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ABSTRACT We study invasion and survival of weakly beneficial mutations arising in linkage to an established migration—selection
polymorphism. Our focus is on a continent-island model of migration, with selection at two biallelic loci for adaptation to the island
environment. Combining branching and diffusion processes, we provide the theoretical basis for understanding the evolution of islands of
divergence, the genetic architecture of locally adaptive traits, and the importance of so-called “divergence hitchhiking” relative to other
mechanisms, such as “genomic hitchhiking”, chromosomal inversions, or translocations. We derive approximations to the invasion
probability and the extinction time of a de novo mutation. Interestingly, the invasion probability is maximized at a nonzero recombination
rate if the focal mutation is sufficiently beneficial. If a proportion of migrants carries a beneficial background allele, the mutation is less
likely to become established. Linked selection may increase the survival time by several orders of magnitude. By altering the timescale of
stochastic loss, it can therefore affect the dynamics at the focal site to an extent that is of evolutionary importance, especially in small
populations. We derive an effective migration rate experienced by the weakly beneficial mutation, which accounts for the reduction in
gene flow imposed by linked selection. Using the concept of the effective migration rate, we also quantify the long-term effects on neutral
variation embedded in a genome with arbitrarily many sites under selection. Patterns of neutral diversity change qualitatively and
guantitatively as the position of the neutral locus is moved along the chromosome. This will be useful for population-genomic inference.
Our results strengthen the emerging view that physically linked selection is biologically relevant if linkage is tight or if selection at the

background locus is strong.

DAPTATION to local environments may generate a se-

lective response at several loci, either because the fitness-
related traits are polygenic or because multiple traits are under
selection. However, populations adapting to spatially variable
environments often experience gene flow that counteracts
adaptive divergence. The dynamics of polygenic adaptation
is affected by physical linkage among selected genes, and
hence by recombination (Barton 1995). Recombination allows
contending beneficial mutations to form optimal haplotypes,
but it also breaks up existing beneficial associations (Fisher
1930; Muller 1932; Hill and Robertson 1966; Lenormand and
Otto 2000). On top of that, finite population size causes
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random fluctuations of allele frequencies that may lead to
fixation or loss. Migration and selection create statistical asso-
ciations even among physically unlinked loci.

The availability of genome-wide marker and DNA-sequence
data has spurred both empirical and theoretical work on the
interaction of selection, gene flow, recombination, and genetic
drift. Here, we study the stochastic fate of a locally beneficial
mutation that arises in linkage to an established migration—
selection polymorphism. We also investigate the long-term
effect on linked neutral variation of adaptive divergence with
gene flow.

Empirical insight on local adaptation with gene flow emerges
from studies of genome-wide patterns of genetic differentiation
between populations or species. Of particular interest are studies
that have either related such patterns to function and fitness
(e.g., Nadeau et al. 2012, 2013) or detected significant devi-
ations from neutral expectations (e.g., Karlsen et al. 2013),
thus implying that some of this divergence is adaptive. One
main observation is that in some organisms putatively adaptive
differentiation (e.g., measured by elevated Fgy) is clustered at
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certain positions in the genome (Nosil and Feder 2012 and
references therein). This has led to the metaphor of genomic
islands of divergence or speciation (Turner et al. 2005).
Other studies did not identify such islands, however (see
Strasburg et al. 2012, for a review of plant studies).

These findings have stimulated theoretical interest in mech-
anistic explanations for the presence or absence of genomic
islands. Polygenic local adaptation depends crucially on the
genetic architecture of the selected traits, but, in the long
run, local adaptation may also lead to the evolution of this
architecture. Here, we define genetic architecture as the
number of, and physical distances between, loci contributing
to local adaptation, and the distribution of selection coefficients
of established mutations.

Using simulations, Yeaman and Whitlock (2011) have
shown that mutations contributing to adaptive divergence in
a quantitative trait may physically aggregate in the presence
of gene flow. In addition, these authors reported cases where
the distribution of mutational effects changed from many di-
vergent loci with mutations of small effect to few loci with
mutations of large effect. Such clustered architectures reduce
the likelihood of recombination breaking up locally beneficial
haplotypes and incorporating maladaptive immigrant alleles.
This provides a potential explanation for genomic islands of
divergence. However, it is difficult to explain the variability in
the size of empirically observed islands of divergence, espe-
cially the existence of very long ones. Complementary mech-
anisms have been proposed, such as the accumulation of
adaptive mutations in regions of strongly reduced recombina-
tion (e.g., at chromosomal inversions; Guerrero et al. 2012;
McGaugh and Noor 2012) or the assembly of adaptive muta-
tions by large-scale chromosomal rearrangements (e.g., trans-
positions of loci under selection; Yeaman 2013).

It is well established that spatially divergent selection can
cause a reduction in the effective migration rate (Charlesworth
et al. 1997; Kobayashi et al. 2008; Feder and Nosil 2010). This
is because migrants tend to carry combinations of alleles that
are maladapted, such that selection against a locally deleteri-
ous allele at one locus also eliminates incoming alleles at other
loci. The effective migration rate can be reduced either by
physical linkage to a gene under selection or by statistical
associations among physically unlinked loci. Depending on
whether physical or statistical linkage is involved, the pro-
cess of linkage-mediated differentiation with gene flow has,
by some authors, been called “divergence hitchhiking” or
“genomic hitchhiking,” respectively (Nosil and Feder 2012;
Feder et al. 2012; Via 2012). These two processes are not
mutually exclusive, and, recently, interest in assessing their
relative importance in view of explaining observed patterns
of divergence has been growing. If not by inversions or
translocations, detectable islands of divergence are expected
as a consequence of so-called divergence hitchhiking, but
not of genomic hitchhiking. This is because physical linkage
reduces the effective migration rate only locally (i.e., in the
neighborhood of selected sites), whereas statistical linkage
may reduce it across the whole genome. Yet, if many loci are
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under selection, it is unlikely that all of them are physically
unlinked (Barton 1983), and so the two sources of linkage
disequilibrium may be confounded.

A number of recent studies have focused on the invasion
probability of neutral or locally beneficial de novo mutations in
the presence of divergently selected loci in the background
(Feder and Nosil 2010; Yeaman and Otto 2011; Feder et al.
2012; Flaxman et al. 2013; Yeaman 2013). They showed that
linkage elevates invasion probabilities only over very short
map distances, implying that physical linkage provides an in-
sufficient explanation for both the abundance and size of is-
lands of divergence. Such conclusions hinge on assumptions
about the distribution of effects of beneficial mutations, the
distribution of recombination rates along the genome, and the
actual level of gene flow. These studies were based on time-
consuming simulations (Feder and Nosil 2010; Feder et al
2012; Flaxman et al. 2013; Yeaman 2013) or heuristic ad
hoc aproximations (Yeaman and Otto 2011; Yeaman 2013)
that provide limited understanding. Although crucial, invasion
probabilities on their own might not suffice to gauge the im-
portance of physical linkage in creating observed patterns of
divergence. In finite populations, the time to extinction of adap-
tive mutations is also relevant. It codetermines the potential of
synergistic interactions among segregating adaptive alleles.

Here, we fill a gap in existing theory to understand the role
of physical linkage in creating observed patterns of divergence
with gene flow. First, we provide numerical and analytical
approximations to the invasion probability of locally beneficial
mutations arising in linkage to an existing migration—selection
polymorphism. This sheds light on the ambiguous role of re-
combination and allows for an approximation to the distribution
of fitness effects of successfully invading mutations. Second, we
obtain a diffusion approximation to the proportion of time the
beneficial mutation segregates in various frequency ranges (the
sojourn-time density) and the expected time to its extinction
(the mean absorption time). From these, we derive an invasion-
effective migration rate experienced by the focal mutation.
Third, we extend existing approximations of the effective mi-
gration rate at a neutral site linked to two migration—selection
polymorphisms (Biirger and Akerman 2011) to an arbitrary
number of such polymorphisms. These formulae are used to
predict the long-term footprint of polygenic local adaptation
on linked neutral variation. We extend some of our analysis
to the case of standing, rather than de novo, adaptive variation
at the background locus.

Methods
Model

We consider a discrete-time version of a model with migration
and selection at two biallelic loci (Biirger and Akerman 2011).
Individuals are monoecious diploids and reproduce sexually. Soft
selection occurs at the diploid stage and then a proportion m
(0 < m < 1) of the island population is replaced by immigrants
from the continent (Haldane 1930). Migration is followed by



gametogenesis, recombination with probability r (0 = r <
0.5), and random union of gametes including population
regulation. Generations do not overlap.

We denote the two loci by A and B and their alleles by A;
and A,, and B; and B, respectively. Locus A is taken as the focal
locus and locus B as background locus. The four haplotypes 1,
2, 3, and 4 are A,B,, A1B,, AsB1, and A,B,. On the island, the
frequencies of A; and B, are p and q, and the linkage disequi-
librium is denoted by D (see Supporting Information, File S1,
sect.1, for details).

Biological scenario

We assume that the population on the continent is fixed for
alleles A, and B,. The island population is of size N and initially
fixed for A, at locus A. At locus B, the locally beneficial allele B,
has arisen some time ago and is segregating at migration—
selection balance. Then, a weakly beneficial mutation occurs
at locus A, resulting in a single copy of A; on the island. Its fate
is jointly determined by direct selection on locus A, linkage to
the selected locus B, migration, and random genetic drift. If A,
occurs on the beneficial background (B,), the fittest haplotype
is formed and invasion is likely unless recombination transfers
A; to the deleterious background (B,). If A, initially occurs on
the B, background, a suboptimal haplotype is formed (A;B,;
Equation 1 below) and A; is doomed to extinction unless it
recombines onto the B; background early on. These two scenar-
ios occur proportionally to the marginal equilibrium frequency
g of B;. Overall, recombination is therefore expected to play an
ambiguous role.

Two aspects of genetic drift are of interest: random fluctua-
tions when A; is initially rare and random sampling of alleles
between successive generations. In the first part of the article,
we focus exclusively on the random fluctuations when A; is
rare, assuming that N is so large that the dynamics is almost
deterministic after an initial stochastic phase. In the second
part, we allow for small to moderate population size N on
the island. The long-term invasion properties of A; are expected
to differ in the two cases (Ewens 2004, pp. 167-171). With
N sufficiently large and parameter combinations for which
a fully polymorphic internal equilibrium exists under deter-
ministic dynamics, the fate of A, is decided very early on. If
it survives the initial phase of stochastic loss, it will reach the
(quasi-) deterministic equilibrium frequency and stay in the
population for a very long time (Petry 1983). This is what
we call invasion, or establishment. Extinction will finally occur,
because migration introduces A,, but not A;. Yet, extinction
occurs on a timescale much longer than is of interest for this
article. For small or moderate N, however, genetic drift will
cause extinction of A; on a much shorter timescale, even for
moderately strong selection. In this case, stochasticity must
be taken into account throughout, and interest shifts to the
expected time A, spends in a certain range of allele frequencies
(sojourn time) and the expected time to extinction (absorption
time).

As an extension of this basic scenario, we allow the
background locus to be polymorphic on the continent. Allele

B is assumed to segregate at a constant frequency q.. This
reflects, for instance, a polymorphism maintained at drift—
mutation or mutation—selection balance. It could also apply
to the case where the continent is a metapopulation or
receives migrants from other populations. A proportion g,
of haplotypes carried by immigrants to the focal island will
then be A,B;, and a proportion 1 — q. will be A5B.

Fitness and evolutionary dynamics

We define the relative fitness of a genotype as its expected
relative contribution to the gamete pool from which the next
generation of zygotes is formed. We use w;; for the relative
fitness of the genotype composed of haplotypes i andj (i, j €
{1, 2, 3, 4}). Ignoring parental and position effects in hete-
rozygotes, we distinguish nine genotypes. We then have
Wi = Wy for all i 75] and Wo3 = Wig.

The extent to which analytical results can be obtained for
general fitnesses is limited (Ewens 1967; Karlin and McGregor
1968). Unless otherwise stated, we therefore assume absence
of dominance and epistasis, ie., allelic effects combine addi-
tively within and between loci. The matrix of relative genotype
fitnesses w; (Equation 27 in File S1) may then be written as

B1B; B1By ByB2
AjA1 [14+a+b 1+a 1+4+a-b
AA, | 14D 1 1-b |, )
AsAy \1—-a+b 1—a 1—-a-b>b

where a and b are the selective advantages on the island of
alleles A; and B; relative to A, and Bs, respectively. To enforce
positive fitnesses, we require that 0 < a,b < 1,anda + b < 1.
We assume that selection in favor of A; is weaker than selection
in favor of B; (a < b). Otherwise, A; could be maintained in
a sufficiently large island population independently of B,
whenever B; is not swamped by gene flow (Haldane 1930).
As our focus is on the effect of linkage on establishment of
A4, this case is not of interest.

The deterministic dynamics of the haplotype frequencies are
given by the recursion equations in File S1, Equation 28 (see
also File S2). A crucial property of these dynamics is the fol-
lowing. Whenever a marginal one-locus migration—selection
equilibrium FEjy exists such that the background locus B is poly-
morphic and locus A is fixed for allele A,, this equilibrium is
asymptotically stable. After occurrence of A,, Eg may become
unstable, in which case a fully polymorphic (internal) equilib-
rium emerges and is asymptotically stable, independently of
whether the continent is monomorphic (g. = 0) or polymor-
phic (0 < q. < 1) at the background locus. Therefore, in the
deterministic model, invasion of A; via Ep is always followed by
an asymptotic approach toward an internal equilibrium (see
File S1, sect. 3 and 6).

Casting our model into a stochastic framework is difficult
in general. By focusing on the initial phase after occurrence
of A,, the four-dimensional system in Equation 28 can be
simplified to a two-dimensional system (Equation 29 in File S1).
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This allows for a branching-process approach as described in the
following.

Two-type branching process

As shown in File S1, sect. 2, for rare A;, we need to follow only
the frequencies of haplotypes A1B, and A;B,. This corresponds
to A; initially occurring on the B; or B, background, respectively,
and holds as long as A; is present in heterozygotes only. More-
over, it is assumed that allele B, is maintained constant at the
marginal one-locus migration-selection equilibrium Eg of the
dynamics in Equation 28. At this equilibrium, the frequency of
Bl is

. b—-m(l-a)
dp = Th4m) (2)
for a monomorphic continent (see File S1, sect. 3, for
details, and Equation 39 for a polymorphic continent).

To model the initial stochastic phase after occurrence of A; for
large N, we employed a two-type branching process in discrete
time (Harris 1963). We refer to haplotypes A;B; and A,B, as
types 1 and 2, respectively. They are assumed to propagate in-
dependently and contribute offspring to the next generation
according to type-specific distributions. We assume that the num-
ber of j-type offspring produced by an i-type parent is Poisson-
distributed with parameter A ; (i € {1, 2}). Because of independent
offspring distributions, the probability-generating function (pgf)
for the number of offspring of any type produced by an i-type
parent is fi(s1,52) = Hleflj(sj), where f;(sj) = e (173 for i,
j€A{1,2} (File S1, sect. 4). The A;; depend on fitness, migration,
and recombination and are derived from the deterministic
model (Equation 33 in File S1). The matrix L = (Ay), i, j €
{1, 2}, is called the mean matrix. Allele A, has a strictly positive
invasion probability if v > 1, where v is the leading eigenvalue
of L. The branching process is called supercritical in this case.

We denote the probability of invasion of A; conditional
on initial occurrence on background B; (B,) by 71 (75), and
the corresponding probability of extinction by Q; (Q,). The
latter are found as the smallest positive solution of

fi(s1,82) =51 (3a)

fa(s1,82) =52 (3b)

suchthats;<1(@{e€{1,2}).Then,m;=1—-Q,and7my,=1—-Q,
(Haccouetal 2005). The overall invasion probability of A is given
as the weighted average of the two conditional probabilities,

m=qpm + (1 —qp)m2 4

(¢f. Ewens 1967, 1968; Kojima and Schaffer 1967). File S1,
sect. 4, gives further details and explicit expressions for additive
fitnesses.

Diffusion approximation

The branching process described above models the initial
phase of stochastic loss and applies as long as the focal mutant
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A; is rare. To study long-term survival of A;, we employ
a diffusion approximation. We start from a continuous-time
version of the deterministic dynamics in Equation 28, as-
suming additive fitnesses as in Equation 1. For our purpose,
it is convenient to express the dynamics in terms of the allele
frequencies (p, q) and the linkage disequilibrium (D), as given
in Equation 87 in File S1. Changing to the diffusion scale, we
measure time in units of 2N, generations, where N, is the
effective population size.

We introduce the scaled selection coefficients o« = 2N, a and
B = 2N.b, the scaled recombination rate p = 2N.r, and the
scaled migration rate u = 2Ngm. As it is difficult to obtain
analytical results for the general two-locus diffusion problem
(Ethier and Nagylaki 1980, 1988, 1989; Ewens 2004), we
assume that recombination is much stronger than selection
and migration. Then, linkage disequilibrium decays on a faster
timescale, whereas allele frequencies evolve on a slower one
under quasi-linkage equilibrium (QLE) (Kimura 1965; Nagylaki
et al. 1999; Kirkpatrick et al. 2002). In addition, we assume
that the frequency of the beneficial background allele B; is not
affected by establishment of A; and stays constant at q = le.
Here, ‘313 is the frequency of B; at the one-locus migration—
selection equilibrium when time is continuous, Eg (Equations
88 and 89 in File S1). As further shown in File S1, sect. 6, these
assumptions lead to a one-dimensional diffusion process. The
expected change in p per unit time is

(B —n
B—u—a(l=2p)+p

M(p) = ap(1—p) — up + p ()

if the continent is monomorphic. The first term is due to direct
selection on the focal locus, the second reflects migration, and
the third represents the interaction of all forces.

For a polymorphic continent, M(p) is given by Equation
116 in File S1, and the interaction term includes the conti-
nental frequency q. of B;. In both cases, assuming random
genetic drift according to the Wright-Fisher model, the
expected squared change in p per unit time is V(p) = p(1
— p) (Ewens 2004). We call M(p) the infinitesimal mean and
V(p) the infinitesimal variance (Karlin and Taylor 1981,
p. 159).

