⎟
⎠

(90)

and its leading eigenvalue is

ν̃ = 1
2
[2a −m − r −√R3 +

√
b2 − r (2m − r − 2

√
R3)] (91)
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(cf. Eq. 60). Equilibrium ẼB is unstable if and only if ν̃ > 0. To obtain explicit condiƟons, we determine values of r and qc at
which ẼB is not hyperbolic (i.e. ν̃ = 0) and may therefore enter or leave the state space, or change its stability. Equilibrium
ẼB is not hyberbolic if the recombinaƟon rate is equal to

r̃∗∗ =
2a2 − 2a (m +√R3) +m [m − b(1 − 2qc) +√R3]

2(a −m) (92)

(File S7). As a funcƟon ofm, r̃∗∗ has a pole atm = a, and r̃∗∗ = 0 ifm = a(a + b)/(a + bqc). This holds for a < b, which is
one of our general assumpƟons. We conclude that ẼB is unstable and A1 can invade whenever r < r̃B, where

r̃B = {
∞ if 0 ≤m ≤ a,
r̃∗∗ ifm > a. (93)

Figure S7 shows the division of the (m,r)-parameter space into areaswhere ẼB is asymptoƟcally stable (blue) and unstable
(orange), respecƟvely.

By solving ν̃ = 0 for qc, we obtain two criƟcal conƟnental frequencies of B1 at which ẼB is not hyperbolic. These are
given by

q̃∗∗c± =
1
2
+ (a −m)(a + r)

bm
± (2a −m)

√
R4

2bm
, (94)

whereR4 = 4r(a−m)+ b2. We first invesƟgate the properƟes of q̃∗∗± as a funcƟon of the migraƟon ratem. A combinaƟon
of algebra and graphical exploraƟon given in File S7 suggests that the following cases must be disƟnguished:

Case 1 2a ≤ b and (r ≤ a or b − a ≤ r). Then ẼB is unstable if qc < q̃c,B, with q̃c,B defined as

q̃c,B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞ ifm < a,
q̃∗∗c+ if a ≤m < a + b − r,
0 if a + b − r ≤m. (95)

Case 2 (2a < b and a < r < b − a) or (2a > b and b − a < r < a). Then ẼB is unstable if qc < q̃c,B, with q̃c,B defined as

q̃c,B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞ ifm < a,
q̃∗∗c+ if a ≤m < a(b − a + r)/r,
0 if a(b − a + r)/r ≤m. (96)

Case 3 2a > b and 2r > b and a ≤ r⇔ 2a > b and a ≤ r. We disƟnguish four subcases:

3a m < a. Then ẼB is always unstable.

3b a ≤m ≤ a(b − a + r)/r. Then ẼB is unstable if qc < q̃∗∗c+ .

3c a(b − a + r)/r <m < a + b2/(4r). Then ẼB is unstable if q̃∗∗c− < qc < q̃∗∗c+ .

3d a + b2/(4r) ≤m. Then ẼB is asymptoƟcally stable.

Case 4 2a > b and 2r > b and a > r⇔ 2r > b and a > r. We disƟnguish four subcases:

4a m < a. Then ẼB is always unstable.

4b a ≤m ≤ a + b − r. Then ẼB is unstable if qc < q̃∗∗c+ .

4c a + b − r <m < a + b2/(4r). Then ẼB is unstable if q̃∗∗c− < qc < q̃∗∗c+ .

4d a + b2/(4r) ≤m. Then ẼB is asymptoƟcally stable.

Figure S8 shows the parƟƟon of the (m,qc)-parameter space into areas where ẼB is asymptoƟcally stable (blue) and
unstable (orange), respecƟvely. There are parameter combinaƟons such that ẼB is asymptoƟcally stable for very low and
for high values of qc, but unstable for intermediate qc (Figures S8B and S8C). This effect is weak and constrained to a small
proporƟon of the parameter space (qc small).

AlternaƟvely, we assess the properƟes of q̃∗∗± as a funcƟon of the recombinaƟon rate r. Graphical exploraƟon (File S7)
suggests the following, provided that a < min(m,b) holds. If recombinaƟon is weak, i.e. r < a(b − a)/(m − a) = r̃∗,
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then ẼB is unstable if qc < q̃∗∗c+ . If recombinaƟon is intermediate, i.e. r̃∗ < r < b2/ [4(m − a)], then ẼB is unstable if
q̃∗∗c− < qc < q̃∗∗c+ . Last, if recombinaƟon is strong, i.e. r ≥ b2/ [4(m − a)], then ẼB is asymptoƟcally stable. Note that r̃∗

was previously encountered in Eq. (56) in the context of the branching process. Figure S9 shows the division of the (r, qc)-
parameter space into areas where ẼB is asymptoƟcally stable (blue) and unstable (orange), respecƟvely. As just shown,
there are parameter combinaƟons such that ẼB is asymptoƟcally stable for very low and for high values of qc, but unstable
for intermediate qc (Figures S9A–S9C).

In principle, analogous condiƟons for asymptoƟc stability of ẼB under the two-locus dynamics could be obtained in
terms of a criƟcal migraƟonr ratem∗∗ at which ẼB is not hyperbolic (ν̃ = 0). However, we were not able to derive infor-
maƟve explicit condiƟons (see File S7 for a graphical exploraƟon).

So far, we have described the condiƟons for instability of the marginal one-locus migraƟon–selecƟon equilibrium ẼB

under the two-locus dynamics, both for a monomorphic (qc = 0) and a polymorphic (0 < qc < 1) conƟnent. In both cases,
there is no other stable equilibrium on the boundary for 0 < m < 1. As menƟoned above, for the case of a monomorphic
conƟnent, the coordinates of the fully-polymorphic equilibria can be found (Bürger and Akerman 2011) and asymptoƟc
stability proved (Bank et al. 2012). For a polymorphic conƟnent, simple explicit expressions are not available, but we could
show analyƟcally that at most three candidates for a fully-polymorphic equilibrium exist. Numerical and graphical explo-
raƟons suggest that if ẼB is unstable, at most one of these candidates is an admissible equilibrium, and it is asymptoƟcally
stable (see File S7 for details). Figures S7–S9 therefore directly tell us when A1 can be established if introduced near ẼB

(orange areas).

In the following secƟon, we will derive a diffusion approximaƟon of sojourn and absorpƟon Ɵmes under the assump-
Ɵon of quasi-linkage equilibrium (QLE), i.e. for r ≫ max(m,b). Therefore, we briefly discuss the properƟes under the
QLE assumpƟon of the fully-polymorphic, asymptoƟcally stable, equilibria menƟoned in the previous paragraphs. For a
monomorphic conƟnent, Ẽ+ is approximated to first order in 1/r by

ˆ̃p+ =
bm + ar −m(m + r)

ar
= 1 − m

a
+ m
r

(b −m)
a

, (97a)

ˆ̃q+ =
am + br −m(m + r)

br
= 1 − m

b
+ m
r

(a −m)
b

, (97b)

ˆ̃D+ =
(a −m)(b −m)m

abr
= m
r
(1 − m

a
)(1 − m

b
) , (97c)

(cf. Eq. 4.3 in Bürger and Akerman 2011). As r → ∞, Eq. (97) converges to the case of no linkage, where ˆ̃p+ = 1 −m/a,
ˆ̃q+ = 1 −m/b, and ˆ̃D+ = 0. Turning to the case of a polymorphic conƟnent, we recall from above that there is at most one
admissible fully-polymorphic equilibrium. To first order in 1/r, its coordinates are

ˆ̃p+ =
2ar +m(b − 2bqc −m − 2r +√R3)

2ar
= 1 − bmqc

ar
+ m(b −m)

2ar
+ m
√
R3

2ar
− m
a
, (98a)

ˆ̃q+ =
1
2
− am(2bqc − b +m −

√
R3)

2br
√
R3

+ m(m + r)(m −
√
R3)

2br
√
R3

+ b

2
√
R3

+ m(2qc − 1)(m + 2r)
2r
√
R3

, (98b)

ˆ̃D+ =
m(a −m) [b(1 − 2qc) −m +√R3]

2abr
. (98c)

Seƫng qc = 0 and recalling that m < m̃∗ = a (1 + b−a
r
) must hold for invasion in this case (secƟon 3), it is easy to verify

that Eq. (98) coincides with Eq. (97). This is why we call the equilibrium in Eq. (98) Ẽ+QLE. Graphical exploraƟon in File S7
confirms that Ẽ+QLE is asymptoƟcally stable whenever it exists under the QLE regime.