Let the initial frequency of A; be po. We introduce the
sojourn-time density (STD) t(p; po) such that the integral
/ ; > t(p; po)dp approximates the expected time A, segregates
at a frequency between p, and p, before extinction, condi-
tional on po. Following Ewens (2004, Equations 4.38 and
4.39), we define

t1.oe(p;po) if 0=p=po

. ) (6)
taqLe(p;po) if po=p=1

toie(p; Po) = {

with subscript QLE for the assumption of quasi-linkage equilib-
rium. The densities t; o1r(p; po) are

2 P
t1,0LE(P; Po) :W/o P(y)dy, (7a)
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2

) 73

Po
t2,0Le(P;Po) = | (y)dy,

where (p) = exp {—2 /p(M(z)/V(z))dz}. Integration over
0

p vyields the expected time to extinction,

"Po 1
toLE :/o fl,QLE(P;Po)dP‘i‘/ t2,0Le(P; po)dp, ®
Po

or the mean absorption time, in units of 2N, generations. A
detailed exposition is given in File S1, sect. 7. See File S10
for Mathematica Notebooks.

Simulations

We conducted two types of simulation, one for the branching-
process regime and another for a finite island population
with Wright-Fisher random drift. In the branching-process
regime, we simulated the absolute frequency of the two
types of interest (A;B; and A1B,) over time. Each run was
initiated with a single individuum and its type determined
according to Equation 2. Every generation, each individual
produced a Poisson-distributed number of offspring of either
type (see above). We performed n = 106 runs. Each run was
terminated if either the mutant population went extinct (no
invasion), reached a size of 500/ (2a) (invasion), or survived
for more than 5 X 10* generations (invasion). We estimated
the invasion probability from the proportion 7 of runs that
resulted in invasion, and its standard error as /(1 — ) /n.

In the Wright-Fisher-type simulations, each generation was
initiated by zygotes built from gametes of the previous gener-
ation. Viability selection, migration, and gamete production
including recombination (meiosis) were implemented accord-
ing to the deterministic recursions for the haplotype frequen-
cies in Equation 28. Genetic drift was simulated through the
formation of N, (rather, the nearest integer) zygotes for the
next generation by random union of pairs of gametes. Gametes
were sampled with replacement from the gamete pool in
which haplotypes were represented according to the deter-
ministic recursions. Replicates were terminated if either allele
A, went extinct or a maximum of 10” generations was reached.
Unless otherwise stated, for each parameter combination we
performed 1000 runs, each with 1000 replicates. Replicates
within a given run provided one estimate of the mean absorp-
tion time, and runs provided a distribution of these estimates.
Java source code and JAR files are available in File S11.

Results
Establishment in a large island population

We first describe the invasion properties of the beneficial
mutation A, which arises in linkage to a migration—-selection
polymorphism at the background locus B. Because we assume
that the island population is large, random genetic drift is
ignored after A; has overcome the initial phase during which

stochastic loss is likely. Numerical and analytical results were
obtained from the two-type branching process and confirmed
by simulations (see Methods). We turn to the case of small to
moderate population size further below. (See lines 511, 515,
and 516.)

Conditions for the invasion of A;: Mutation A, has a strictly
positive invasion probability whenever

i {%%Wl -( ‘?B)WZ} < (%“”) <%W2>
9

(File S1, sect. 4, and File S3). Here, w; is the marginal fitness
of type i and w the mean fitness of the resident population (see
Equations 30 and 31 in File S1). Setting m = 0, we recover the
invasion condition obtained by Ewens (1967) for a panmictic
population in which allele B; is maintained at frequency gy by
overdominant selection. All remaining results in this subsection
assume additive fitnesses as in Equation 1.

For a monomorphic continent (g. = 0), it follows from
Equation 9 that A; can invade only if m < m*, where

ab—a+r)
(@a—=r)(a=b)+r(l—a)

%

m=* =

(10)

In terms of the recombination rate, A; can invade only if r <
r*, where

2 ~1-2a+b
(€8]
ala—b)(1+m)

a(T +2m)— (1 + bym OV

(see File S1, sects. 3 and 4, File S2, and Figure S1 for
details).

For a polymorphic continent (0 < g. < 1), A; has a strictly
positive invasion probability whenever r and q. are below the
critical values r* and q; derived in File S1, sect. 3 (cf. File S4,
Figure S2). In this case, we could not determine the critical
migration rate m” explicitly. For an analysis in continuous time,
see File S1, sect. 6, and Figure S7, Figure S8, and Figure S9.

Invasion probability: We obtained exact conditional invasion
probabilities, 71 and 775, of A; by numerical solution of the pair
of transcendental equations in Equation 3. From these, we
calculated the average invasion probability 7 according to
Equation 4, with gz as in Equation 2 (Figure 1 and Figure
S3 for a monomorphic continent). Haldane (1927) approxi-
mated the invasion probability without migration and linked
selection by 2a, ie., twice the selective advantage of A; in
a heterozygote. With linked selection, the map distance over
which 7 is above, say, 10% of 2a can be large despite gene
flow (Figure 1, A and B).

Analytical approximations were obtained by assuming
that the branching process is slightly supercritical, i.e., that
the leading eigenvalue of the mean matrix L is of the form
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v =1+ & with £ > 0 small. We denote these approxima-
tions by 71 (¢) and 75(¢). The expressions are long (File S5)
and not shown here. For weak evolutionary forces (a, b, m,
r < 1), m1(£) and m5(§) can be approximated by

a(b+r+vRz) —2mr}
\/R_z )

7r1(£) = max {0, (12a)

b2—2mr+b(r— R ) —a(b—r—\/R_2>

2

)

72(¢) = max {O,

Z

(12b)

whereR, = b2 + 2br — 4mr + r2and £ ~ %(Za -b—-r+ \/R_2>

The approximate average invasion probability 7 (€) is obtained
according to Equation 4, with gy as in Equation 2. Formally,
these approximations are justified if £ < 1 (File S1, sect. 4).
Figure 2 suggests that the assumption of weak evolutionary
forces is more crucial than £ small and that if it is fulfilled, the
approximations are very good (compare Figure 2, A-D).

For a polymorphic continent, exact and approximate
invasion probabilities are derived in File S3 and File S5
(see also sect. 4 in File S1). The most important, and per-
haps surprising, effect is that the average invasion probabil-
ity decreases with increasing continental frequency q. of the
beneficial background allele B; (Figure S4). As a conse-
quence, invasion requires tighter linkage if g. > 0. This is
because the resident island population has a higher mean
fitness when a proportion q. > 0 of immigrating haplotypes
carry the B, allele, which makes it harder for A; to become
established. Competition against fitter residents therefore
compromises the increased probability of recombining onto
a beneficial background (B;) when A; initially occurs on the
deleterious background (B,). However, a closer look sug-
gests that if A; is sufficiently beneficial and recombination
sufficiently weak (r < a), there are cases where the critical
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migration rate below which A; can invade is maximized at
an intermediate q. (Figure S5, right column). In other
words, for certain combinations of m and r, the average in-
vasion probability as a function of q. is maximized at an
intermediate (nonzero) value of q. (Figure S6).

For every combination of selection coefficients (a, b) and
recombination rate (), the mean invasion probability decreases
as a function of the migration rate m. This holds for a mono-
morphic and a polymorphic continent (Figure S3 and Figure
S5, respectively). In both cases, migrants carry only allele A,
and, averaged across genetic backgrounds, higher levels of mi-
gration make it harder for A, to invade (cf. Bilirger and Akerman
2011).

Optimal recombination rate: Deterministic analysis showed
that A; can invade if and only if recombination is sufficiently
weak; without epistasis, large r is always detrimental to estab-
lishment of A; (Biirger and Akerman 2011; File S1, sect. 3). In
this respect, stochastic theory is in line with deterministic
predictions. However, considering the average invasion prob-
ability 77 as a function of r, we could distinguish two qualita-
tively different regimes. In the first one, 7(r) decreases
monotonically with increasing r (Figure 1A). In the second
one, 77 (r) is maximized at an intermediate recombination rate
ropt (Figure 1B). A similar dichotomy was previously found for
a panmictic population in which the background locus is
maintained polymorphic by heterozygote superiority (Ewens
1967) and has recently been reported in the context of mi-
gration and selection in simulation studies (Feder and Nosil
2010; Feder et al. 2012). As shown in File S1, sect. 5, rope >
0 holds in our model whenever

T

Tmimy

w1 —wgy >Ww

where w; (w,) is the marginal fitness of type 1 (2) and w the
mean fitness of the resident population (defined in Equations
30 and 31 in File S1). Here, 7] is the invasion probability of A;
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Figure 2 Approximation to the invasion probability of A; for a monomorphic continent. Invasion probabilities are shown for A; initially occurring on the
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conditional on background B; and complete linkage (r = 0).
Setting m = 0, we recover Equation 36 of Ewens (1967) for
a panmictic population with overdominance at the background
locus.

Inequality (13) is very general. In particular, it also holds with
epistasis or dominance. However, explicit conclusions require
calculation of 7}, W, and w;, which themselves depend on gy
and hence on m (¢f. Equation 2). For mathematical convenience,
we resorted to the assumption of additive fitnesses (Equation 1).
For a monomorphic continent, 75 ~ 2a(1+m)/(1+b) to

first order in a. Moreover, we found that
a>a* (14)

is a necessary condition for ro,c > 0, where

.1

@73

{1+b(2+m) - \/1+2b(1+m)+b2[2+m(4+m)]}

(File S1, sect. 5). Thus, A; must be sufficiently beneficial for
Topt > 0 to hold. Figure 3 shows the division of the param-
eter space where A; can invade into two areas where rq, = O or
Tope > 0 holds.

The two regimes ropc = 0 and rop > O arise from the
ambiguous role of recombination. On the one hand, when
A initially occurs on the deleterious background (B,), some
recombination is needed to transfer A; onto the beneficial
background (B;) and rescue it from extinction. This is rem-
iniscent of Hill and Robertson’s (1966) result that recombi-
nation improves the efficacy of selection in favor of alleles
that are partially linked to other selected sites (Barton
2010). On the other hand, when A; initially occurs on the
beneficial background, recombination is always deleterious,
as it breaks up the fittest haplotype on the island (A;B;).
This interpretation is confirmed by considering 7; and 5
separately as functions of r (Figure 1C). Whereas ,(r) al-
ways decreases monotonically with increasing r, m,(r) is
always 0 at r = O (File S1, sect. 5) and then increases to
a maximum at an intermediate recombination rate (compare
blue to red curve in Figure 1C). As r increases further, 7, (r)
and m,(r) both approach 0. We recall from Equation 4 that the
average invasion probability 7 is given by ggm + (1 — Gg) o
Depending on qg, either 7; or 7, makes a stronger
conbribution to 7, which then leads to either rop > 0 or
Topt = 0.
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Figure 3 Optimal recombination rate and regions of invasion. The dark
shaded area indicates where the optimal recombination rate r is positive
(ropt > 0; cf. Figure 1B). The medium shaded area shows the parameter
range for which rope = 0 (cf. Figure 1A). Together, these two areas indicate
where A; can invade via the marginal one-locus migration-selection equi-
librium Eg if ris sufficiently small. The light shaded area shows where Eg does
not exist and A; cannot invade via Eg. The area above a = b is not of interest,
as we focus on mutations that are weakly beneficial compared to selection
atthe background locus (a < b). The critical selection coefficient a™ is given in
Equation 14 and the migration rate is m = 0.3 (other values of m vyield
qualitatively similar diagrams). The continent is monomorphic (g, = 0).

A more intuitive interpretation of Equation 14 is as
follows. If A; conveys a weak advantage on the island
(a < a”), it will almost immediately go extinct when it initially
arises on background B,. Recombination has essentially no op-
portunity of rescuing A,, even if r is large. Therefore, 775 contrib-
utes little to 7. If A, is sufficiently beneficial on the island (a >
a”), however, it will survive for some time even when arising on
the deleterious background. Recombination now has time to
rescue A, if r is sufficiently different from O (but not too large).
In this case, 7, makes an important contribution to 7 and leads
to r'ope > 0. For a polymorphic continent, 1, > 0 may also hold
( File S1, sect. 5). However, in such cases, 1, approaches zero
quickly with increasing q. (File S6 and Figure S4).

Distribution of fitness effects of successful mutations:
Using Equation 12 we can address the distribution of fitness
effects (DFE) of successfully invading mutations. This distribu-
tion depends on the distribution of selection coefficients a of
novel mutations (Kimura 1979), which in general is unknown
(Orr 1998). In our scenario, the island population is at the
marginal one-locus migration-selection equilibrium Eg before
the mutation A; arises. Unless linkage is very tight, the selec-
tion coefficient a must be above a threshold for A, to effectively
withstand gene flow (this threshold is implicitly defined by
Equation 10). Therefore, we assumed that a is drawn from
the tail of the underlying distribution, which we took to be
exponential (Gillespie 1983, 1984; Orr 2002, 2003; Barrett
et al. 2006; Eyre-Walker and Keightley 2007) (for alternatives,
see Cowperthwaite et al. 2005; Barrett et al. 2006; Martin and
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Lenormand 2008). We further assumed that selection is di-
rectional with a constant fitness gradient (Equation 1). We
restricted the analysis to the case of a monomorphic conti-
nent. As expected, linkage to a migration-selection polymor-
phism shifts the DFE of successfully invading mutations
toward smaller effect sizes (Figure 4). Comparison to simu-
lated histograms in Figure 4 suggests that the approximation
based on Equation 12 is very accurate.

Survival in a finite island population

We now turn to island populations of small to moderate size
N. In this case, genetic drift is strong enough to cause ex-
tinction on a relevant timescale even after successful initial
establishment. Our focus is on the sojourn-time density and
the mean absorption time of the locally beneficial mutation
A; (see Methods). We also derive an approximation to the
effective migration rate experienced by A;.

Sojourn-time density: A general expression for the STD was
given in Equation 7. Here, we describe some properties of the
exact numerical solution and then discuss analytical approx-
imations (see also File S7). Because A; is a de novo mutation,
it has an initial frequency of po = 1/(2N). For simplicity, we
assumed that the effective population size on the island is
equal to the actual population size, i.e., N, = N (this assump-
tion is relaxed later). As pg = 1/(2N) is very close to zero in
most applications, we used t; o1£(p; Po) as a proxy for tor(p;
Do) (¢f. Equation 6).

The STD always has a peak at p = 0, because most muta-
tions go extinct after a very short time (Figure 5). However,
for parameter combinations favorable to invasion of A;
(migration weak relative to selection, or selection strong rel-
ative to genetic drift), the STD has a second mode at an in-
termediate allele frequency p. Then, allele A; may spend
a long time segregating in the island population before ex-
tinction. The second mode is usually close to—but slightly
greater than—the corresponding deterministic equilibrium
frequency (solid black curves in Figure 5, C-F for a monomor-
phic continent). The peak at this mode becomes shallower as
the continental frequency q. of B increases (Figure S10).

The effect on the STD of linkage is best seen from
a comparison to the one-locus model (OLM), for which the
STD is given by Ewens (2004) as

t1.00m(P; po) = 2e%4(1—p)** ! if 0=p=po,

towm(P; Po) = S o1
ta.0.m(P; Po) = 2poe?*p~* (1—p)™* if pp=p=1.
(15)

If invasion of A; is unlikely without linkage, but selection at the
background locus is strong, even loose linkage has a large effect
and causes a pronounced second mode in the STD (compare
orange to black curves in Figure 5C). In cases where A; can be
established without linkage, the STD of the one-locus model
also shows a second mode at an intermediate allele frequency
p. Yet, linkage to a background polymorphism leads to a much
higher peak, provided that selection at the background locus is
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Figure 4 DFE of successfully invading mutations for a monomorphic con-
tinent. The DFE of successfully invading mutations was obtained as
B(alinv) = d(invia)b(a)/ f;~ d(invla)b(a)da, where d(invla) = 7(£) =
Qa1 (&) + (1 — Qg)m2(€), with g and () as in Equations 2 and 12,
respectively. The mutational input distribution was assumed to be expo-
nential, ¢(a) = Ae~2A (blue). Vertical lines denote a = m (dotted) anda = b
(dashed). Histograms were obtained from simulations under the branching-
process assumptions (intermediate shading indicates where histograms over-
lap). Each represents 2.5 X 10* realizations in which A; successfully invaded
(see Methods). As a reference, the one-locus model (no linkage) is shown in
orange. (A) Relatively weak migration: b = 0.04, m = 0.01. (B) Migration three
times stronger: b =0.04, m=0.03. In Aand B, A = 100 and ¢(alinv) is shown
for a recombination rate of r = 0.005 (black) and r = 0.05 (gray). The inset in B
shows why the fit is worse for r = 0.005: in this case, 7(¢) underestimates the
exact invasion probability 7 (Equation 4) for large a.

strong and the recombination rate not too high (Figure 5, D-F).
Specifically, comparison of Figure S5E with Figure 5F suggests
that the effect of linkage becomes weak if the ratio of the
(scaled) recombination rate to the (scaled) selection coefficient
at the background locus, p/B, becomes much larger than ~10.
In other words, for a given selective advantage b of the bene-
ficial background allele, a weakly beneficial mutation will profit
from linkage if it occurs within ~b X 10® map units (centimor-
gans) from the background locus. This assumes that one map
unit corresponds to r = 0.01.

An analytical approximation of the STD can be obtained
under two simplifying assumptions. The first is that the initial
frequency po of A; is small (pg on the order of 1/(2N,) < 1).
The second concerns the infinitesimal mean M(p) of the
change in the frequency of A;: assuming that recombination
is much stronger than selection and migration, we may ap-
proximate Equation 5 by

M ©(B—p)

ps0(p) =ap(1—p) —pup+ P (16)

for a monomorphic continent. The STDs in Equation 7 can
then be approximated by

t1.0LEp0 (P Po) = 2%P* (1— P)ZM(VBJFP)/’FE (17a)

5 . 2l -1
£2,01E,p0 (D3 Po) = 2poe?*p 1 (1-p) wlpprel/p-1,
(17b)

Here, we use ~ to denote the assumption of py small, and
a subscript p > 0 for the assumption of p > max(e, 8, w).
For a polymorphic continent, expressions analogous to
Equations 16 and 17 are given in Equations 117 and 119 in
File S1.