Finally, we ask when Ẽ+QLE exists in the admissible state space. We note that ˆ̃p+QLE is a strictly decreasing funcƟon
of the recombinaƟon rate r, independently of the migraƟon ratem. In contrast, ˆ̃q+QLE is a strictly decreasing funcƟon of
r if and only ifm ≤ a, which is of limited interest, because A1 can then be established in any case. We denote by r ˆ̃p0

+QLE

and r ˆ̃p1
+QLE

the recombinaƟon rates at which ˆ̃p+QLE equals 0 and 1, respecƟvely. Analogously, we use r ˆ̃q0
+QLE

and r ˆ̃q1
+QLE

for the recombinaƟon rates at which ˆ̃q+QLE equals 0 and 1, respecƟvely. These criƟcal recombinaƟon rates are found to
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be

r ˆ̃p0
+QLE

=m m − b(1 − 2qc) −√R3

2(a −m) , (99a)

r ˆ̃p1
+QLE

= 1
2
(b −m − 2bqc +√R3) , (99b)

and

r ˆ̃q0
+QLE

= (m − a) b +m −
√
R3

2
√
R3

, (100a)

r ˆ̃q1
+QLE

= (a −m) b −m +
√
R3

2
√
R3

. (100b)

As shown in File S7, ifm < a, Ẽ+QLE exists in the admissible state space if and only if r > max(r ˆ̃p1
+QLE

, r ˆ̃q1
+QLE
). Ifm ≥ a,

Ẽ+QLE exists in the admissible state space if and only if max(r ˆ̃p1
+QLE

, r ˆ̃q1
+QLE
) < r < r ˆ̃p0

+QLE
. At a first glance, it may seem

surprising to obtain an upper limit on r. However, as is easily verified, r ˆ̃p0
+QLE

is also the criƟcal value at which Ẽ+QLE

coincides with the QLE approximaƟon of ẼB, which becomes asymptoƟcally stable. Thus, with looser linkage, allele A1 is
lost.

7 Diffusion approximaƟon to sojourn and absorpƟon Ɵmes assuming quasi-linkage equilibrium
Although some two-locus diffusion theory has been developped (Ewens 2004; Ethier and Nagylaki 1989, 1988, 1980),
explicit calculaƟon of quanƟƟes of interest, such as absorpƟon probabiliƟes or Ɵmes, seems difficult. SubstanƟal progress
can be made, though, by assuming that recombinaƟon is much stronger compared to selecƟon (and migraƟon). Then,
linkage disequilibrium decays on a fast Ɵme scale, whereas allele frequencies evolve on a slow Ɵme scale under quasi-
linkage equilibrium (QLE) (Kimura 1965; Nagylaki et al. 1999; Kirkpatrick et al. 2002). Here, we employ the QLE assumpƟon
to approximate the expected amount of Ɵme the focal alleleA1 spends in a certain range of allele frequencies (the sojourn
Ɵmes), as well as the expected Ɵme to exƟncƟon (the mean absorpƟon Ɵme). We do so in detail for a monomorphic
conƟnent (qc = 0) first. For a polymorphic conƟnent (0 < qc < 1), we will only give a brief outline and refer to File S7 for
details. Throughout, we closely follow Ewens (2004) in our applicaƟon of diffusion theory.

We start from the conƟnuous-Ɵme dynamics of the allele frequencies (p, q) and the linkage disequilibrium (D) in Eq.
(87), seƫng qc = 0 for a monomorphic conƟnent. Given that recombinaƟon is strong compared to selecƟon andmigraƟon,
D will be close to an equilibrium, so that Ḋ = dD/dt ≈ 0may be assumed. Moreover, we assume that the frequency of the
beneficial background alleleB1 is not affected by establishment ofA1. Specifically, q = ˆ̃qB constant, where ˆ̃qB = 1−m/b is
the frequency ofB1 at the one-locusmigraƟon–selecƟon equilibrium in conƟnuous Ɵme (Eq. 88). EquaƟon (87) is therefore
approximated by

ṗ = dp
dt
= ap(1 − p) −mp + bD, (101a)

q̇ = dq
dt
= 0, (101b)

Ḋ = dD
dt
= [a(1 − 2p) + b(1 − 2q)]D +m (pq −D) − rD = 0. (101c)

Solving Eq. (101c) forD, plugging the soluƟon into Eq. (101a) and seƫng q = ˆ̃qB, we obtain a single differenƟal equaƟon in
p:

ṗ = ap(1 − p) −mp + m(b −m)
b −m − a(1 − 2p) + r p. (102)

In the limit of r → ∞, we recover the one-locus migraƟon-selecion dynamics for the conƟnent–island model, ṗ = ap(1 −
p) −mp.

We now consider the diffusion process obtained from the Wright–Fisher model (Fisher 1930; Wright 1931). More
precisely, wemeasure Ɵme in units of 2Ne generaƟons, whereNe is the effecƟve populaƟon size, and use T for Ɵme on the
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diffusion scale. Further, we introduce the scaled selecƟon coefficients α = 2Nea and β = 2Neb, the scaled recombinaƟon
rate ρ = 2Ner, and the scaled migraƟon rate µ = 2Nem. EquaƟon (102) yields the infinitesimal mean

M(p) = αp(1 − p) − µp + µ(β − µ)
β − µ − α(1 − 2p) + ρ p

(cf. Eq. 5 in the main text). It expresses the mean change in p per unit of Ɵme on the diffusion scale. The infinitesimal
variance is

V (p) = p(1 − p) (103)

(Karlin and Taylor 1981, p. 159).

Later, we will need the raƟo ofM(p) to V (p), which is

M(p)
V (p)

= α − µ

1 − ρ (1 −
β − µ

β − α(1 − 2p) − µ + ρ) . (104)

We define the funcƟon ψ(p) according to Eq. (4.16) in Ewens (2004) as

ψ(p) ∶= exp [−2∫ p

0

M(z)
V (z)

dz] . (105)

InserƟng Eq. (104), we find,

ψ(p) = e−2αp(1 − p)− 2µ(α+ρ)
α+β−µ+ρ (β − α − µ + ρ) 2µ(β−µ)

α+β−µ+ρ [β − (1 − 2p)α − µ + ρ] 2µ(µ−β)
α+β−µ+ρ . (106)

The derivaƟon assumes that (α − β + µ − ρ)/(αp) < 0 holds. Recalling from secƟon 3 that, for instability of the marginal
one-locus equilibrium ẼB, it is required that m < m̃∗ = a (1 + b−a

r
) and that then a < min(b, r), one can show that

(α − β + µ − ρ)/(αp) < 0 holds indeed (see File S7).

We now turn to the sojourn Ɵmes as defined in Ewens (2004, pp. 141–144). We denote the iniƟal frequency of the
focal mutaƟonA1 by p0 and introduce the funcƟon t(p;p0) to describe the sojourn-Ɵme density (STD). The interpretaƟon
of t(p;p0) is the following. The integral

∫
p2

p1

t(p;p0)dp

approximates themean Ɵme in units of 2Ne generaƟons alleleA1 spends at a frequency in the interval (p1, p2), condiƟonal
on the iniƟal frequency p0. According to Eqs. (4.38) and (4.39) in Ewens (2004), we define

t(p;p0) = {
t1(p;p0) if 0 ≤ p ≤ p0,
t2(p;p0) if p0 ≤ p ≤ 1. (107)

To make the assumpƟon of quasi-linkage equilibrium explicit, we will add the subscript QLE to relevant quanƟƟes from
now on. The densiƟes ti,QLE(p;p0) are given by Eq. (7) in the main text, with ψ(y) as in Eq. (105). The integral ∫

x
0 ψ(y)dy

cannot be found explicitly. However, because Eq. (7a) takes the form t1,QLE(p;p0) = 2ψ(y)−1(1−p)−1p−1 ∫ p
0 ψ(y)dy and

p−1 ∫
p
0 ψ(y)dy → 1 as p→ 0 (File S7), we approximate t1,QLE(p;p0) by

t̃1,QLE(p;p0) =
2p

V (p)ψ(p)
(108)

whenever p is small. Recall from Eq. (107) that t1(p;p0) is needed only if 0 ≤ p ≤ p0. We are in general interested in a
de-novo mutaƟon, i.e. p0 = 1/(2N), with populaƟon sizeN at least about 100. Hence, p ≤ p0 automaƟcally implies that p
is small whenever t1,QLE(p;p0) is employed. The approximaƟon in Eq. (108) is therefore valid for our purpose.