Better approximations than those in Equations 17 and
119 are obtained by making only one of the two assump-
tions above. We denote by & oir(p; po) and ta ore(p;po) the
approximations of the STD in Equation 7 based on the as-
sumption py < 1 (Equations 108 and 109 in File S1). Alter-
natively, the approximations obtained from the assumption
p > max(a, B, n) in M(p) are called t; gig ps0(P; Po) and
t2 oLE,p>0(D; Po) (Equation 113).

In the following, we compare the different approximations
to each other and to stochastic simulations. Conditional on
Po = 1/(2N), the approximation ¢z o1r(p; po) (Equations 109)
is indeed very close to the exact numerical value t; o1s(p; po)
from Equation 7b. This holds across a wide range of parameter
values, as seen from comparing solid to dashed curves in Fig-
ure 5 (monomorphic continent) and Figure S10 (polymorphic
continent). The accuracy of the approximation t; i »0(P; Po)
from Equation 17b is rather sensitive to violation of the as-
sumption p > max(«, B, w), however (dotted curves deviate
from other black curves in Figure 5, B and C). The same applies
to a polymorphic continent, but the deviation becomes smaller
as g, increases from zero (Figure S10A).

Comparison of the diffusion approximation ¢z i (p; po) to
sojourn-time distributions obtained from stochastic simula-
tions shows a very good agreement, except at the boundary
p = 0. There, the continuous solution of the diffusion ap-
proximation is known to provide a suboptimal fit to the
discrete distribution (Figure S11 and Figure S12).

Based on the analytical approximations above, we may
summarize the effect of weak linkage relative to the one-locus
model as follows. For a monomorphic continent, the ratio of
t2.0LE,p>0(P; Po) 10 taorm(; Po) is R= (1 —p)~", where y =
2u(B — p)/p. The exponent vy is a quadratic function of . and
linear in B. For weak migration, R ~ 1 — 2(Bu/p)In(1 — p),
suggesting the following rule of thumb. For the focal allele
to spend at least the R-fold amount of time at frequency p
compared to the case without linkage, we require

By R-1
p ~ —2I(1-p)

For example, allele A; will spend at least twice as much time at
frequency P = 0.5 (0.8) if Bu > 0.72p (0.31p). Because we

(18)
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assumed weak migration and QLE, we conducted numerical
explorations to check when this rule is conservative, meaning
that it does not predict a larger effect of linked selection than is
observed in simulations. We found that, first, genetic drift
must not dominate, i.e., 1 < a, B, u, p holds. Second, migra-
tion, selection at the background locus and recombination
should roughly satisfy u < 8/4 < 0.1p. This condition applies
only to the validity of Equation 18, which is based on
EZ.QLE,p>>0 (p;po) in Equation 17b. It does not apply to
t2.oe(P; po), which fits simulations very well if p is as low as
1.258 (Figure S11D). For related observations in different
models, see Slatkin (1975) and Barton (1983).

Mean absorption time: The mean absorption time is obtained
by numerical integration of the STD as outlined in Methods.
Comparison to stochastic simulations shows that the diffusion
approximation o from Equation 8 is fairly accurate: the ab-
solute relative error is <15%, provided that the QLE assump-
tion is not violated and migration is not too weak (Figure 6).

Given the approximations to the STD derived above,
various degrees of approximation are available for the mean
absorption time, too. Their computation is less prone to
numerical issues than that of the exact expressions. Exten-
sive numerical computations showed that if py = 1/(2N)
and N. = N, the approximations based on the assumption
of po small (tQLE and toreps-0 as given in Equations 110 and
115) provide an excellent fit to their more exact counter-
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parts (tore and foig,so in Equations 8 and 114, respec-
tively). See also Table S2 and S4. Across a wide range of
parameter values, the absolute relative error never exceeds
1.8% (Figure S13, A and C). In contrast, the approximation
based on the assumption of p > 0, forg ps0, IS Very sensitive
to violations of this assumption. For large effective population
sizes and weak migration, the relative error becomes very high
if recombination is not strong enough (Figure S13B; Table S3).

The effect of linkage is again demonstrated by a compar-
ison to the one-locus model. If selection is strong relative to
recombination, the mean absorption time with linkage, toiE,
is increased by several orders of magnitude compared to the
one-locus case, tory (Figure 7, A and D; Table S5). The effect
is reduced, but still notable, when the recombination rate
becomes substantially higher than 10 times the strength
of selection in favor of the beneficial background allele, i.e.,
p/B > 10 (Figure 7, B and E). Importantly, large ratios of
towe/towm are not an artifact of touy being very small, as
Figure 7, C and F confirm. Moreover, tors/torm is maximized
at intermediate migration rates: for very weak migration, A;
has a fair chance of surviving for a long time even without
linkage (Form i large); for very strong migration, form and
towe both tend to zero and foue/toum approaches unity.

As expected from deterministic theory (Biirger and Akerman
2011; see also File S1, sect. 3) and invasion probabilities cal-
culated above, the mean absorption time decreases as a function
of the migration rate m (Figure S14). A noteworthy interaction
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Figure 6 Relative error of the diffusion approximation to the mean absorption time of A;. (A) The error of tq.e from Equation 8 relative to simulations
for various parameter combinations. Squares bounded by thick lines delimit combinations of values of the recombination rate r and the effective
population size Ne. Within each of them, values of the migration rate m and the continental frequency g. of B; are as shown in B. No negative relative
errors were observed. For better resolution, we truncated values >0.30 (the maximum was 3.396 for N, = 1000, r = 0.05, m = 0.018, g. = 0.0). Open
(solid) circles indicate that the marginal one-locus equilibrium Ez is unstable (stable) and A can (not) be established under deterministic dynamics.
Parameter combinations for which simulations were too time consuming are indicated by &. Selection coefficients are a = 0.02 and b = 0.04. (C) The left
plot corresponds to the square in A that is framed in blue. The right plot shows the fit of the diffusion approximation to simulations conducted with
unscaled parameters twice as large and N, half as large, as on the left side. Scaled parameters are equal on both sides. As expected, the diffusion
approximation is worse on the right side. Simulations were as described in Methods. See Table S1 for numerical values.

exists between m and the effective population size N.. For
small m, the mean absorption time increases with N, whereas
for large m, it decreases with N.. Interestingly, the transition
occurs at a value of m lower than the respective critical migra-
tion rate below which A; can invade in the deterministic model
(Figure S14). Hence, there exists a small range of intermediate
values of m for which deterministic theory suggests that A; will
invade, but the stochastic model suggests that survival of A;
lasts longer in island populations of small rather than large
effective size. Similar, but inverted, relations hold for the de-
pendence of the mean absorption time on the selective advan-
tage a of allele A; and N, (Figure S15).

For the parameter ranges we explored, the mean absorp-
tion time decreases with increasing continental frequency g,
of B;. As for the invasion probabilities, competition against
a fitter resident population has a negative effect on mainte-
nance of the focal mutation A;. For a given recombination
rate, the effect depends on the relative strength of migration
and selection, though: increasing q. from 0 to 0.8 decreases
the mean absorption time by a considerable amount only if m
is low or a is large enough; otherwise, genetic drift dominates
(Figure S16). This effect is more pronounced for weak than
for strong recombination (Figure S17).

So far, we assumed that the initial frequency of A; is small,
i.e., po = 1/(2N), and that N. = N. In many applications, N, <
N holds and hence 1/(2N) < 1/(2N,.). Approximations based
on the assumption of py being small, i.e., on the order of 1/
(2N,) or smaller, then cause no problem. However, N, > N may
hold in certain models, e.g., with spatial structure (Whitlock
and Barton 1997), and py = 1/(2N) may be much greater
than 1/(2N,). We therefore investigated the effect of violating
the assumption of po = 1/(2N,). For this purpose, we fixed

the initial frequency at p, = 0.005 (e.g., a single copy of A; in
a population of actual size N = 100) and then assessed the
relative error of our approximations for various N, = 100. As
expected, the approximate mean absorption times based on

the assumption of py small (%QLE and %QLEAP>>0) deviate further
from their exact conterparts (for and ok »0, respectively) as
N, increases from 100 to 10* (Figure S13, D and F). See also
Table S6 and S7. For strong migration, the relative error tends
to be negative, while it is positive for weak migration (blue vs.
red boxes in Figure S13, D and F). The assumption of p > max
(a, B, u) in M(p) does not lead to any further increase of the
relative error, though (Figure S13E; Table S7). Moreover, vio-
lation of pg = 1/(2N,) has almost no effect on the ratio of the
two-locus to the one-locus absorption time, toir/torm (com-
pare Table S9 to Table S5).

Invasion-effective migration rate: Comparison of the sojourn-
time densities given in Equations 15 and 17 suggests that if u
in the one-locus model is replaced by pe = u(w — B + p)/p,
one obtains the STD for the two-locus model. Hence, u.
denotes the scaled migration rate in a one-locus model such
that allele A; has the same sojourn properties as it would have
if it arose in linkage (decaying at rate p) to a background
polymorphism maintained by selection against migration at
rate u. In other words, if the assumptions stated above hold,
we may use single-locus migration-selection theory, with w
replaced by w., to describe two-locus dynamics. Transforming
from the diffusion to the natural scale, we therefore define an
invasion-effective migration rate as
m+r—>

Me =m—m787m—, (19)
r
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which, for small m, is approximately
Mme=m|(1—- (20)
r

(Figure S18A). Note that m. and m. are nonnegative only if
r=b — m and r = b, respectively. As we assumed quasi-
linkage equilibrium in the derivation, these conditions do
not impose any further restriction.

Petry (1983) previously derived an effective migration
rate for a neutral site linked to a selected site. In our nota-

tion, it is given by
b\ 1
=m <1 + —) =m
r

(see Bengtsson 1985 and Barton and Bengtsson 1986 for an
extension of the concept). Petry (1983) obtained this approx-
imation by comparing the moments of the stationary allele-
frequency distribution for the two-locus model to those for
the one-locus model. He assumed that selection and recombi-
nation are strong relative to migration and genetic drift. To first
order in r~1, i.e., for loose linkage, Petry’s m(ep) is equal to our
m. in Equation 20. As we derived m. under the assumption of
QLE, convergence of m,(gp) to m, is reassuring. Effective gene
flow decreases with the strength of background selection b, but
increases with the recombination rate r (Figure S18, B and C).

r
b+r

(P)

Me

2D

Long-term effect on linked neutral variation

Selection maintaining genetic differences across space impedes
the homogenizing effect of gene flow at closely linked sites
(Bengtsson 1985; Barton and Bengtsson 1986). This has con-
sequences for the analysis of sequence or marker data, as pat-
terns of neutral diversity may reveal the action of recent or past
selection at nearby sites (Maynard Smith and Haigh 1974;
Kaplan et al. 1989; Takahata 1990; Barton 1998). We investi-
gated the impact of a two-locus polymorphism contributing to
local adaptation on long-term patterns of linked genetic var-
iation. For this purpose, we included a neutral locus C with
alleles C; and C,. Allele C; segregates on the continent at
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Figure 7 Mean absorption time of A; under quasi-linkage
equilibrium relative to the one-locus model (OLM). In panels
(A), (B), (D) and (E), thin solid curves show the ratio
tare/toum and thick dashed curves taie ps.0/toum, as a func-

x‘:: ;28 tion of the migration rate m. The effective population size
ﬁf ?380 Ne increases from light to dark gray, taking values of 100,
o=

250, 500, and 1000. Vertical lines denote the migration
rate below which A4 can invade in the deterministic one-
locus (orange) and two-locus (black) model. (A) Recombi-
nation is too weak for the assumption p > max(a, 8, u) to
hold. (B) As in (A), but with recombination four times stron-
ger. (D) Evolutionary forces — other than drift — are ten times
stronger than in (B). (E) As in (D), but with recombination
ten times stronger. Panels (C) and (F) show the mean ab-
sorption time (in multiples of 2N,) under the one-locus
model for the respective row. For m close to 0, numerical
procedures are unstable and we truncated the curves. Asm
converges 1o 0, tqie/tou and taie ps0/toum are expected
to approach unity, however.

002 003 004

02 03 04

a constant frequency n. (0 < n. < 1), for example at drift—
mutation equilibrium. This may require that the continental
population is very large, such that extinction or fixation of
C; occurs over sufficiently long periods of time compared to
the events of interest on the island. The neutral locus is on
the same chromosome as A and B, to the left (C-A-B), in the
middle (A-C-B), or to the right (A-B-C) of the two selected
loci (without loss of generality, A is to the left of B). We
denote the recombination rate between locus X and Y by
rxy, where ryy = ryx, and assume that the recombination
rate is additive. For example, if the configuration is A-C-B,
Wwe set rag = 'ac + T'ce-

Unless linkage to one of the selected loci is complete, under
deterministic dynamics, allele C; will reach the equilibrium
frequency n = n. on the island, independently of its initial
frequency on the island. Recombination affects only the rate
of approach to this equilibrium, not its value. We focus on the
case where the continent is monomorphic at locus B (g. = 0).
Selection for local adaptation acts on loci A and B, and migra-
tion-selection equilibrium will be reached at each of them
(File S1, sect. 6). Gene flow from the continent will be effec-
tively reduced in their neighborhood on the chromosome. Al-
though the expected frequency of C; remains n. throughout,
drift will cause variation around this mean to an extent that
depends on the position of C on the chromosome. It may take
a long time for this drift-migration equilibrium to be established,
but the resulting signal should be informative for inference.

To investigate the effect of selection at two linked loci, we
employed the concept of an effective migration rate according to
Bengtsson (1985), Barton and Bengtsson (1986), and Kobayashi
et al. (2008). As derived in File S1, sect. 8, and File S8, for
continuous time and weak migration, the effective migration
rates for the three configurations are

CAB rca(a +rcp)
= 22
Me (a+rca)(a+b+rcg) (222)
ACB 'ACT'CB
= 22b
me (a T rAC)(b T rCB)7 ( )
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ABC rac(b +rac)
= . 22
e = M rae) (@t b+ rac) (220

We note that mA“B has been previously derived (Biirger and
Akerman 2011, Equation 4.30). From Equation 22, we
define the effective migration rate experienced at a neutral
site as

m$AB if C—A—B holds,

(&
me’ = mh®® if A—C—B holds,
mABC if A—B—C holds.

(23)

Equation 23 subsumes the effect on locus C of selection at
loci A and B. It can be generalized to an arbitrary number of
selected loci. Let A; (i = 1,..., D) and B; j = 1,..., J) be the
ith and jth locus to the left and right of the neutral locus,
respectively. We find that the effective migration rate at the
neutral locus is

I @ -1
mém =m H <1+lll>

k=1 % T T

J b —1
X H (1 + 117]) y
j=1 k:lbk + I'B;

where q; (b;) is the selection coefficient at locus A; (B;), and
ra; (rg;) the recombination rate between the neutral locus
and A; (Bj). Each of the terms in the round brackets in
Equation 24 is reminiscent of Petry’s (1983) effective migra-
tion rate for a neutral linked site (Equation 21). For weak
linkage, these terms are also similar to the invasion-effective
migration rate experienced by a weakly beneficial mutation
(Equation 20). This suggests that the effective migration
rate experienced by a linked neutral site is approximately
the same as that experienced by a linked weakly beneficial
mutation, which corroborates the usefulness of Equation 24.
In the following, we study different long-term properties of
the one-locus drift-migration model by substituting effective
for actual migration rates.

24

Mean absorption time: Suppose that C; is absent from the
continent (n. = 0), but present on the island as a de novo
mutation. Although any such mutant allele is doomed to
extinction, recurrent mutation may lead to a permanent
influx and, at mutation-migration equilibrium, to a certain
level of neutral differentiation between the continent and
the island. Here, we ignore recurrent mutation and focus
on the fate of a mutant population descending from a sin-
gle copy of C;. We ask how long it will survive on the
island, given that a migration-selection polymorphism is
maintained at equilibrium at both selected loci in the back-
ground (A, B). Standard diffusion theory predicts that
the mean absorption (extinction) time of C; is approxi-

. 1 )
mately Zneu = Nt / n~'(1—n)* "dn (Ewens 2004,
1/(2N)

pp. 171-175). We replace the scaled actual migration rate
u by plV =2N.ml", with m from Equation 23. This
assumes that the initial frequency of C; on the island is
no = 1/(2N) and that N, = N. For moderately strong migration
(Mg‘) ~ 1), %neut is of order log(2N,), meaning that C; will on
average remain in the island population for a short time.
However, if locus C is tightly linked to one of the selected
loci, or if configuration A-C-B applies and A and B are suf-
ficiently close, the mean absorption time of C; is strongly
elevated (Figure S19).

Stationary distribution of allele frequencies: In contrast to
above, assume that C; is maintained at a constant frequency
ne € (0, 1) on the continent. Migrants may therefore carry
both alleles, and genetic drift and migration will lead to
a stationary distribution of allele frequencies given by

I'(2p)
T(2une) T (2u[l — nd))

where I'(x) is the Gamma function (Wright 1940, pp. 239-
241). As above, we replace u by /ué”) to account for the effect
of linked selection. The mean of the distribution ¢(n) is ne,
independently of u., whereas the stationary variance is
var(n) = ne(1—ne)/(1+2u”) (Wright 1940). The ex-
pected heterozygosity is H = 4ul"n (1 —n)/(1 + 2ul"),
and the divergence from the continental population is
Fsr = var(n)/[ne(1 —ne)] = 1/(1 +2ul") (see File S9 for
details). Depending on the position of the neutral locus,
¢(n) may change considerably in shape, for example, from
L- to U- to bell-shaped (Figure 8). The pattern of ¢(n), H
and Fst along the chromosome reveals the positions of the
selected loci, and their rate of change per base pair contains
information about the strength of selection if the actual mi-
gration rate is known.

an.nC—l(l _ n)2p,(1—nc)—1

b(n) =

)

Rate of coalescence: As a third application, we study the
rate of coalescence for a sample of size two taken from the
neutral locus C, assuming that migration-selection equilib-
rium has been reached a long time ago at the selected loci A
and B. We restrict the analysis to the case of strong migra-
tion compared to genetic drift, for which results by Nagylaki
(1980) (forward in time) and Notohara (1993) (backward
in time) apply (see Wakeley 2009, for a detailed review).
The strong-migration limit follows from a separation of
timescales: going back in time, migration spreads the line-
ages on a faster timescale, whereas genetic drift causes line-
ages to coalesce on a slower one.

For a moment, let us assume that there are two demes of
size N; and N, and denote the total number of diploids by
N = Nj + N,. We define the relative deme size ¢; = N;/N
and let the backward migration rates m; and m, denote
the fractions of individuals in deme 1 and 2 in the current
generation that were in deme 2 and 1 in the previous genera-
tion, respectively. The strong-migration limit then requires that
N;m; = N¢;m; is large (Wakeley 2009). Importantly, the relative
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deme sizes c; are constant in the limit of N — . Under these
assumptions, it can be shown that the rate of coalescence for
a sample of two is independent of whether the two lineages
were sampled from the same or different demes. The rate of
coalescence is given by

2 2
ms; 1 mj 1
G= —+ 5

= 25
(m1 + m2)2 1 (mp+my)” C2 (25)

(Wakeley 2009, p. 193). The coalescent-effective population
size is defined as the actual total population size times the
inverse of the rate of coalescence, N\ = N /G (Sjodin et al.
2005).

In our context, we substitute m(e") from Equation 23 for m;
in G. To be consistent with the assumption of continent-island
migration—under which we studied the migration-selection
dynamics at A and B—we require N, > N; and m, < m;.
This way, the assumptions of Nym; and Nom, being large can
still be fulfilled. However, note that m, < m; does not auto-
matically imply my < m®; depending on the strength of se-
lection and recombination, mé’” may become very small
Hence, in applying the theory outlined here, one should bear
in mind that the approximation may be misleading if m® is
small (for instance, if locus C is tightly linked to either A or B).
The neutral coalescent rate G is strongly increased in the neigh-
borhood of selected sites; accordingly, Némal) is increased (Figure
S20). Reassuringly; this pattern parallels those for linked neutral
diversity and divergence in Figure 8.

Discussion

We have provided a comprehensive analysis of the fate of
a locally beneficial mutation that arises in linkage to
a previously established migration—selection polymorphism.
In particular, we obtained explicit approximations to the in-
vasion probability. These reveal the functional dependence
on the key parameters and substitute for time-consuming
simulations. Further, we found accurate approximations to
the mean extinction time, showing that a unilateral focus on
invasion probabilities yields an incomplete understanding of
the effects of migration and linkage. Finally, we derived the
effective migration rate experienced by a neutral or weakly
beneficial mutation that is linked to arbitrarily many migra-
tion-selection polymorphisms. This opens up a genome-
wide perspective of local adaptation and establishes a link
to inferential frameworks.

Insight from stochastic modeling

Previous theoretical studies accounting for genetic drift in
the context of polygenic local adaptation with gene flow
were mainly simulation based (Yeaman and Whitlock 2011;
Feder et al. 2012; Flaxman et al. 2013) or did not model
recombination explicitly (Lande 1984, 1985; Barton 1987;
Rouhani and Barton 1987; Barton and Rouhani 1991; but see
Barton and Bengtsson 1986). Here, we used stochastic pro-
cesses to model genetic drift and to derive explicit expressions
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that provide an alternative to simulations. We distinguished
between the stochastic effects due to initial rareness of a de
novo mutation on the one hand and the long-term effect of
finite population size on the other.

For a two-locus model with a steady influx of maladapted
genes, we found an implicit condition for invasion of a single
locally beneficial mutation linked to the background locus
(Equation 9). This condition is valid for arbitrary fitnesses,
i.e., any regime of dominance or epistasis. It also represents
an extension to the case of a panmictic population in which
the background polymorphism is maintained by overdomi-
nance, rather than migration-selection balance (Ewens
1967). Assuming additive fitnesses, we derived simple ex-
plicit conditions for invasion in terms of a critical migration
or recombination rate (Equations 10 or 11, respectively).
Whereas these results align with deterministic theory
(Biirger and Akerman 2011), additional quantitative and
qualitative insight emerged from studying invasion probabil-
ities and extinction times. Specifically, invasion probabilities
derived from a two-type branching process (Equations 3 and
12) capture the ambiguous role of recombination breaking
up optimal haplotypes on the one hand and creating them
on the other. Diffusion approximations to the sojourn and
mean absorption time shed light on the long-term effect of
finite population size. A comparison between the dependence
of invasion probabilities and extinction times on migration and
recombination rate revealed important differences (discussed
further below). Deterministic theory fails to represent such
aspects, and simulations provide only limited understanding
of functional relationships.

Recently, Yeaman (2013) derived an ad hoc approximation
of the invasion probability, using the so-called “splicing ap-
proach” (Yeaman and Otto 2011). There, the leading eigen-
value of the appropriate Jacobian (Biirger and Akerman 2011)
is taken as a proxy for the selection coefficient and inserted
into Kimura’s (1962) formula for the one-locus invasion prob-
ability in a panmictic population. Yeaman’s (2013) method
provides a fairly accurate approximation to the invasion prob-
ability if A; initially occurs on the beneficial background B, (at
least for tight linkage). However, it does not describe the in-
vasion probability of an average mutation (Figure S22) and
hence does not predict the existence of a nonzero optimal re-
combination rate. As a consequence, Yeaman’s (2013) conclusion
that physically linked selection alone is of limited importance for
the evolution of clustered architectures is likely conservative,
because it is based on an approximation that inflates the effect
of linked selection.

Nonzero optimal recombination rate

We have shown that the average invasion probability of
a linked beneficial mutation can be maximized at a nonzero
recombination rate (rop: > 0). Equation 13 provides a gen-
eral condition for when this occurs. With additive fitnesses,
the local advantage of the focal mutation must be above
a critical value (Equation 14). Otherwise, the invasion prob-
ability is maximized at rop = 0.
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Existence of a nonzero optimal recombination rate in the
absence of epistasis and dominance is noteworthy. For a pan-
mictic population in which the polymorphism at the back-
ground locus is maintained by overdominance, Ewens (1967)
has shown that the optimal recombination rate may be non-
zero, but this requires epistasis. In the context of migration, the
existence of rop > 0 has been noted and discussed in a simu-
lation study (Feder et al. 2012, Figure 5), but no analytical
approximation or explanation that captures this feature has
been available. In principle, rop > O suggests that the genetic
architecture of polygenic adaptation may evolve such as to
optimize the recombination rates between loci harboring adap-
tive mutations. Testing this prediction requires modifier-of-
recombination theory (e.g., Otto and Barton 1997; Martin et al.
2006; Roze and Barton 2006; Kermany and Lessard 2012).
While we expect evolution toward the optimal recombination
rate in a deterministic model (Lenormand and Otto 2000), it is
important to determine if and under which conditions this occurs
in a stochastic model and what the consequences for polygenic
adaptation are.

For instance, in a model with two demes and a quantitative
trait for which the fitness optima are different in the two
demes, Yeaman and Whitlock (2011) have shown that muta-
tions contributing to adaptive divergence in the presence of
gene flow may cluster with respect to their position on the
chromosome. Moreover, architectures with many weakly
adaptive mutations tended to become replaced by architec-
tures with fewer mutations of larger effect. Although our
migration model is different, existence of a nonzero optimal
recombination rate suggests that there might be a limit to the
degree of clustering of locally adaptive mutations. It is worth
recalling that our result of rop; > O applies to the average
invading mutation (black curves in Figure 1 and Figure 2).
For any particular mutation that arises on the beneficial back-
ground, r = 0 is (almost) always optimal (blue curves in
Figure 1 and Figure 2; see Figure S3D for an exception).

Long-term dynamics of adaptive divergence

Finite population size on the island eventually leads to ex-
tinction of a locally beneficial mutation even after successful
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initial establishment. This is accounted for neither by de-
terministic nor branching-process theory. Employing a diffusion
approximation, we have shown that linkage of the focal
mutation to a migration—selection polymorphism can greatly
increase the time to extinction and thus alter the long-term
evolutionary dynamics. In such cases, the timescale of extinc-
tion may become similar to that on which mutations occur. This
affects the rate at which an equilibrium between evolutionary
forces is reached. We provided a rule of thumb for when the
time spent by the focal allele at a certain frequency exceeds
a given multiple of the respective time without linkage. Essen-
tially, the product of the background selection coefficient times
the migration rate must be larger than a multiple of the re-
combination rate (Equation 18).

The effect of linked selection can also be expressed in terms
of an invasion-effective migration rate (Equations 19 and 20).
Both our rule of thumb and the formula for the effective
migration rate provide a means of quantifying the importance
of linkage to selected genes in the context of local adaptation.
In practice, however, their application requires accurate esti-
mates of the recombination map, the selective advantage of the
beneficial background allele, and the actual migration rate.

A nontrivial effect of gene flow

Our stochastic modeling allows for a more differentiated
understanding of the role of gene flow in opposing adaptive
divergence. Whereas deterministic theory specifies a critical
migration rate beyond which a focal mutation of a given
advantage cannot be established (Biirger and Akerman 2011;
see also Figure S7 and Figure S8), the potential of invasion is
far from uniform if migration is below this critical value (Figure
S3, Figure S5, and Figure S14). For instance, we may define
the relative advantage of linkage to a migration—selection poly-
morphism as the ratio of the quantity of interest with a given
degree of linkage to that without linkage.

A comparison of the two quantities of interest in our case—
invasion probability and mean extinction time—with respect to
migration is instructive (Figure 7 and Figure S21). Starting
from zero migration, the relative advantage of linkage in terms
of the invasion probability initially increases with the migration
rate very slowly, but then much faster as the migration rate
approaches the critical value beyond which an unlinked focal
mutation cannot invade (Figure S21A). Beyond this critical
value, the relative advantage is infinite until migration is so
high that even a fully linked mutation cannot be established. In
contrast, we have shown that the relative advantage of linkage
in terms of the mean extinction time is maximized at an in-
termediate migration rate (Figure 7).

In conclusion, for very weak migration, the benefit of being
linked to a background polymorphism is almost negligible. For
intermediate migration rates, the potential of invasion is elevated
by linked selection; this is mainly due to a substantially increased
mean extinction time of those still rather few mutations that
successfully survive the initial phase of stochastic loss. This
argument is based on the increase of the mean extinction time
relative to unlinked selection. Because, for large populations,
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absolute extinction times become very large as the migration
rate decreases (Figure 7, C and F), the biological relevance
of this comparison may be confined to cases in which the
mean extinction time of an unlinked mutation is not ex-
tremely high. For migration rates close to the critical migra-
tion rate, however, any relative advantage of linkage seems
to arise via an increased invasion probability, not via an in-
creased mean extinction time. This is because, in this case,
the latter is close to that for no linkage (compare Figure
S21A to Figure 7, A and B). A final statement about the
relative importance of invasion probability vs. mean extinc-
tion time is not appropriate at this point. This would require
extensive numerical work, along with a derivation of a diffu-
sion approximation to the mean extinction time for tight link-
age. However, for small populations, our results show that
linked selection can increase the mean extinction time to an
extent that is biologically relevant, while, at the same time,
not affecting the invasion probability much. This suggests that
invasion probabilities may not be a sufficient measure for the
importance of physical linkage in adaptive divergence.

Standing variation at the background locus

We have extended some of our analyses to the case where
the background locus is polymorphic on the continent and
immigrants may therefore carry both the locally beneficial or
deleterious allele. This represents a compromise between
the extremes of adaptation from standing vs. de novo genetic
variation. We have shown that the presence of the beneficial
background allele on the continent, and hence among immi-
grants, leads to a lower invasion probability and a shorter
extinction time for the focal de novo mutation. This effect is
due to increased competition against a fitter resident pop-
ulation. While this result is of interest as such, it should not
be abused to gauge the relative importance of standing vs. de
novo variation in the context of local adaptation. For this
purpose, invasion probabilities and extinction times of single
mutations do matter, but are not sufficient metrics on their
own. Factors such as the mutation rate, the mutational tar-
get size, and the distribution of selection coefficients must
be taken into account (Hermisson and Pennings 2005).

Footprint of polygenic local adaptation

A number of previous studies have quantified the effect of
divergent selection or genetic conflicts on linked neutral variation
in discrete (Bengtsson 1985; Charlesworth et al. 1997) and con-
tinuous space (Barton 1979; Petry 1983). They all concluded
that a single locus under selection leads to a pronounced reduc-
tion in effective gene flow only if selection is strong or if linkage
to the neutral site is tight. Whereas Bengtsson (1985) found that
additional, physically unlinked, loci under selection had no sub-
stantial effect on neutral differentiation, Feder and Nosil (2010)
recently suggested that such loci may have an appreciable effect
as long as they are not too numerous. When these authors added
a large number of unlinked loci under selection, this resulted in
a genome-wide reduction of the effective migration rate, such
that the baseline level of neutral divergence was elevated and
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any effect of linkage to a single selected locus unlikely to be
detected. However, for large numbers of selected loci, it is no
longer justified to assume that all of them are physically un-
linked. This was noted much earlier by Barton and Bengtsson
(1986), who therefore considered a linear genome with an
arbitrary number of selected loci linked to a focal neutral site.
They showed that a large number of linked selected loci is
needed to cause a strong reduction in effective migration rate.
In such cases, the majority of other genes must be linked to
some locus under selection.

The concept of an effective migration rate has played a key
role in most of the studies mentioned above (see Barton and
Bengtsson 1986, and Charlesworth et al. 1997 for a more
comprehensive review). However, for models with more than
one linked locus under selection, previous studies relied on
numerical solutions or simulations to compute the effective
migration rate. Recently, Biirger and Akerman (2011) derived
an analytical approximation for a neutral site that is flanked
by two selected loci. We have generalized their result to al-
ternative genetic architectures and an arbitrary number of
selected loci (Equation 24). From this, we predicted the
long-term footprint of polygenic local adaptation in terms of
the distribution of allele frequencies, population divergence,
and coalescent rate at the neutral site. When considered as
a function of the position of the neutral site on the chromo-
some, these quantities reveal patterns that can hopefully be
used for inference about the selective process (Figure 8 and
Figure S20).

We have considered only the case where migration-selection
equilibrium has been reached at the selected loci. It would be
interesting, although more demanding, to study the transient
phase during which locally beneficial mutations (such as A; in
our case) rise in frequency from py = 1/(2N) to the (pseudo-)
equilibrium frequency. We expect this to create a temporary
footprint similar to that of a partial sweep (Pennings and
Hermisson 2006a,b; Pritchard et al. 2010; Ralph and Coop
2010). Theoretical progress hinges on a description of the tra-
jectory of the linked sweeping alleles, accounting in particular
for the stochastic “lag phase” at the beginning. It will then be of
interest to study recurrent local sweeps and extend previous
theory for panmictic populations (Coop and Ralph 2012; Lessard
and Kermany 2012) to include population structure, migration,
and spatially heterogeneous selection. The hitchhiking effect of
a beneficial mutation in a subdivided population has been de-
scribed in previous studies (e.g., Slatkin and Wiehe 1998; Kim
and Maruki 2011), but these did not account for additional
linked loci under selection.

One limitation to our prediction of the coalescence rate at
linked neutral sites is the assumption of strong migration
relative to genetic drift (Nagylaki 1980; Notohara 1993). As
the effective migration rate decays to zero if the neutral site
is very closely linked to a selected site (Figure S18C), this
assumption will be violated. Therefore, our predictions
should be interpreted carefully when linkage is tight. More-
over, and even though this seems widely accepted, we are
not aware of a rigorous proof showing that an effective

migration rate can sufficiently well describe the effect of
local selection on linked neutral genealogies (¢f. Barton
and Etheridge 2004).

Another limitation is that our prediction of linked neutral
diversity and divergence (Figure 8) holds only for drift-migration
equilibrium. For closely linked neutral sites, which experience
very low rates of effective migration, it may take a long time
for this equilibrium to be reached. By that time, other evolu-
tionary processes such as background selection and mutation
will have interfered with the dynamics at the focal site.

Further limitations and future extensions

We assumed no dominance and no epistasis. Both are
known to affect the rate of adaptation and the maintenance
of genetic variation (e.g., Charlesworth et al. 1987; Bank
et al. 2012). Empirical results on dominance effects of ben-
eficial mutations are ambiguous (Vicoso and Charlesworth
2006). Some studies showed no evidence for a deviation
from additivity, whereas others suggested weak recessivity
(reviewed in Orr 2010 and Presgraves 2008). Empirical ev-
idence for epistasis comes from studies reporting genetic
incompatibilities between hybridizing populations (Lowry
et al. 2008; Presgraves 2010). In the classical Dobzhansky—
Muller model (Bateson 1909; Dobzhansky 1936; Muller
1942), such incompatibilities may become expressed during
secondary contact after allopatry, even if divergence is neu-
tral. With gene flow, genetic incompatibilities can be main-
tained only if the involved alles are locally beneficial (Bank
et al. 2012). Bank et al. (2012) derived respective conditions
using deterministic theory. An extension to a stochastic model
focusing on invasion probabilities and extinction times would
be desirable.

Our model assumed one-way migration. While this is an
important limiting case and applies to a number of natural
systems (e.g., King and Lawson 1995), an extension to two-
way migration is of interest, because natural populations or
incipient species often exchange migrants mutually (e.g.,
Janssen and Mundy 2013; Nadeau et al. 2013). Such theory
will allow for a direct comparison to recent simulation stud-
ies (Feder and Nosil 2010; Yeaman and Whitlock 2011;
Feder et al. 2012; Flaxman et al. 2013; Yeaman 2013). It
will also have a bearing on the evolution of suppressed re-
combination in sex chromosomes (e.g., Rice 1984, 1987; Fry
2010; Jordan and Charlesworth 2012; Charlesworth 2013).
Deterministic theory suggests that linkage becomes less cru-
cial for the maintenance of locally beneficial alleles the more
symmetric gene flow is (Akerman and Biirger 2014).

When describing the distribution of fitness effects of success-
ful beneficial mutations, we considered only a single mutation.
Future studies should investigate a complete adaptive walk,
allowing for mutations at multiple loci to interact via domi-
nance, epistasis, and linkage. Moreover, it would then seem
justified to relax the assumption of a constant fitness gradient,
especially in the proximity of an optimum, and to account for
the fact that the input DFE is not necessarily exponential
(Martin and Lenormand 2008).
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In our derivations of sojourn and mean absorption times,
we assumed QLE. As expected, the approximations break
down if recombination is weak (e.g., Figure 6). For tight
linkage, when linked selection is most beneficial, an alter-
native diffusion process needs to be developed. However, to
determine how weak physical linkage may be such that an
invading mutation still has an advantage, an approximation
that is accurate for moderate and loose linkage is required.
Therefore, the assumption of QLE does not restrict the scope
of our results that address the limits to the importance of
linked selection.