Similarly, we may mulƟply t2,QLE(p;p0) by p0 and 1/p0 and write

t2,QLE(p;p0) = 2p0ψ(y)−1(1 − p)−1p−1p−10 ∫
p0

0
ψ(y)dy.

Again, p−10 ∫
p0

0 ψ(y)dy → 1 as p0 → 0 (File S7). We therefore approximate t2,QLE(p;p0) by

t̃2,QLE(p;p0) =
2p0

V (p)ψ(p)
(109)
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whenever p0 is small. In the following, we use a Ɵlde (∼) to denote the assumpƟon of small p0.

The expected Ɵme to exƟncƟon of alleleA1 in our model is idenƟcal to themean absorpƟon Ɵme, because exƟncƟon is
the only absorbing state. For arbitrary iniƟal frequency p0, the approximate mean absorpƟon Ɵme under the QLE approxi-
maƟon is obtained from the sojourn-Ɵme densiƟes as shown in Eq. (8) of the main text. Assuming small p0, this simplifies
to

˜̄tQLE = ∫
p0

0
t̃1,QLE(p;p0)dp +∫ 1

p0

t̃2,QLE(p;p0)dp. (110)

In both cases, the integrals must be computed numerically. As a further approximaƟon for very small p0, one may omit the
first integral on the right-hand side of Eq. (110), as its contribuƟon becomes negligible when p0 → 0.

The predicƟons for the sojourn-Ɵme densiƟes (STDs) and the mean absorpƟon Ɵme derived above are accurate if the
QLE assumpƟon holds (Figures 7, S11 and S12). However, the analyƟcal expressions for the STDs in Eqs. (108) and (109)
are not very informaƟve once we plug in explicit formulae for V (p) and ψ(p) (see File S7). In the following, we will gain
more insight by making an addiƟonal assumpƟon.

We assume that recombinaƟon is much stronger than selecƟon and migraƟon, and expand M(p) from Eq. (5) as a
funcƟon of ρ−1 to first order into a Taylor series. This yields

M(p) ≈Mρ≫0(p) = αp(1 − p) − µp + µ(β − µ)
ρ

p

and hence Eq. (16) in the main text. The infinitesimal variance V (p) from Eq. (103) remains unchanged, but the raƟo of
M(p) to V (p) simplifies to

Mρ≫0(p)
V (p)

= α − µ

1 − ρ (1 −
β − µ
ρ
) . (111)

InserƟon into Eq. (105), integraƟon and some algebra yields

ψρ≫0(p) = e−2αp(1 − p)− 2µ(µ−β+ρ)
ρ . (112)

The sojourn-Ɵme density (STD) is then given by

t1,QLE,ρ≫0(p;p0) =
2

V (p)ψρ≫0(p) ∫
p

0
ψρ≫0(y)dy, (113a)

t2,QLE,ρ≫0(p;p0) =
2

V (p)ψρ≫0(p) ∫
p0

0
ψρ≫0(y)dy. (113b)

As before, x−1 ∫
x
0 ψρ≫0(p)dp → 1 as x → 0. Arguments analogous to those leading to Eqs. (108) and (109) show that, for

a small iniƟal frequency p0, the STD is approximated by

t̃1,QLE,ρ≫0(p;p0) =
2p

V (p)ψρ≫0(p)
= 2e2pα(1 − p) 2µ(µ−β+ρ)

ρ −1,

t̃2,QLE,ρ≫0(p;p0) =
2p0

V (p)ψρ≫0(p)
= 2p0e

2pαp−1(1 − p) 2µ(µ−β+ρ)
ρ −1

(cf. Eq. 17 of the main text). For details, we refer to File S7. The mean absorpƟon Ɵme is again obtained as

t̄QLE,ρ≫0 = ∫
p0

0
t1,QLE,ρ≫0(p;p0)dp +∫ 1

p0

t2,QLE,ρ≫0(p;p0)dp (114)

using the STD in Eq. (113) for arbitrary iniƟal frequency p0, or as

˜̄tQLE,ρ≫0 = ∫
p0

0
t̃1,QLE,ρ≫0(p;p0)dp +∫ 1

p0

t̃2,QLE,ρ≫0(p;p0)dp (115)

using the STD in Eq. (17) for small p0. Figure 5 compares the various approximaƟons to the STD derived under the QLE
assumpƟon for a monomorphic conƟnent (qc). It also includes a comparison to the STD for a one-locus model (OLM),
which is specified by

t̃1,OLM(p;p0) = 2e2pα(1 − p)2µ−1 if 0 ≤ p ≤ p0,

t̃2,OLM(p;p0) = 2p0e
2pαp−1(1 − p)2µ−1 if p0 ≤ p ≤ 1
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for small p0 (cf. Eq. 15 in the main text).