Conclusion

This study advances our understanding of the effects of
physical linkage and maladaptive gene flow on local adapta-
tion. We derived explicit approximations to the invasion
probability and extinction time of benefical de novo mutations
that arise in linkage to an established migration-selection
polymorphsim. In addition, we obtained an analytical for-
mula for the effective migration rate experienced by a neutral
or weakly beneficial site that is linked to an arbitrary number
of selected loci. These approximations provide an efficient
alternative to simulations (e.g., Feder and Nosil 2010; Feder
et al. 2012). Our results strengthen the emerging view that
physically linked selection (and hence so-called divergence
hitchhiking) is biologically relevant only if linkage is tight
or if selection at the background locus is strong (Petry
1983; Barton and Bengtsson 1986; Feder et al. 2012; Flaxman
et al. 2013). When these conditions are met, however, the
effect of linkage can be substantial. A definite statement
about the importance of “divergence hitchhiking” vs. “genome
hitchhiking” and complementary processes (cf. Yeaman 2013)
seems premature, though; it will require further empirical and
theoretical work. We suggest that future theoretical studies (i)
obtain analogous approximations for bi- rather than unidirec-
tional gene flow, (ii) account for epistasis and dominance, (iii)
incorporate the distribution of fitness effects of beneficial muta-
tions, and (iv) employ a stochastic modifier-of-recombination
model to assess the importance of nonzero optimal recombi-
nation rates. Extensions of this kind will further enhance our
understanding of polygenic local adaptation and its genetic
footprint.
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Table S3 The effect of assuming p large in M/ (p) when deriving the diffusion approximation to the mean absorption time.

N, = 100 N, =103 N = 10*

r m Jc=0 Q0c=02 (gec=05 Q=08 Jc=0 gc =0:2 Je=0:5 Q.=0:8 0c=0 gc =0:2 ge =0:5 gc =0:8
0.05 0.006 3.818 1.995 0.770 0.211 6.558x10° 1.892x10*  242.595  6.217 1.397x10%7 1.503x10%2 4.312x10%8 3.395x108
0.05 0012 1391  0.901 0.382 0.106 1.288x10% 2.086x103 77.967  3.411 8.300x10%° 1.700x10%3 1.534%10%° 4.275x10°
0.05 0.018 0.280  0.299 0.167 0.054 27.006 41.590 5.361  0.371 6.349x10™* 1.583x10%7 1.140x10'°  448.323
0.05 0.024 0025 0.118 0.092 0.035 -0.014 0.620 0.235  0.056 -0.427 1.367x10* 1.808 0.075
0.10 0.006 0.404  0.301 0.169 0.060 22.759 11.577 3.772 0.843 3.891x10'3 7.582x1010 5.379x10°  435.536
0.10 0.012 0.149  0.129 0.080 0.030 4.922 4.152 1.995 0.539 5.884x107 1.595x107 7.357x10% 86.049
0.10 0.018 0.033  0.048 0.037 0.015 0.372 0.565 0.292  0.073 48.506 487.778 88.493 3.323
0.10 0.024 0.003  0.022 0.022 0.010 -0.008 0.038 0.037 0.015 -0.029 0.077 0.053 0.018
0.20 0.006 0.083  0.067 0.042 0.017 1.181 0.915 0.528  0.191 2.241x10°  623.130 66.327 4.677
0.20 0012 0027 0.027 0.019 0.008 0.439 0.442 0.313  0.125 39.447 41.132 15.525 2.415
0.20 0.018 0.006 0.010 0.009 0.004 0.029 0.056 0.044  0.017 0.643 1.783 1.417 0.405
0.20 0.024 0.000  0.005 0.006 0.003 -0.001 0.006 0.008  0.004 -0.003 0.008 0.010 0.005

The relative error m@rm%vvc}\@hm — 1 is tabulated. The initial frequency of the focal mutant A1 is po = 1/(2N) (we assumed N = N). Other parameters are @ = 0:02 and b = 0:04.
For a graphical representation, see Figure S13B.
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Table S5 The mean absorption time under the QLE approximation relative to the one without linkage.

N, =100 N, =103 N, =10*

r m qge =0 qe =0.2 qe. =0.5 g =0.8 qge =0 qe =0.2 qc =0.5 qe. =0.8 qge=0 qe.=0.2 qe. =0.5 g =0.8
0.05 0.006 3.887 2.738 1.763 1.228 1.377x10° 4.280x10°  468.965 9.837 1.037x10™'  1.053x10'®  3.122x10™®  5.560%x10'%°
0.05 0012 2.563 1.897 1.386 1.116 3.898x10%° 7.261x10° 8.047x10° 2.895x10°  3.186x10% 1.105x10"7 1.511x10°7 2.154x10%
0.05 0018 1.679 1.407 1.187 1.059 2.092x10* 1.212x10°  118.033 46.914 5.463x10°® 3.218x10% 1.172x10" 1.268x10°
0.05 0.024 1.335 1.224 1.111 1.037 246.649 150.044 111.839 97.857 NA NA NA NA
0.10 0.006 2.183 1.815 1.418 1.140 4.032x10° 608.988 45.294 4.288 6.045x10™°  4.043x10™  2.273x10™®  1.374x10'%®
0.10 0012 1.580 1.403 1.209 1.071 5.262x10’ 9.268x10° 9.804x10° 1.497x10°  2.960x10%° 6.234x10°7 6.338x10% 2.248x10*°
0.10 0018 1.256 1.189 1.104 1.037 224.875 118.051 60.712 41.759 7.771x10%° 1.157x10" 2.039x10% 1.085%10°
0.10 0024 1131 1.109 1.064 1.024 116.181 111.037 102.175 95.712 NA NA NA NA
0.20 0.006 1.519 1.386 1.218 1.079 91.941 34.912 8.699 2.325 2.582x10™°  1.660x10*°  1.588x10'°  3.019x10'%
020 0012 1.247 1.188 1.108 1.040 1.550%10° 7.361x10° 2.525%x10° 9.391x10*  6.923x10% 3.274x10%  5.148x10" 1.717x10%
020 0018 1.112 1.091 1.055 1.021 63.566 55.483 45.480 38.849 4.712x10° 3.624x107 6.508x10° 2.380x10*
020 0.024 1.059 1.054 1.035 1.014 101.157 100.356 97.307 94.249 NA NA NA NA

Tabulated is the ratio tqLE/toLm. The initial frequency of the focal mutant Ay is po = 1/(2N) (we assumed N, = N). Other parameters are a = 0.02 and b = 0.04. NA denotes cases where to1,m
is numerically indistinguishable from 0 and hence the ratio m@rm\mOrZ not defined.
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Table S7 The error of m@rm%vvo relative to tqr as in Table S3, but for p = 0.005 fixed instead of py = 1/(2NV).

N, =100 N, =10° N, =10*

r m qge=0 qc.=0.2 qc. =0.5 qc.=0.8 q.=0 qc=0.2 ge =0.5 g =0.8 qe =0 qe.=0.2 qc. =0.5 qc.=0.8
0.05 0.006 3.818 1.995 0.770 0.211 6.508x10° 1.879x10*  241.353 6.201 1.336x10°7 1.441x10% 4.175x10% 3.344x10°
0.05 0012 1391 0.901 0.382 0.106 1.278x10* 2.064x10° 77.230  3.392 7.871x10% 1.579x10% 1.430%x10%° 4.120x10°
0.05 0.018  0.280 0.299 0.167 0.054 26.941 41.405 5751  0.457 6.210x10% 1.430x10 1.010x10"°  419.102
0.05 0024 0.025 0.118 0.092 0.035 -0.011 0.830 0.347  0.086 -0.393 1.274x10% 4193 0.192
0.10 0.006 0404  0.301 0.169 0.060 22.709 11.552 3.765  0.842 3.840x10% 7.486x10%° 5.327x10°  433.553
0.10 0.012  0.149 0.129 0.080 0.030 4.909 4137 1.987  0.537 5.790x10’ 1.559%107 7.196x10" 85.052
0.10 0.018  0.033 0.048 0.037 0.015 0.388 0.611 0342 0.092 48.191 472.445 85.111 3.239
0.10 0.024  0.003 0.022 0.022 0.010 -0.010 0.056 0.056  0.023 -0.058 0.174 0.131 0.046
020 0.006 0.083 0.067 0.042 0.017 1.179 0.914 0528  0.191 2.233x10°  620.925 66.145 4.670
020 0012 0.027 0.027 0.019 0.008 0.438 0.441 0312  0.125 39.267 40.862 15.423 2.404
0.20 0.018  0.006 0.010 0.009 0.004 0.034 0.067 0.055  0.022 0.640 1.758 1.391 0.401
020 0.024 0000  0.005 0.006 0.003 —0.002 0.010 0.012  0.006 —0.006 0.020 0.024 0.012

The relative error is computed as tQLE, p»0/tQLE — 1. It quantifies the effect of assuming p very large in M (p) when deriving the diffusion approximation of the mean absorption time. Other
parameters are a = 0.02 and b = 0.04. For a graphical representation, see Figure S13E.
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Table S9 The ratio tqLE/toLm as in Table S5, but for py = 0.005 instead of py = 1/(2N).
N, =100 N, =103 N, =10*

r m q.=0 qe=0.2 qe. =0.5 qc. =0.8 qge =0 qe =0.2 qge. =0.5 qe. =0.8 qe=0 qe=0.2 qe. =0.5 qe.=0.8
0.05 0.006 3.887 2.738 1.763 1.228 1.340x10° 4.191x10°  463.139 9.790 2.964x10™°  3.124x10"°  9.765x10'  1.828x10'*
0.05 0012 2563 1.897 1.386 1.116 3.451x10" 6.511x10° 7.330x10° 2.672x10°  1.095x10% 4.148x107° 6.376x10°° 1.011x10%
0.05 0018 1.679 1.407 1.187 1.059 2.634x10* 1.542x10°  141.905 49.620 2.614x10°%® 1.786x10% 7.849%x10% 1.006x10°
0.05 0.024 1.335 1.224 1.111 1.037 351.786 190.096 126.558 103.788 NA NA NA NA
0.10 0.006 2.183 1.815 1.418 1.140 3.971x10° 601.729 44.963 4.276 1.858x10™°  1.269x10™  7.351x10'*  4.574x10'%
0.10 0012 1.580 1.403 1.209 1.071 4.768x10’ 8.447x10° 9.010x10° 1.386x10°  1.199x10%° 2.641x10°7 2.866x10" 1.083x10%
0.10 0018 1.256 1.189 1.104 1.037 280.052 142.014 67.583 42.921 4.907x10%®  7.793x10% 1.521x108 8.927x10*
010 0024 1.131 1.109 1.064 1.024 133.739 125.264 110.775 100.350 NA NA NA NA
020 0.006 1519 1.386 1.218 1.079 91.196 34.687 8.664 2321 8.305x10™%  5399x10™*  5247x10®  1.014x10'3
020 0012 1.247 1.188 1.108 1.040 1.423%10° 6.775x10° 2.333x10° 8.711x10%  3.099x10* 1.498x10%* 2.439x10% 8.426x10°°
020 0018 1.112 1.091 1.055 1.021 71.310 60.791 47.766 39.139 3.490x10% 2.761x107 5.223x10° 1.997x10*
020 0.024 1.059 1.054 1.035 1.014 109.131 107.834 102.913 98.013 NA NA NA NA

Here, m@rm is the mean absorption time assuming quasi-linkage equ c_‘\::: AD_\.mv‘ and torLm the one for the one-locus model (no linkage). Parameters are a = 0.02 and b = 0.04. NA denotes cases
where torm is numerically indistinguishable from 0 and hence the ratio qrLe/torm not defined.
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Figure S1 Critical migration rates and invasion of A; for a monomorphic continent. Dark grey: invasion of A; via the
unstable marginal equilibrium Ejg; light grey: no invasion of A4, stable marginal equilibrium Ejg; white: no invasion, fixation
of continental haplotype A;Bs and convergence to the monomorphic equilibrium E, at which the island population
is fixed for the continental haplotype A5 B>. Numerical iterations of invasion dynamics where performed at coordinates
indicated by grey symbols (File S2). Different symbols show which equilibriumis reached: e F/,; o Eg; o E. Initial values for
iterations were {po, g0, Do} = {0, g, 0}, where {g is the frequency of B; at Fg. Iterations were stopped when successive
changes in each coordinate became smaller than the numerical machine precision. The thick, almost-vertical line close to
r = 0 is for the critical migration rate m*. This curve crosses the r axis at r = a(b—a)/(1 — 2a + b), which is denoted by a
vertical dashed line that can hardly be seen. The second vertical dashed line corresponds to r = a. (A) a = 0.01,b = 0.04.
(B)a=0.02,b=0.04. (C) a = 0.03,b =0.04.
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Figure S2 Critical recombination rate and invasion of A, for a polymorphic continent. Dark grey: invasion of A; via the
unstable marginal equilibrium Ejg; light grey: no invasion of A;, stable marginal equilibrium Eg. Numerical iterations
of invasion dynamics where performed at coordinates indicated by grey symbols (File S2). Different symbols show which
equilibrium is reached: e E,; o Fg. Initial values for iterations were {pg, qo, Do} = {0, g,0}, where {g is the frequency
of B; at Fg. The vertical dashed line indicates the pole of the function 7*(m) from Eq. (41). In the left column (A, D, G,
and J), the selection coefficients are a = 0.01, b = 0.04 (a < b/2), in the middle column (B, E, H, and K) they are a = 0.02,
b = 0.04 (a = b/2), and in the right column (C, F, I, and L) they are a = 0.03, b = 0.04 (a > b/2). From top to bottom, the
continental frequency of By increases and takes values of ¢. = 0.01 in (A)—(C), g. = 0.2 in (D)—(F), ¢. = 0.5 in (G)—(l), and
ge = 0.8in (J)—(L).
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Figure S3 Invasion probability of A; as a function of the migration rate for a monomorphic continent. Shown are numer-
ical solutions to the branching process, conditional on initial occurrence of A; on background B, (blue), on background
Bs (red), and when averaged across backgrounds with weights determined by the equilibrium frequency ¢g of B (black).
The vertical dashed line shows ma = a/(1 - b), the critical migration rate below which A4; can invade without linkage to
the background locus. The shaded area thus indicates where A; has a non-zero average invasion probability exclusively
due to linkage to locus B. (A)—(C) Weak selection: a = 0.02, b = 0.04 and r as given in the panels. (D)—(F) Strong selection:
a =0.2,b=0.4and r as given in the panels. In this case, if linkage is tight (r small), the invasion probability conditional on
the beneficial background increases with m as long as m is sufficiently small, and only starts decreasing if m is much larger
(blue curve in panel D). This is because migration reduces the fitness of the resident population (consisting of A5 B¢ and
A Bs) more strongly than it reduces the marginal fitness of type A1 By, which is favourable to type A, B;. As migration
becomes stronger, though, the reduction in marginal fitness of A; B; becomes dominant. The parameter combination in
(D) was arbitrarily chosen to illustrate this effect (for a detailed explanation, see section 5 of File S1). For r < 0.07, the
maximum of the blue curve is shifted further to the right.
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Figure S4 Invasion probability of A; as a function of the recombination rate and the continental frequency of B;. Panels
are for different values of the continental frequency ¢. of the beneficial background allele (B;). Curves show numerical
solutions to the branching process (Eq. 61), conditional on initial occurrence of A; on background B (blue), on background
Bs (red), and when averaged across backgrounds with weights determined by the equilibrium frequency ¢g of B; (black).
Dots represent the point estimates across 10% simulations under the branching-process assumptions (see Methods). Error
bars span twice the standard error on each side of the point estimates, but are too short to be visible. Parameters other
than q. are the same in all panels: a = 0.03, b = 0.04 and m = 0.032.
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Figure S5 Invasion probability of A; as a function of the migration rate. Panels are for varying selective advantage a
and continental frequency q. of the beneficial background allele B;. Invasion probabilities are shown conditional on initial
occurrence of A; on background B (blue), on background Bs (red), and as a weighted average across the two backgrounds
(black). Solid curves show exact numerical solutions to the branching process, whereas thick dashed curves show the
analytical approximations valid for weak evolutionary forces and a slightly supercritical branching process (see section 4 of
File S1, and Egs. 7-9 in File S5). In all panels, b = 0.04 and r = 0.01. The selective advantage a of A; increases from left
to right, taking values of a = 0.01 in panels (A), (D), (G), (J), @ = 0.02 in panels (B), (E), (H), (K), and a = 0.03 in panels (C),
(F), (I) and (L). The continental frequency q. of B; increases from top to bottom, taking values of g. = 0 in panels (A)—(C),

gc = 0.2 in panels (D)—(F), g. = 0.5 in panels (G)—(1), and g. = 0.8 in panels (J)—(L).
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Figure S6 Invasion probability of A; as a function of the continental frequency of B;. Panels are for varying migration and
recombination rates. Invasion probabilities are shown conditional on initial occurrence of A; on background Bj (blue), on
background Bs (red), and as a weighted average across the two backgrounds (black). Solid curves show exact numerical
solutions to the branching process, whereas thick dashed curves show the analytical approximations valid for weak evolu-
tionary forces and a slightly supercritical branching process (see section 3 of File S1, and Egs. 7-9 in File S5). In all panels,
a = 0.02 and b = 0.04. The migration rate m increases from left to right, taking values of m = 0.022 in panels (A), (D),
(G), m = 0.03 in panels (B), (E), (H), and m = 0.038 in panels (C), (F), and (l). The recombination rate increases from top
to bottom, taking values of = 0.005 in panels (A)—(C), = 0.01 in panels (D)—(F), and r = 0.02 in panels (G)—(I). Arrows
indicate where the optimal ¢, is non-zero.
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Figure S7 Asymptotic stability of the marginal one-locus migration—selection equilibrium Ej in continuous time |. Light
blue areas indicate where EB is asymptotically stable and A cannot invade (7 < 0; © as in Eqg. 91, File S1). Orange areas
indicate where Ejg is unstable and A; may potentially invade ( > 0). The black curve represents the critical recombination
rate g given in Eq. (93), as a function of the migration rate. The selection coefficient a in favour of A is 0.02 throughout,
the selection doefficient b in favour of By is 0.03 in the first row (A—C) and 0.1 in the second (D—F). In each row, the
continental frequency of By increases from left to right, taking values of g. = 0.01 in (A) and (D), ¢. = 0.2 in (B) and (E), and
ge = 0.8in (C) and (F).
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Figure S8 ~Asymptotic stability of the marginal one-locus migration-selection equilibrium FEg in continuous time 1. Light
blue areas indicate where Ejg is asymptotically stable and A; cannot invade (7 < 0; 7 as in Eqg. 91, File S1). Orange areas
indicate where Ejg is unstable and A; may potentially invade (& > 0). The black curve corresponds to a combination of §*
and ¢} as described in section 6 of File S1, as a function of the migration rate. The selection coefficient  in favour of 4,
is 0.02 throughout, the selection doefficient b in favour of B is 0.03 in the first row (A—C) and 0.05 in the second (D—F). In
each row, the recombination rate increases from left to right, taking values of r = 0.005 in (A) and (D), = 0.025 in (B) and
(E), and r = 0.045 in (C) and (F).
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Figure S9  Asymptotic stability of the marginal one-locus migration-selection equilibrium FEg in continuous time I11. Light
blue areas indicate where Ejg is asymptotically stable and A; cannot invade (7 < 0; 7 as in Eq. 91, File S1). Orange areas
indicate where Ejg is unstable and A; may potentially invade (& > 0). The black curve corresponds to a combination of §*
and ¢} as described in section 6 of File S1, as a function of the recombination rate. The selection coefficient « in favour of
A1 is 0.02 throughout, the selection doefficient b in favour of By is 0.03 in the first row (A—C) and 0.05 in the second (D—F).
In each row, the migration rate increases from left to right, taking values of m = 0.022 in (A) and (D), m = 0.025 in (B) and
(E), and m = 0.028 in (C) and (F).
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Figure S10 Diffusion approximation to the sojourn-time density of A; under quasi-linkage equilibrium for a polymorphic
continent. Comparison of the sojourn-time density (STD) 2 qr.&(p; po) (thin curves, Eq. 7b) to the approximation valid for
small po, t~2$QLE(p;pO) (dashed curves, analogous to Eg. 109 in File S1) and the one based on the additional assumption
of p >0, fg,QLE’p»O(p;po) (dotted curves, Eq. 119b) assuming a polymorphic continent. The continental frequency ¢. of
B increases from light to dark grey, taking values of 0.2, 0.5, and 0.8. The STD for the one-locus model, t~2,0LM (p;po), is
shown in orange as a reference. Vertical lines give the deterministic frequency p, of A; at the respective fully-polymorphic
equilibrium (computed in File S7). (A) Strong evolutionary forces relative to genetic drift. (B) Strong asymmetry in selection
coefficients, and moderate migration. (C) Recombination ten times stronger than selection at locus B. In all panels, pg =
0.005, which corresponds to an island population of size N = 100 and a single initial copy of A;. Panels (A), (B) and (C)
correspond to Figures 5C, 5D and 5E for a monomorphic continent (q. = 0), respectively.
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Figure S11 Comparison of analytical and simulated sojourn-time densites of A; for a monomorphic continent. Results
are shown for various recombination rates r. Histograms were obtained from 10% simulations (see Methods) and curves
give the diffusion approximation #5 qre(p;po) from Eq. (109). Throughout, @ = 0.02, b = 0.04 and py = 1/(2N) (we
assumed N, = N). In the first row, migration is relatively strong compared to selection in favour of A1 (m =0.024 > a), in
the second row it is relatively weak (m = 0.018 < a). In the left column, the effective population size is small (N, = 100)
and drift dominates, whereas in the right column, N, = 1000 and deterministic forces become more important.
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Figure S12 Comparison of analytical and simulated sojourn-time densites of A; for a polymorphic continent. Results
are shown for various migration rates m and continental frequencies ¢. of B;. Histograms were obtained from 10° sim-
ulations (see Methods) and curves give the diffusion approximation under the assumption of quasi-linkage equilibrium,
t2.que(p; po), from Eq. (109). Throughout, a = 0.02, b = 0.04, r = 0.1 and py = 1/(2N) (we assumed N, = N). From
the top to the bottom row, the effective population size N, increases and therefore genetic drift becomes less important.
From the left to the right column, the migration rate m increases, making it more difficult for A; to survive. No simulations
were completed for the parameter combination in panel (M), as they were too time-consuming.
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Figure $13 Comparison of various diffusion approximations of the mean absorption time of A;. (A) The error of {qLE
(Eg. 110 in File S1) relative to ¢qrg (Eq. 8) for various parameter combinations and an initial frequency of A; equal to
po = 1/(2N) (we assumed N, = N). Squares bounded by thick lines delimit combinations of values of the recombination
rate r and the effective population size V.. Within each of them, squares bounded by thin lines correspond to combinations
of values of the migration rate m and the continental frequency ¢. of Ay, as shown in the small panels on top. The colour
code assigns deeper blue to more negative, and deeper red to more positive values. Empty (filled) circles indicate that
the marginal one-locus equilibrium EB is unstable (stable) and A can (not) be established under deterministic dynamics.
Selection coefficients are ¢ = 0.02 and b = 0.04. (B) The error of EQLE7P>>0 (Eg. 114 in File S1) relative to EQLE for pg =
1/(2N). Other details as for panel (A). (C) The error of tq1E, >0 (EQ. 115 in File S1) relative to tqLE, p»0 for po = 1/(2N).
Other details as for panel (A). (D) As in panel (A), but for an initial frequency of A; equal to pg = 0.005, independently of
N. (E) As in panel (B), but for pg = 0.005 fixed. (F) As in panel (C), but for py = 0.005 fixed. Simulations were as described
in Methods. Numerical values for errors represented in panels (A) to (C) and (D) to (F) are shown in Tables S2 to S4 and S6
to S8, respectively.
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Figure S14 Mean absorption time of A; as a function of the migration rate. Two approximations derived under the as-
sumption of quasi-linkage eqilibrium (QLE) are compared. Solid curves show g1 (Eq. 8) and thick dashed curves Qg ,»0
(Eq. 114 in File S1). The effective population size N, increases from light to dark grey, taking values of 100, 250, 500, and
1000. The vertical dotted lines denote the critical values of m below which A; can invade in the deterministic one-locus
(orange) and two-locus (black) model. Dots and whiskers show the mean and 95% empirical interquantile range across
1000 runs of the mean absorption time in 1000 replicates per run. Where points and whiskers are missing, simulations
could not be completed within the time limit of 72 hours per replicate on the computer cluster. Data points labelled by
1) are from parameter combinations for which fewer than 1000 replicates per run could be realised, because some took
longer than the limit of 72 hours. (A) Monomorphic continent: g. = 0. (B)—(D) Polymorphic continent with continental
frequency of B equal to ¢. = 0.2, ¢, = 0.5, and ¢q. = 0.8, respectively. Other parameters are a = 0.02, b = 0.04, r = 0.1,
and pg = 1/(2N) (we assumed N, = N). Time is in multiples of 2NV, generations and plotted on the log scale.
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Figure S15 Mean absorption time of A; as a function of its selective advantage. Two approximations derived under
the assumption of quasi-linkage egilibrium (QLE) are compared. Solid curves show tqrk (Eq. 8) and thick dashed curves
fQLE7p>>0 (Eq. 114 in File S1). The effective population size N, increases from light to dark grey, taking values of 100, 250,
500, and 1000. The vertical dotted lines denote the critical values of ¢ above which A; can invade in the deterministic
one-locus (orange) and two-locus (black) model. (A) Monomorphic continent (g. = 0). (B)—(D) Polymorphic continent with
g equal to 0.2 in (B), 0.5 in (C) and 0.8 in (D). Other parameters are b = 0.04, m = 0.024, r = 0.1, and po = 1/(2N) (we
assumed N, = N). Time is in multiples of 2N, generations and plotted on the log scale.
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Figure S16 Effect of the continental frequency ¢. of B; on the mean absorption time of A;. Curves show the diffusion
approximation tq.e (Eq. 8), derived under the assumption of quasi-linkage equilibrium. The continental frequency q. of By
increases from light to dark grey, taking values of 0, 0.2, 0.5, and 0.8. (A) The mean absorption time is given in multiples
of 2N, generations as a function of the migration rate. Vertical dotted lines denote the critical values of m below which
A1 caninvade in the respective deterministic two-locus model (grey) and, as a reference, in the one-locus model (orange).
The selection coefficient in favour of A7 is a = 0.02. (B) As in (A), but as a function of the selective advantage of allele A;.
The migration rate is m = 0.024. In both panels, b = 0.04, » = 0.1, N. = 500, and pg = 1/(2N) (we assumed N, = N).
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FigureS17 Mean absorption time of A; as a function of the continental frequency B;. Two approximations derived under
the assumption of quasi-linkage egilibrium (QLE) are compared. Solid curves show tqr (Eg. 8) and thick dashed curves
tQLE,p>0 (EQ. 114 in File S1). The effective population size N, increases from light to dark grey, taking values of 100, 250,
500, and 1000. Dots and whiskers show the mean and 95% empirical interquantile range across 1000 runs of the mean
absorption time in 1000 replicates per run. Where points and whiskers are missing, simulations could not be completed
within the time limit of 72 hours per replicate on the computer cluster. Data points labelled by 1) represent parameter
combinations for which fewer than 1000 replicates per run could be realised, because some took longer than the limit of
72 hours. The migration rate m increases from the left to the right column, taking values of 0.012, 0.018, and 0.024. The
recombination rate r increases from the top to the bottom row, taking values of 0.1, r=0.2, and r=0.4. Other parameters
area =0.02,b=0.04, and pg = 1/(2N) (we assumed N, = N). Time is in multiples of 2V, generations and plotted on the
log scale.
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Figure S18 Effective migration rate at a weakly beneficial mutation arising in linkage to a migration—selection polymor-
phism. (A) The effective migration rate under the QLE approximation up to second (m., Eq. 19, solid) and first (m., Eq. 20,
dashed) order of the actual migration rate m. The orange curve has a slope of 1 and represents the marginal case of linkage
to a neutral background (b = 0). Parameter values are b = 0.02 (light grey), b = 0.04 (medium grey), b = 0.08 (black), and
r =0.1. (B) The gene-flow factor (ratio of effective to actual migration rate, Bengtsson 1985) as a function of the selective
advantage b of the beneficial background allele B;. Grey solid and dashed curves show the gene-flow factor computed
using m. and m., respectively. The curves cross the horizontal axis at b = m + r and b = r, respectively (vertical lines). The
blue dashed curve gives the gene-flow factor for Petry's (1983) m£P> in Eq. (21). Parameters are m = 0.02 and r = 0.1. (C)
As in panel (B), but as a function of the recombination rate. Vertical dotted lines indicate » = b — m and r = b for me/m
and m./m, respectively. Parameters are b = 0.04 and m = 0.02.
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Figure S19 Effect of linkage to two selected sites on the absorption time of a neutral mutation. The mutation occurs at
the neutral locus C. The loci A and B under selection are located 20 and 60 map units from the left end of the chromosome
in panels (A)—(C), whereas locus A is located 40 map units from the left end of the chromosome in panels (D)—(F). One map
unit (centimorgan) corresponds to a recombination rate of = 0.01 and the effective population size is N, = 100. The
scaled selection coefficient in favour of B is 3 = 80 and the scaled migration rate increases from left to right from p = 0.2
in (A) and (D) to i+ = 4.8 in (B) and (E) and i = 48 in (C) and (F). From light to dark, /3 takes values of 0.005, 0.05, and 0.5,
where « is the scaled selection coefficient in favour of A;. Points show values computed using the approximate effective
migration rates in Eq. (23) and curves are based on numerically computed exact effective migration rates (Procecure S9).
For p large and « small (light grey curves in F), the latter were affected by numerical errors causing strong deviation. The

horizontal black line denotes the baseline for free recombination between locus C and the selected sites.
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Figure S20 Effect on neutral coalescence of linkage to two sites at migration—selection balance. The rate of coalescence
G (orange, see Eq. 25) and the coalescent effective size of the island population, ¢; N/G, are given as a function of the
position (in map units) of the neutral locus C. Solid and thick dashed curves are for values computed using the exact and
approximate (Eq. 23) effective migration rate, respectively (they overlap almost completely). One map unit (centimorgan)
corresponds to a recombination rate of = 0.01 and the position of the sites under selection is indicated by vertical dashed
lines. The total population size is N = 108, the fraction of the island is Nl/N = ¢; = 0.01 and the selection coefficient at
locus B (position 60) is b = 0.4. (A) and (B) The migration rate to the island is of the same order of magnitude as selection
at locus A: a = 0.02, m; = 0.024. (C) and (D) Immigration is weak compared to selection at locus A: a = 0.2, m; = 0.024.
Throughout, my/ms = ca2/c; = (1 — ¢1)/c1, so actual migration is conservative (Wakeley 2009, p. 194). The horizontal
black line gives the baseline-effective population size at the neutral locus in the absence of linked selection. For alternative
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parameter combinations, see File S9.
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Figure S21 Mean invasion probability of A; with linkage to a background polymorphism compared to no linkage. Curves
show the ratio of the weighted mean invasion probability, 7, divided by that of the one-locus model, oM (7 = 0.5). The
ratio was computed from numerical solutions to the branching process (Eq. 3) and is shown as a function of the migration
(m) and recombination (r) rate in panels (A) and (B), respectively. The vertical dashed line in panel (A) shows the critical
migration rate a/(1 —b), beyond which allele A; cannot be established under the deterministic one-locus model. In panel
(B), for m = 0.018 (blue curve), allele A, can be established independently of r. For stronger migration (green and orange
curves), A; can be established only if r is below a critical value (where the green and orange curves cross the x-axis,
respectively). Other parameter values are a = 0.02, b = 0.04, and g. = 0. Compare to Figure 7 for the relative effect of m
on mean extinction time.
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Figure S22 Comparison of branching-proccess and “splicing' approximations to the invasion probability of A; as a function
of the recombination rate. Black curves represent the branching-process solution averaged across the two backgrounds
(B1 and Bs). The solid curve gives the exact numerical solution and the dashed curve the analytical approximation for
a slighty-supercritical process (based on Eq. 12). The dashed purple curve represents the approximation based on the
“splicing approach' as proposed by Yeaman (2013). As a reference, the thin blue curve gives the numerical branching-
process solution conditional on A, arising on the beneficial background B;. (A) A case where o = 0; a = 0.02, m = 0.024.
(B) A case where ropy > 0; @ = 0.03, m = 0.032. In both panels, b = 0.04, and the vertical dotted line gives the critical
recombination rate below which A can invade according to deterministic continuous-time theory.
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File S1
Additional Methods

1 Details of the model

We denote the frequencies on the island of haplotypes A; By, A1Bs, A>B1, and A; By by 21, 22, x3, and x4, respectively.
The haplotype frequencies are related to the allele frequencies (p, ¢) and the linkage disequilibrium (D) as follows (e.g.
Burger 2000). The frequencies of A; and B; on the island can be expressed as p = x1 + x5 and ¢ = x1 + x3. Accordingly,
the frequencies of A and Boare 1 —p = 3 +x4and 1 — g = xo + x4. Moreover, x1 = pg+ D, x5 = p(1 - ¢q) - D,
23 =(1-p)g—D,and x4 = (1-p)(1-¢q) + D, and the linkage disequilibrium can be expressed in terms of the haplotype
frequencies as D = x124 — x2x3. Thereby, we must recall the constraints x; >0 (¢ = 1,...,4) and Zil x; = 1, which are
equivalentto 0 < p,q < 1and

-min{pg, (1 -p)(1-¢)} <D <min{p(l-q),(1-p)g}. (26)

The matrix of relative fitnesses on the island is

BlBl BlBQ B2BQ

AAL [ wn w12 Wa2
W = A1Ay | wis  wia=wes wo |, (27)
Az As w33 W34 W44

where w;; is the relative fitness of the genotype composed of haplotypes i and j (¢, j € {1,2,3,4}). For additive fitnesses,
we use Eq. (1) in the main text. The marginal fitness of haplotype i on the island is defined as w;., = Z;*:l w;jx; and the

X . . = 4
mean fitness of the island population as w = Zi,j Wi TiTj = g Wil

Straightforward extension of two-locus models without migration (cf. Lewontin and Kojima 1960 or Burger 2000, chap.
2) yields the recursion equations for the haplotype frequencies,

33,1 = (1-m)(z1wi.— rwiaD)/w, (28a)
zy = (1 - m)(wawa. + rwi4 D) [, (28b)
2y = (1 -m)(z3w3.+ rwi4D) /0 + mgqe, (28¢)
2y = (1 -m)(zgwg.— rwia D) /D +m(1 - q.), (28d)

where 7 is the recombination rate, m the migration rate, and ¢. the frequency of B; on the continent. For a monomorphic
continent, ¢. = 0. For this case, a continuous-time version of Eq. (28) has been fully described (Blrger and Akerman 2011).

2 Approximating the dynamics for rare A;

Because A; arises as a novel mutation in our scenario (see main text), the haplotype frequencies z1 and x» are initially
small. We therefore ignore terms of order x;z; (,j € {1,2}) and higher in Eq. (28). Moreover, we assume that, upon
invasion of A1, the frequency of B stays constant at the one-locus migration—selection equilibrium (¢ = gg). In principle,
q approaches an internal equilibrium ¢, but the change is small compared to the change in p (Burger and Akerman 2011).
Wethenhave xg3 =g-x1 ~dgandxzy =1-¢q— x5 % 1 - gg for z1 and x5 small. As a consequence, the dynamics in Eq.
(28) reduces to a system with only two equations in z; and x5,

= (1 -m)[wizy + rwiazade — rwiazi (1 - gg)] /w, (29a)
= (1 -m) [waws — Twiaw2gs + rwisx1 (1 - Gs)] /w, (29b)

where w; and wo are the marginal fitnesses of the A, B; and A B> haplotypes, respectively. These are given by

wy = wi3ds + wia(1 - gg), (30a)
wg = w4 (1 - ) + wr4ds. (30b)
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Moreover, w is the mean fitness of the resident population on the island, which is assumed to be monomorphic at locus A:
w :cjéw33+2cjg(1—qB)w34+ (1—(13)211}44. (31)

This holds approximately if A; is rare on the island. Equation (29) can be written more compactly in matrix form as x’ = xL,
where x = (z1, z2) is a row vector, and

L= () 62
with
A= (1=m) [wy = 7(1 - g)wia] /w, (33a)
A2 = (1=m)r(1 - gs)wia/w, (33b)
A21 = (1 =m)rdgwis/w, (33¢)
A2z = (1 =m) [wz - rdgwis] /. (33d)

Setting m = 0, we recover the dynamics derived by Ewens (1967) for a panmictic population and a focal mutation occurring
in linkage to a background locus at which overdominant selection maintains B; at frequency ¢gg. We note that Egs. (29) to
(33) are valid for both a monomorphic and a polymorphic continent. The difference comes in only via ¢g, which is derived
in the following section. Matrix Lk will be encountered again as the mean matrix of the two-type branching process used
to study the invasion probability of A; (see also the following section).