A comparison of the STD given in Eq. (17) for two loci with large ρ and small p0 to the corresponding one-locus STD in
Eq. (15) is interesƟng. The difference is that µ in the one-locus model is replaced by µ(µ−β + ρ)/ρ to obtain the formulae
for the two-locus model. Hence, for strong recombinaƟon, we may define an effecƟve scaled migraƟon rate

µe = µ
µ + ρ − β

ρ
= µ − βµ

ρ
+ µ2

ρ
≈ µ(1 − β

ρ
) ,

where the approximaƟon holds for µ ≪ min(β, ρ). The interpretaƟon is that µe denotes the scaled migraƟon rate in
a one-locus migraƟon–selecƟon model for which allele A1 has the same sojourn-Ɵme properƟes as if it arose in a two-
locus model with scaled migraƟon rate µ and linkage to a previously established polymorphism that decays at a scaled
recombinaƟon rate ρ. Transforming back from the diffusion to the natural scale, we obtain the invasion-effecƟve migraƟon
ratesme and m̃e given in Eqs. (19) and (20) of the main text, respecƟvely (see also Figure S18A).

We now turn to the case of a polymorhpic conƟnent (0 < qc < 1). DerivaƟons are analogous to those shown above for
the monomorphic conƟnent, but more cumbersome. We therefore give only a rough summary here and refer to File S7
for details.

The mean change in p per unit of Ɵme on the diffusion scale and under the assumpƟon of quasi-linkage equilibrium
(QLE) is

M(p) ∶= dp
dT
= αp(1 − p) − µp − µ (β − µ − 2βqc +√R5)

2 [α (1 − 2p) − ρ −√R5]
p, (116)

whereR5 = (β − µ)2 + 4βµqc > 0.

EquaƟon (116) can be used to numerically compute the sojourn-Ɵme densiƟes (STDs) and the mean absorpƟon Ɵme
analogous to Eqs. (7) and (8) (see File S7). To obtain informaƟve analyƟcal results for the STDs, however, it is necessary
to assume that recombinaƟon is strong compared to selecƟon and migraƟon, i.e. ρ ≫ min(b,m). Then, the infinitesimal
mean is approximated by

M(p) ≈Mρ≫0(p) = αp(1 − p) − µp + µ (β − µ − 2βqc +√R5)
2ρ

p (117)

The infinitesimal variance is the same as for a monomorphic conƟnent, V (p) = p(1−p). InserƟngMρ≫0(p) from Eq. (117)
and V (p) into the definiƟon of ψ(p) in Eq. (105), we obtain

ψρ≫0(p) = e−2αp(1 − p)µ(β−µ−2ρ−2βqc+
√

R5)
ρ . (118)

The STDs t1,QLE,ρ≫0(p;p0) and t2,QLE,ρ≫0(p;p0) are found by inserƟon of ψρ≫0(p) from Eq. (118) into Eq. (113). Exploit-
ing the fact that x−1 ∫

x
0 ψρ≫0(p)dp converges to 1 as x approaches 0, the STDs can be approximated by

t̃1,QLE,ρ≫0(p;p0) = 2e2pα(1 − p)µ(µ−β+2βqc+2ρ−
√

R5)
ρ −1, (119a)

t̃2,QLE,ρ≫0(p;p0) = 2p0e
2pαp−1(1 − p)µ(µ−β+2βqc+2ρ−

√
R5)

ρ −1 (119b)

This approximaƟon is valid if the iniƟal frequency p0 is small and ρ is large. The mean absorpƟon Ɵme for arbitrary p0 is
found according to Eq. (114). For small p0, it is given by Eq. (115), with t̃i,QLE,ρ≫0(p;p0) from Eq. (119).