Note the difference between w; and w;.: the former refers to the resident population under the assumption of the
branching process (this section), whereas the latter applies to the island population in the general two-locus model (previ-
ous section). The same distinction holds for w and w.

3 Marginal one-locus migration—selection model

We denote the marginal one-locus migration—selection equilibrium by Eg = (p = 0,q = 4g, D = 0). This equilibrium is
assumed to be realised on the island before occurrence of the A; mutation. The equilibrium frequency ¢g of allele By plays
an important role. It determines the division of the resident island population into two genetic backgrounds and provides
the weights for computing the average invasion probability of A; given the haplotype-specific invasion probabilities (see
sections 2 and 4). Analysis of the one-locus dynamics (File S2) shows that ¢g is obtained by solving

w1
ag = (1-m)-=qs +mqec = go (34)
for gg, where Wy = w33qs + w34(1 — ¢g) is the marginal relative fitness of the B; allele and

W = qggwss +2qa(1 - gg)wsa + (1 - gg)*was (35)

the mean fitness in the island population. From Eq. (34), one obtains

 wga(1—m) — b+ \/4(1 ~ m)mg(wss - wga) i + [G - (1-m)] 6
B~ 2(1—777,)(11}34—1033) ’

which simplifies to gg = [w34(1 —m) — @]/ [(1 — m) (w34 — w33)] for a monomorphic continent (g. = 0). The equilibrium
Eg is asymptotically stable if the migration rate is smaller than a critical value,

m< P Y (37)
W34

We note that @ is a (non-linear) function of gg, and hence of m. Therefore, Eq. (36) is only an implicit solution and
condition (37) notimmediately informative. However, for additive fitnesses (see Eq. 1 of the main text) and a monomorphic
continent (g. = 0) we find the explicit solution given in Eq. (2). Thisis an admissible polymorphic equilibrium (i.e. 0 < gg < 1),
if the migration rate is below a critical value,

=mg. (38)
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Because a < 1 was assumed, mg is always positive. Straightforward calculations show that Eq. (38) is also the condition
for asymptotic stability of E/g within its marginal one-locus system. That is, under the marginal one-locus dynamics, Ejg is
stable whenever it is admissible (see File S2, or Nagylaki 1992, chap. 6.1).

When the mutation Ay occurs, there is a transition from one- to two-locus dynamics. It is therefore crucial to study the
stability of Eg also under the full two-locus dynamics. We find that Ejg is not hyperbolic if m = m* orif m = mg > m*,
with m™ given in Eq. (10). In the first case, g changes stability from unstable to asymptotically stable as m increases
above m*; in the second case, Fg leaves the state space as m increases beyond mg. We do not have a complete stability
and bifurcation analysis of Eg. However, some numerical and analytical results suggest that the qualitative behaviour is
the same as in the continuous-time model (Burger and Akerman 2011). Then, the following holds. If Eg exists and is
asymptotically stable under the one-locus dynamics, (i.e. m < min(b,mg)), but unstable under the two-locus dynamics
(i.e. m < m*), then a fully-polymorphic internal equilibrium £, (0 < p,,4, < 1 and D, > 0) exists and is asymptotically
stable. Therefore, if m < m*, a novel mutation A; can invade via Eg. Presumably, the internal equilibrium E, is reached.
Comprehensive numerical computations under the discrete-time dynamics corroborate this conjecture (see File S2 and
Figure S1).

With a polymorphic continent (0 < ¢. < 1) and additive fitnesses, the frequency of B; at the marginal one-locus

migration—selection polymorphism (Eg) is

. b-(1-a)m+2bmg. +VR
7= 20(1 + m) :

(39)

where
R=4b(1-a-b)ym(1+m)q. +[b- (1-a)m +2bmg.]* > 0. (40)

In contrast to the case of a monomorphic continent, where Ej exists only if m < mg, with a polymorphic continent, both
alleles By and B, are introduced by migration and hence Eg always exists and is always asymptotically stable under the
one-locus dynamicsif 0 < g. < 1and 0 <m < 1.

A comprehensive analysis of the stability of Eg involves solving a complicated cubic equation, which results in expres-
sions that are not informative. We could not accomplish a complete analytical treatment, but a combination of analytical,
numerical and graphical approaches suggests the following. Upon occurrence of A; at locus A, Eg may either become un-
stable, in which case A1 can invade and a fully-polymorphic internal equilibrium E, is reached, or Eg may stay asymptoti-
cally stable, in which case A cannot invade. The transition between these two scenarios occurs at a critical recombination
rate

1 .
«_] 3 if m < myx,
" { 7*(m) otherwise, (41)

where 7*(m) is a complicated function of m that we do not present here (but see Eq. 3 in File S2, and Eqg. 92 in section 6),
and m,.« is the migration rate at which 7*(m) has a pole. Then, for a given combination of values for a, b, m and ¢., 4;
can invade if and only if 7 < r* (Figure S2). A similar argument holds for a critical continental frequency ¢ of By, such that
for a given combination of values for a, b, m and r, A; can invade if and only if g. < g; (see File S2 for details). We were
not able to find an explicit expression for a critical migration rate m* with an interpretation analogous to that of r* or ¢..
However, m* is implicitly defined by »* or ¢’ and can be computed numerically.

As a final remark, we note that for weak evolutionary forces, Egs. (2), (38) and (10) can be approximated by the corre-
sponding equations derived by Blrger and Akerman (2011) for the continuous-time model with a monomorphic continent.
Specifically, scaling a, b, m and r by € and expanding Egs. (2), (38) and (10) into a Taylor series around € = 0 yields

. m
qB ® 1- 37 (42)
mpg ~ b, (43)
and
m*wa(1+b_a) (44)
r

to first order of ¢ and after rescaling. Equations (42) and (44) correspond to Egs. (3.9) and (3.11) in Blirger and Akerman
(2011).
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4 Branching-process approximation to the invasion probability

For a proper stochastic treatment, the evolution of haplotype frequencies has to be modelled by a Markov process. In
the context of invasion of novel mutations, particularly useful approximations can be obtained using branching processes
(Fisher 1922) and diffusion processes (Kimura 1962). Both approaches deal with the probabilistic effect due to the initially
small absolute number of copies of the mutant allele. The effect of finite population size is only accounted for by the
diffusion approximation, however. In the first part of the main paper, we are concerned only with initial rareness of the
mutation.

We employ a two-type branching process (Harris 1963; Ewens 1968, 1967) to study the dynamics of the two haplotypes
of interest, A; B; (type 1) and A B» (type 2) after occurrence of mutation A; (see section 2 above). Let A;; be the mean
number of j-type offspring produced by an i-type parent each generation, and z; the proportion of type ¢ in the island
population. Then the expected proportion of types Ay B; and A B, in the next generation is

E [x'l] = /\11.231 + /\21.132, (458)
E [xé] = /\12.%1 + /\22.’[]2, (45b)

or, in matrix form
E[x'] = xL, (46)

where x = (z1,22), and L = (\;;), i, 7 € {1, 2}, is called the mean matrix (cf. Eq. 32 in section 2). The leading eigenvalue
v of L determines whether the branching process is supercritical (v > 1) and A1 has a strictly positive invasion probability,
or subcritical (v < 1), in which case A; goes extinct with probability 1. Expressions for the \;; were given in Eq. (33).

The leading eigenvalue of L is

1-m -

V= ETe [w1 + W — rwig + \/(w1 —wg)? + 2rwi14(2d¢s — 1) (w1 —wy) + 7’2111%4] , (47)
where wq and wq are the marginal fitnesses of type 1 and type 2 defined in Eq. (30), and w is the mean fitness of the resident
population on the island as defined in Eq. (31) (section 2). After some algebra (see File S3), the condition for invasion of
A1, v >1,is found to be equivalent to Eqg. (9) in the main text. Equations (47) and (9) hold for both a monomorphic and a
polymorphic continent.

Let (;; be the random number of j-type offspring produced by a single i-type parent. We assume that (;; and (;2 are
independent and Poisson-distributed with mean \;; and )\;2, respectively (i € {1,2}). Then, the probability-generating
function (pgf) of (;; is

Fii(s;) =E[s$9] = 3 prsh = e (m) i je (1,2}, (48)
k=0

where pi, = P[(;; = k] is the probability that an i-type parent has k offspring of type j. The first two equalities follow
from the definition of the pgf (e.g. Harris 1963), and the third from the properties of the Poisson distribution. Because of
independent offspring distributions for each type, the pgf for the number of offspring (of any type) produced by an i-type
parent is given by

2
fi(s1,82) =[] fij (s5)- (49)
j=1
Inserting Eq. (48) into Eq. (49), we obtain
fi(s1,82) = e (ms) gmhia(lms2) (50a)
fa(s1,82) = e 2 (17s0) L g (lmsz), (50b)

We use @; for the extinction probability of allele A; conditional on initial occurrence on background B;, and 7; = 1-Q);
for the respective probability of invasion. The extinction probabilities (Q; are found as the smallest positive solution to Eq.
(3) in the main text. The average invasion probability 7 is found as the weighted average of w1 and 7> (see Eq. 4 in the
main text). As the problem stated in Eq. (3) amounts to solving a system of transcendental equations, an explicit solution
cannot be found in general. Numerical solutions can be obtained, however (see File S3).
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We proceed by assuming additive fitnesses as defined in Eq. (1) of the main text. The entries \;; of the mean matrix L
in Eqg. (32) are then given by

)\11 :E+F’/‘, (518)
Ao =—-Fr, (51b)
)\21 :HT', (51C)
)\22 =J—H7’, (51d)
where
1+b+am
FP=—"" 52
l-a+b’ (52a)
F:—%, (52b)
_ b—(l—a)m, (520)
b(1-a+0)
1+m(a-10)
J=—. 52d
l-a+b (52d)

Assuming weak evolutionary forces, i.e. replacing a, b, m and r by ae, B¢, ue and pe, respectively, and expanding into
a Taylor series around € = 0, the terms in Eq. (51) are approximated to first order in € by

m m
/\11m1+a—?7“, )\mm?n

)\21N(1—%)7’, )\22N1+a—b—(1—%)?",

after resubstituting @ — a/e, B = b/e, u > m/feand p - r/e.
With additive fitnesses and a monomorphic continent, the dominant eigenvalue of L is

- 2+b-r+m(2a-b-r)+VRy
- 2(1-a+b) ’

(53)

where
Ri=(1+m){b*(L+m)+2b(1-m)r+r[r-m(4-4a-r)]}. (54)

The branching process is supercritical (v > 1) if m < m* or, alternatively, if r < r*, with m* and r* the critical migration
and recombination rates defined in Egs. (10) and (11) of the main text, respectively (see File S3 for details). Assuming weak

evolutionary forces, v simplifies to
1
v~1+ 5(2a—b—r+\/R2),

where
Ry = b2 + 2br — dmr + 12, (55)
Then, m™ is approximated by Eq. (44) and
. ) if m<a, (56)
rers % otherwise

(see File S3). Note that the critical migration and recombination rates for invasion of A; obtained under the deterministic
model (section 3) and the corresponding two-type branching process are identical. In File S4 we show that this agreement
is generically expected.

To obtain the extinction probabilities of A, given initial occurrence on background B, or By, we plug Eq. (51) into (50)
and solve

fl (81,82) _ e(EJrFr)sl—Frssz =85 (576)

fa(s1,89) = eHrerttine=t — ) (57b)
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for s1 and s5. The smallest solutions between 0 and 1 are the extinction probabilities Q1 =1 — 7 and Q2 = 1 — 75 (cf. Eq.
3 in the main text). An explicit solution is not available and we need to use numerical methods to obtain exact results (File
S3).

We now turn to the case of a polymorphic continent (0 < ¢. < 1), still assuming additive fitnesses. Then,

M1 =E+Fr, (58a)
A2 = Gr, (58b)
Aoy = Hr, (S8e)
Ny = J 4 I, (58d)
with
~ (1—m)(2+b+m+am+2bch+\/}_3)
E: )
2[1—a—bm(1—QQc)+\/ﬁ]
_ (1-m)[b+(1-a)m+2bm(l-q.) - VR]
F=- )
2b[1—a—bm(1—2%)+\/ﬁ]
é_b+m[1—a—21)(1—C]c)]_\/E
- 2b(1—a—b) ’
- b-(1-a)m-2bmg.+\VR
H= )
2b(1-a+0)
~ (1—m)[b—(1—a)m+2bqu+\/ﬁ]
I =- ’
Qb[l—a—bm(l—QqC)‘*\/ﬁ]
j_(1—m)[2+m+am—b(1+2m(1—Qc))+\/ﬁ]

2[1-a-bm(1l-2q.)+VR]

Here, R is as defined in Eq. (40). Assuming weak evolutionary forces, i.e. scaling a, b, m and r by € and expanding into a
Taylor series around € = 0, Eq. (58) is approximated to first order in € by

1 b+m-+R b+m-+R
)\11N5(24—2&4—[)—771—\/]%3,)—27b37"7 AlgﬁTZJ‘T‘,
b-m+~R3 1 b-m++R3
)\21~T7’, )\22~2(2—‘-2(1—&)—’/TL—\/]%3)—TT’7
where
Rs = (b—m)? + 4bmg. > 0. (59)

Note that the continental frequency q. of By enters these equations only via 4bmg. in the radicand R3. For a poly-
morphic continent, the eigenvalues of L are complicated expressions, which we do not show here (but see File S3). The
leading eigenvalue can be identified, though. For weak evolutionary forces, and to first order in ¢, it is approximately

1/%1+% Za—m—r—\/ﬁg+\/b2—r(2m—r—2\/R_3):| (60)

(see File S5). Finally, the system of transcendental equations to be solved in order to obtain the extinction probabilities of
A1 becomes

fl (51,82) _ 6—(E~‘+}":'7')(1—81)—67'(1—52) =85 (61a)
fo(s1,82) = e—ﬁr(l—sl)—(j+fr)(1—sz) = 59 (61b)

(cf. Eg. 3 of main text).
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To obtain analytical approximations to the invasion probability of A, we follow Haccou (2005, pp. 127-128) and assume
that the branching process is slightly supercritical (see also Eshel 1984; Hoppe 1992; Athreya 1992, 1993). This means that
the leading eigenvalue of the mean matrix L is of the form

v=v(€)=1+¢, (62)

where ¢ is small and positive. To make explicit the dependence on &, we write Q; = Q;(£) and ; = m; (&) for the extinction
and invasion probabilities, respectively (i € 1, 2). Using the Ansatz in Eq. (62), Haccou et al. state in their Theorem 5.6 that,
as& -0, ¢;(&) converges to 1 and

2[v(§) -1]
B(¢)

Here, vy, = 1 is the ith entry of the right eigenvector v = (v1,v2)7 pertaining to the leading eigenvalue v of the mean matrix
L. The matrix B(¢) is defined as

mi(§) =1-4¢i(§) = vi(§) +o(&). (63)

B(¢) = Zu,zv Aij +v(§) [1-v(8)] Z V3, (64)

where u; is the ith entry of the normalised left eigenvector u = (u1, ug) associated with the leading eigenvalue v of L. By
normalised we mean that Zi ug = 1. For Eq. (63) to hold, u and v must in addition fulfill Zizl upvg = 1.

For additive fitnesses (Eq. 1) and a monomorphic continent (g. = 0), we combine Egs. (53) and (62) to identify £ as

2a(1+m)-b-r-m(b+r)+VRy
2(1-a+b) ’

£= (65)
where R; is defined in Eq. (54). Therefore, the assumption of a slightly supercritical branching process will hold for all
parameter combinations that result in a small positive £ in Eq. (65). For weak evolutionary forces, Eq. (65) is approximated
by the simpler expression below Eq. (12) in the maint text. After some algebra using Mathematica (File S5), we obtain the
appropriately normalised left and right eigenvectors of LL as

b(1+m)—(1+m)r+vEL\ |
u= 2(21})_(;_:'2?7)7” (66)

b[b+r+m(b+r)+v/R1]

and
b2(1+m)—2(1—a)77Lr+b(r—mr+\/R1 )

V= (b+r)2+m[(b2—[rb)_2(—14_(al)—£i:’]+(b—r)\/RT , (67)
(b+1)2+m[(b-r)2-4(1-a)r]+(b-r)VR1

respectively. Combining Egs. (51), (53), (66), (67), and (64), we find analytical expressions for the conditional invasion
probabilities 71 (£) and w5 (€) under a slightly supercritical branching process. The weighted average invasion probability
(&) is obtained according to Eq. (4) with gg given in Eq. (2). The resulting expressions are long and not very informative
(see File S5 for details and Figure 2 for a graphical comparison to numerical solutions). However, if we assume weak
evolutionary forces, we obtain the analytical approximations 71 (£) and 72(&) given in Eq. (12) of the main text. The
corresponding average invasion probability 7 (&) is obtained by insertion of Egs. (12) and (2) into Eq. (4) (see main text).