8 EffecƟve migraƟon rate at a neutral site linked to two migraƟon–selecƟon polymorphisms
We derive the effecƟve migraƟon rate experienced by a neutral locus (C) linked to two loci (A and B) that are maintained
polymorphic at migraƟon–selecƟon balance. Locus C has two alleles C1 and C2, which are assumed to segregate at con-
stant frequencies nc and 1 − nc on the conƟnent. The frequency of C1 on the island at Ɵme t is denoted by n(t). Loci A
and B are as above, with alleles A1 and B1 segregaƟng at frequencies p and q on the island, respecƟvely. Without loss of
generality, we assume that A is located to the leŌ of B on the chromosome. We denote by rXY the recombinaƟon rate
between lociX and Y , where rXY = rY X . Because we consider a conƟnuous-Ɵme model here, we may assume that the
recombinaƟon rate increases addiƟvely with distance on the chromosome. For simplicity, we restrict the analysis to the
case of a monomorphic conƟnent, i.e. alleles A2 andB2 are fixed on the conƟnent.
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Following Bürger and Akerman (2011), we define the effecƟve migraƟon rate as the asymptoƟc rate of convergence of
n(t) to the fully-polymorphic three-locus equilibrium. This rate of convergence is defined by the leading eigenvalue λN

of the Jacobian of the system that describes the evoluƟon of the frequency of C1 and the linkage disequilibria associated
with locus C. Specifically, we define the effecƟve migraƟon rate asme = −λN (cf. Kobayashi et al. 2008).

We start by assuming that the neutral locus is located between the two selected ones (configuraƟon A−C−B). We
denote byDAB =D,DAC andDCB the linkage disequilibria between the indicated loci, and byDACB = y1 − pqn− pDCB −
qDAC − nDAB the three-way linkage disequilibrium, where y1 is the frequency of gamete A1C1B1. The changes due to
selecƟon, migraƟon and recombinaƟon in p, q, and DAB are given by Eq. (87) of this text, with r replaced by rAB. The
frequency of C1 evolves according to

ṅ =m(nc − n) + aDAC + bDCB (120)

and the differenƟal equaƟons for the linkage disequilibria associated with locus C are

ḊAC = a(1 − 2p)DAC + bDACB −mDAC −mp(nc − n) − rACDAC, (121a)

ḊCB = aDACB + b(1 − 2q)DCB −mDCB −mq(nc − n) − rCBDCB, (121b)

ḊACB = [a(1 − 2p) + b(1 − 2q)]DACB − 2(aDAC + bDCB)DAB +m(pDCB + qDAC −DACB)+m(pq −DAB)(nc − n) − rABDACB (121c)

(we use ẋ for the differenƟal of x with respect to Ɵme, dx/dt). We refer to File S8 for the derivaƟon. Recall that rAB =
rAC + rCB. This system has an asymptoƟcally stable equilibrium such that the selected loci are at the equilibrium Ẽ+ (Eq.
3.15 in Bürger and Akerman 2011), and n = nc andDAC = DCB = DACB = 0 hold. The Jacobian at this equilibrium has the
block structure

J = (JS 0
0 JN

) ,

where JS is the Jacobian approximaƟng convergence of (p, q,DAB) to Ẽ+, and JN is the Jacobian approximaƟng con-
vergence of (n,DAC,DCB,DACB) to (nc,0,0,0). In the limit of weak migraƟon, i.e. m ≪ (a, b, r), the laƩer is given
by

JACB
N =

⎛
⎜⎜⎜⎜⎜
⎝

−m a b 0
m −a − rAC + m(a−b+rAB)

a+b+rAB
0 b

m 0 −b − rCB + m(b−a+rAB)
a+b+rAB

a

−m m(b−a+rAB)
a+b+rAB

m(a−b+rAB)
a+b+rAB

−a − b − rAB + m(a+b+3rAB)
a+b+rAB

⎞
⎟⎟⎟⎟⎟
⎠

. (122)

As shown previously (Bürger and Akerman 2011), to first order inm, the leading eigenvalue of JACB
N is given by

λACB
N =m rACrCB

(a + rAC) (b + rCB)
, (123)

and hence the approximaƟon of the effecƟvemigraƟon rate in Eq. (22b) in themain text is obtained (see File S8 for details).
We note that Eqs. (120), (121) and (122) correct errors in Eqs. (4.25), (4.26) and (4.28) of Bürger and Akerman (2011),
respecƟvely. The main results by Bürger and Akerman (2011) were not affected, though.

If the neutral locus is located to the right of the two selected ones (configuraƟon A−B−C), Eqs. (120) and (121) remain
the same (recall that rXY = rY X and in this case rAC = rAB + rBC). In Eq. (87c), r must be replaced by rAC. Then, the
Jacobian JABC

N approximaƟng convergence of (n,DAC,DBC = DCB,DABC = DACB) to (nc,0,0,0) in the limit of weak
migraƟon is equal to JACB

N with the last entry of the last row replaced by −a − b − rAC + m(a+b+3rAB)
a+b+rAB

. To first order inm,

the leading eigenvalue of JABC
N is

λABC
N =m rBC (b + rAC)

(b + rBC) (a + b + rAC)
, (124)

and hence Eq. (22c) in the main text. Details are given in File S8.

Last, the leading eigenvalue for configuraƟon C−A−B follows directly by symmetry,

λCAB
N =m rCA (a + rCB)

(a + rCA) (a + b + rCB)
, (125)

and hence Eq. (22a) in the main text.
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Recall that the Jacobian matrices JACB
N and JABC

N hold under the assumpƟon of weak migraƟon. In File S8, we derive
analogous matrices under the assumpƟon of weak recombinaƟon, i.e. r ≪ (a, b,m). These are too complicated to be
shown here, but importantly, to first order inm, their leading eigenvalues are idenƟcal to Eqs. (123) and (124), respecƟvely.
By symmetry, this also applies to the configuraƟonC−A−B. Therefore, the approximate effecƟvemigraƟon rates in Eq. (22)
are valid also for Ɵght linkage between the neutral locus and the selected loci.

To test the robustness of our results agaist violaƟon of the assumpƟon of weak migraƟon, we numerically computed
exact effecƟve migraƟon rates. In most cases, the deviaƟon is very small; compare dashed to solid curves in Figures 8 and
S19, and dots to curves in Figure S20.
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File S2
DeterminisƟc analysis of a diploid two-locus conƟnent–island model in discrete Ɵme.
File S2 is a PDF version of the MathemaƟca Notebook 2LocContIsland Determ Discr.nb (see File S10) and available for
download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S3
Branching-process approximaƟon of the invasion probability of a weakly beneficial mutaƟon linked to an established
polymorphism at migraƟon–selecƟon balance.
File S3 is a PDF version of theMathemaƟca Notebook 2LocContIsland Stoch Discr.nb (see File S10) and available for down-
load at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S4
Comparison of the Jacobian of the marginal one-locus migraƟon–selecƟon equilibrium (EB) to the mean matrix of the
corresponding branching process.
File S4 is a PDF version of the MathemaƟca Notebook 2LocContIsland Compare JacobianVsMeanMatrix.nb (see File S10)
and available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S5
AnalyƟcal approximaƟon of the invasion probability for a slightly supercriƟcal branching process.
File S5 is a PDF version of theMathemaƟcaNotebook 2LocContIsland Stoch Discr SlightlySupercritBP.nb (see File S10) and
available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S6
DerivaƟve of the weighted mean invasion probability π̄ at recombinaƟon rate r = 0.
File S6 is a PDF version of the MathemaƟca Notebook 2LocContIsland Stoch Discr OptRecombRate.nb (see File S10) and
available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S7
Diffusion approximaƟon of sojourn and absorpƟon Ɵmes assuming quasi-linkage disequilibrium.
File S7 refers to the MathemaƟca Notebook 2LocContIsland Stoch DiffusionApprox QLE.nb archived in File S10. File S10
is available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.
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File S8
The effecƟve migraƟon rate experienced by a neutral site linked to two loci at migraƟon–selecƟon balance.
File S8 is a PDF version of the MathemaƟca Notebook 2LocContIsland Determ effMigRate.nb (see File S10) and available
for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S9
The effect on neutral variaƟon of migraƟon and selecƟon at two linked sites.
File S9 is a PDF version of theMathemaƟca Notebook 2LocContIsland Stoch NeutralLinkedMut.nb (see File S10) and avail-
able for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S10
Archive ofMathemaƟca Notebooks in the NB format (Files S2–S9).
File S10 is available for download as a ZIP file at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S11
Archive of Java source code, binaries, and JAR files for simulaƟons as described in Methods.
File S11 is available for download as a ZIP file at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.
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