For a polymorphic continent (0 < ¢. < 1), the procedure is analogous to the one outlined above. Intermediate and final
expressions are more complicated as those obtained for the monomorphic continent, though. We therefore refer to File
S5 for details and to Figures S5 and S6 for a graphical comparison to numerical solutions. The approximations 71 (£), 71 ()
and 7:r(£) given in Egs. (7)—(9) in File S5 for weak evolutionary forces and 0 < ¢. < 1 are accurate if £ is small, where

mé[m+r\/R_—\/b2—T(2m—T—2\/R_3):|

and Rs is defined in Eq. (59). Then, the branching process is slightly supercritical (cf. Eq. 62). In practice, the approximations
derived for a polymorphic continent are useful for efficient plotting, but otherwise not very intuitive. Letting g. — 0 and
assuming m < mg (cf. Eq. 38 in section 3), we recover the respective analytical expressions for the case of a monomorphic
continent.
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5 Condition for a non-zero optimal recombination rate

Observation of the mean invasion probability 7 of allele A; as a function of the recombination rate r suggests that 7(r)
may have a maximum at a non-zero recombination rate (r,p¢ > 0) in some cases, whereas it is maximised at rop; = 0in
other cases (Figures 1A and 1B). To distinguish between these two regimes, we note that 7, > 0 holds whenever the
derivative of 7(r) with respect to r, evaluated at r = 0, is positive. This is because 7(r) will always decay for sufficiently
large r. We denote the derivative of interest by

dﬂ'Q(T‘)
dr ’

r=0

+(1-ds)

r=0

(68)

7(0) = 2 [dom (1) + (1= Ge)ma()]|_ = s ™

where 71 and 75 are the invasion probabilities of A; conditional on initial occurrence on the By and By background,
respectively, and ¢g is the equilibrium frequency of By before invasion of A;. In the following, we obtain 7/(0) via implicit
differentiation. We will first derive a general, implicit condition for 7'(0) > 0, and then proceed by assuming additive
fitnesses to obtain explicit conditions. We will do so first for a monomorphic (¢. = 0) and then for a polymorphic (0 < ¢, < 1)
continent.

We start from Eq. (3) of the main text with probability generating functions f;(s1, s2) (i € 1,2) as defined in Eq. (50) in
section 4. Recall that the extinction probabilities ); = 1 — 7; are the smallest positive solutions to Eq. (3). Assuming that
these solutions have been identified, we know that the invasion probabilities 7; satisfy

1-m = 6*/\1171'1 _6*>\127r2
1-1 = e—>\2171'1 . e—>\227F2.
Taking the logarithm on both sides and making the dependence of both 7; and \;; on r explicit, we have
In [1—7T1(7‘)] = —)\11(7")71'1(7") —)\12(7")7(2(7”) (693)
In [1 - 7'('2(7’)] = —)\21(7‘)’/T1(7’) - )\22(7')7’(’2(7‘). (69b)
Applying the formulae for the A;; () given in Eq. (33), Eq. (69) becomes

In[1-m(r)] = —I_Tm{[wl - (1= gg)rwia]m(r) + (1- QB)Tw14F2(T)} (70a)
In[1-my(r)] = —LTm{dgrwmm(r) + (we — ggrwiy) 7'('2(7“)}. (70b)

Differentiating both sides with respect to r, and setting r = 0 yields

m1(O) _ (1 =y 2ama() = (A = dg)wna (i = 73)

= (71a)
1-m7 w
ThO0) _ (g 2m(0) + dswss (7§ ~75) 710
1-m3 w

dmi(r)
dr
Ay if it initially occurs on background By and Bs, respectively, and if there is no recombination (r = 0). Solving the system

in Eq. (71) for 77 (0) and 75(0), and plugging the solutions into Eq. (68), we find after some algebra

where 7(0) =

. fori e {1,2}. Moreover, 7} = w1 (0) and 75 = m2(0) are the conditional invasion probabilities of
r=

—s _ R . o o W14 1-n? 1-m
7(0) = (1 =m)a(l = de)(ms — i) == (1 —( —m)(liwi’)wl/w 1-Q —m)(liwg)wg/w)' (72)

Setting r = 0 in Eq. (70) and rearranging, we obtain
(1-m)Z = In(1-3)/x0  ie{l,2}. (73)
w

Insertion of Eq. (73) into Eq. (72) yields

_r _ _ ~ A o o% 1_7-[-; _ 1_7T(2)
7(0) = (1 -m)de(1 - de)(m; - ) =5 (1+1n(1—7ri’)(1—7r‘1’)/77‘1’ 1+1n(1_7r;)(1—7rg)/7r;)' (74)
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At this point, a closer inspection of Eq. (73) is worthwhile. Straightforward rearrangement leads to
o Wi o .
1-m; :exp[—(l—m)fﬂ'i] ie{1,2}, (75)
w

which has a solution 7{ in (0, 1] if and only if (1 — m)w;/w > 0. Otherwise, the only solution is 7r{ = 0. In our setting,
we always assumed that when A; occurs on the deleterious background (B>), it will form a suboptimal haplotype (41 B>
less fit on the island than A;B;) and go extinct in the absence recombination. This assumption translates into wy < .
As 0 < m < 1, we immediately note that for ¢ = 2, the only possible solution of Eq. (75) is 75 = 0. Therefore, whenever
wy > w/(1 - m) holds, the derivative of interest in Eq. (72) simplifies to

e . o Wi4 w _ 1-n7
(0 = (1 =m)e(l - Ge)mi=7 (w—(l—m)wg 1-(1—m)(1-w;)w1/w)' (76)

After some algebra (File S6), we find that 7/(0) > 0, and hence 74, > 0, is equivalent to Eq. (13) in the main text. Again,
if we set m = 0 in the derivation above, we obtain expressions previously derived by Ewens for a panmictic population in
which the background locus is maintained polymorphic by heterozygote superiority (Ewens 1967).

To obtain more explicit conditions, we assume additive fitnesses (Eq. 1). We start directly from Eq. (57), replacing s;
by the smallest solution (); between 0 and 1. Taking the logarithm on both sides and making the dependence of ); on r
explicit, we find

InQi(r)=(E+Fr)Qi(r) - FrQz(r)-E (77a)
InQa(r) = HrQ1(r) + (J - Hr)Qz(r) — J, (77b)

where E, F, J and H are independent of r and as defined in Eq. (52). Differentiating Eq. (77) on both sides, setting r = 0
and rearranging, we obtain

Q, O o] o
WO (@5 - @) + Q4 0)
Q5
Q, O o o
R R AR EAC)
@5
with Q;(0) = 4@ Here, we used Q? = Q;(0) for the extinction probability of A; condidtional on initial occurrence

dr r=
on background B; (i € fl, 2}). Solving for Q' (0) and Q%(0) yields

FQT(Q - Q5)

Q1(0) = B (78a)
1

24(0) - HQE(_Q}C;OQE) _ 78)
2

To obtain an explicit solution, we aim at approximating the (); in the following. Going back to Eq. (57) again, but setting
r = 0 directly, we find

Qs =eZ1-QD e (1,2}, (79)
where
1+b
Z,=F= w7 (80a)
l1-a+b
1 -b
Zyie g = LEmla=b) (80b)
l-a+b

Importantly, the equations for ) and )5 in (79) are now decoupled. Moreover, we note that Eq. (79) has a solution )5 in
[0,1) ifand only if Z; > 1; if Z; < 1, the solution is @} = 1. In other words, in the case of complete linkage (r = 0), type ¢
has a non-zero invasion probability if and only if Z; > 1 (recall that 77 = 1 — Q7). Closer inspection of Eq. (80) shows that,
given our assumptions of a < band 0 < m <1, Z; > 1 and Zs < 1 hold always. Hence, we have 75 = 1 - Q5 = 0, and we
are left with finding an approximate solution of Eq. (79) for 7 = 1. For this purpose, we focus on the case where invasion is
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just possible, i.e. 7] is close to 0 and hence Q)] close to 1. This is equivalent to Z; being close to, but larger than, 1. We
therefore use the Ansatz
Z1=1+¢ (81)

with € > 0 small. We then have QS = ¢~ (1*)(1=Q1) | Noting that QS (e) must be close to 1 for € small, we expand the
right-hand side into a Taylor series around ()] = 1, which results in

Qi =1-(1-@)(1+0) + L (1- QD1+ + O(Q}) 82)

Neglecting terms beyond O(Q9)? and solving for Q3, we obtain QS = (1 + €2)/(1 + €)? (excluding the trivial solution
Q1 =1). To first order in ¢, this is approximated by

{=1-7]~1-2e (83)

We identify € by inserting Eq. (80a) into Eq. (81) and solving for e. To first order in q, this yields € ~ a(1 + m)/(1 +b)
and hence, from Eq. (83), we find
a(l+m)
— +
(1+0)

Note that if we set m = 0 (no migration) and b = 0 (no background selection), we recover Haldane's (1927) well-known
approximation m ~ 2a.

Qy=1-2 O(a)?. (84)

Comparison of Egs. (83) and (84) suggests that the invasion probability 7J increases with the migration rate m. This
may seem counterintuitive. However, with complete linkage (r = 0), the cases of A; occurring on background B, or Bs can
be considered separately. If A; occurs on background By, it forms haplotype A1 B;. From then on it competes against the
resident population consisting of haplotypes A> B and A5 B> at frequencies ¢g and 1 — §g, respectively. Because, initially,
A1 Bj types do not interfere nor contribute to the resident population, what matters is the ratio of the marginal fitness w1
of A1 B to the mean fitness w of the resident population. This follows directly from Eq. (73). Equations (30a) and (31) in
section 2 show that both w; and w depend on {g. For additive fitnesses, ¢g is given by Eq. (2) in the main text; it depends
on m. Therefore, to understand the apparently paradoxical increase of 77 on m, we must compare the dependence on m
of wy and w. We have wy = (1+b+am)/(1+m)and w = (1-m)(1-a+b)/(1+m). Both decrease with m, but w does so
faster. The ratiow; /w = (1+b+am)/[(1 —a+b)(1 —m)]increases quickly with m (File S6). This explains why 7 increaes
with m. It also explains why 71 increases with small m in Figure S3D for very weak recombination. If recombination is too
strong, the effect vanishes (Figures S3E and S3F).

Finally, plugging Eq. (52) from section 4 and Eq. (84) into Eq. (78), we obtain the explicit approximations

2m(l-a+b)[1+b-2a(1+m)]
b(1+b)(1+b+2am) ’

2a[b-(1-a)m]

b(1+b)(a-b) ’

Q1(0) ~ (85a)

Q5(0) ~ (85b)
valid for a small relative to m and b. Noting that 7'(0) = - [gsQ/(0) + (1 - §g)Q%(0)] and using ¢g from Eq. (2) of the
main text for additive fitnesses and a monomorphic continent, we find the approximate derivative of the mean invasion
probability 7 atr =0 as

B 2m(l-a+b)[b-(1-a)m]{2a* +b+b? - 2a[1+b(2+m)]}

7(0) = D2(1+b)(a—b)(L+m)(1+b+2am) ' >

After some algebra, one can show that 7'(0) > 0, and hence 7o > 0, if a > 1 — b/m and a > a*, with a* defined in Eq.
(14) of the main text. Combination of Eq. (14) with our assumption a < b and the condition for existence of the marginal
one-locus equilibrium Eg (a > 1 — b/m, from Eq. 38 in section 3) yields a sufficient condition for rop; > 0 (Figure 3). For
further details, we refer to File S6.

For the case of a polymorphic continent (¢q. > 0), we were not able to derive informative analytical conditions for
Topt > 0. Analytical and numerical computations in File S6 suggest that if we start with a monomorphic continent (¢, = 0)
in a constellation where rop¢ > 0 holds, and then increase g., the maximum in 7 (r) shifts to 0 (rop¢ — 0). There must be a
critical value of g, at which the shift from r,,¢ > 0 to 7ot = 0 occurs, but we could not determine it analytically.
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6 Analysis of the deterministic model in continuous time

For the diffusion approximation in the following section we will need a continuous-time version of our model as a starting
point. Here, we derive this model from the discrete-time version. We will analyse some properties of interest in the
context of invasion and survival of a weakly beneficial mutation arising in linkage to a migration—selection polymorphism.
The continuous-time version with a monomorphic continent (g. = 0) has been completely analysed by Blirger and Akerman
(2011). Therefore, we only summarise some of their results and focus on the extension to a polymorphic continent (0 <
g < 1). We use a tilde (~) to distinguish continuous-time expressions from their analogous terms in discrete time. For ease
of typing, though, this distinction is not made in all Mathematica Notebooks provided in the Supporting Information.

We start from the recursion equations for the haplotype frequencies given in Eq. (28) of this text, with relative fitnesses
w;; according to Eq. (1). As we will assume quasi-linkage equilibrium (QLE) in the following section, it is more convenient to
express the dynamics in terms of allele frequencies (p, ¢) and linkage disequilibrium (D), rather than haplotype frequencies.
This is achieved by recalling the relationships between D, p, q, and the x; (i = 1,...,4) given in section 1. The resulting
difference equations are complicated and only shown in File S7. We obtain the differential equations by assuming that the
changes due to selection, migration and recombination are small during a short time interval At. Scaling a, b, m and r by
At and taking the limit lima;_q % for z € {p,q, D} results in

p= % =ap(l-p)-mp+bD, (87a)
d

i="7 =ba(1-q) ~m(q~qc) +aD, (87b)

D=2 [a(1 - 2) +5(1~20)] D + mp(a - ) - D] - rD. (870)

For a monomorphic continent (g. = 0), one finds the marginal one-locus migration—selection equilibrium FEg for locus
B by setting p = D = 0 and solving ¢ = 0 for g, which yields
Gg=1-2 (88)
b
as the solution of interest (cf. Eq. 42). Burger and Akerman (2011) have shown that this equilibrium is asymptotically stable
in its one-locus dynamics whenever it exists, i.e. when m < b = mg. Moreover, it is asymptotically stable under the two-
locus dynamicsifandonlyif m* < m < b, wherem”* = a (1 + "‘Ta) (cf. Eq. 44 insection 3, and Eq. 3.13 in Blirger and Akerman
2011). Note that Burger and Akerman used mg for what we call m*. Invasion of A; via Fg requires m < min(b, m*). After
invasion, the system reaches an asymptotically stable, fully-polymorphic equilibrium E.. There may exist a second fully-
polymorphic equilibrium E_, but this is never stable and does not exist when Ej is unstable. It is therefore of limited
interest to us. Burger and Akerman give the coordinates of these equilibria in their Eq. (3.15).

For a polymorphic continent (0 < g. < 1), we find the frequency (fB of B at the marginal one-locus migration—selection
equilibrium Eg as
2 b—-m+ AV R3

ds % (89)

with R3 = (b—m)? + 4bmg, > 0 as previously encountered in Eq. (59) in section 4. Equilibrium FEjg always exists and is
always asymptotically stable under its one-locus dynamics (File S7). To know when a weakly beneficial mutation at locus A
can invade, we inyestigate the stability properties of EB under the two-locus dynamics. The Jacobian matrix evaluated at
Eg = (p:()vq:(ijD:O) is

a-m 0 b
s - 0 VE (90
m (b—m - 2bq. +/R3) /(2b) 0 a-r—-+Rs

and its leading eigenvalue is

17:% 2a—m—r—\/R_3+\/b2—r(2m—r—2\/R_3)] (91)
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(cf. Eq. 60). Equilibrium FEg is unstable if and only if 7 > 0. To obtain explicit conditions, we determine values of  and qc at
which Eg is not hyperbolic (i.e. 7 = 0) and may therefore enter or leave the state space, or change its stability. Equilibrium
Eg is not hyberbolic if the recombination rate is equal to

r 2a2—2a(m+\/R_3)+m[m—b(1—2ch)+\/R_3]

2(a-m) (92)

(File S7). As a function of m, 7** has a pole at m = a, and 7" = 0 if m = a(a + b)/(a + bq.). This holds for a < b, which is
one of our general assumptions. We conclude that Ejg is unstable and A; can invade whenever r < 7g, where

(93)

ot 2

. [ oo if0<m<a,

BT 7 ifm > a.
Figure S7 shows the division of the (m, r')-parameter space into areas where FEg is asymptotically stable (blue) and unstable
(orange), respectively.

By solving v = 0 for ¢., we obtain two critical continental frequencies of B; at which Fg is not hyperbolic. These are

given by
7= 1 . (a-m)(a+r) . (2a - m)\/Ry

9 bm 2bm

where Ry = 4r(a-m)+ b2. We first investigate the properties of g:* as a function of the migration rate m. A combination
of algebra and graphical exploration given in File S7 suggests that the following cases must be distinguished:

(94)

Casel 2a<band (r<aorb-a<r). Then FEg is unstable if ¢. < de.B, With . g defined as

oo ifm<a,
Ge =13 @i fa<m<a+b-r, (95)
0 ifa+b—r<m.

Case2 (2a<banda<r<b-a)or(2a>bandb-a<r<a). Then FEjg is unstable if e < {c,B, With §. g defined as

oo ifm<a,
dep=1% qf fa<m<a(b-—a+r)/r, (96)
0 ifa(b—a+r)/r<m.

Case3 2a >band2r >banda <r < 2a>banda < r. We distinguish four subcases:

3a m <a. Then Eg is always unstable.

3b a<m<a(b-a+7)/r. Then Eg is unstable if ¢. < G**.

3c a(b—a+7)/r <m<a+b?/(4r). Then Eg is unstable if §* < g. < G**.
3d a+b?/(4r) < m. Then Eg is asymptotically stable.

Case4 2a>band2r >banda >r < 2r >band a > r. We distinguish four subcases:

4a m < a. Then Eg is always unstable.

4b a <m<a+b-r. Then Eg is unstable if ¢, < 477

4c a+b-r<m<a+b?/(4r). Then Eg is unstable if * < g. < G**.
4d o +b%/(4r) <m. Then Eg is asymptotically stable.

Figure S8 shows the partition of the (m, g.)-parameter space into areas where E‘B is asymptotically stable (blue) and
unstable (orange), respectively. There are parameter combinations such that EB is asymptotically stable for very low and
for high values of g., but unstable for intermediate ¢. (Figures S8B and S8C). This effect is weak and constrained to a small
proportion of the parameter space (g. small).

Alternatively, we assess the properties of ¢;* as a function of the recombination rate r. Graphical exploration (File S7)
suggests the following, provided that a < min(m,b) holds. If recombination is weak, i.e. 7 < a(b-a)/(m - a) = 7%,
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then Eg is unstable if ¢, < ¢**. If recombination is intermediate, i.e. 7 < r < b%/[4(m - a)], then Ep is unstable if

~k % n

q:* < q. < G:f. Last, if recombination is strong, i.e. r > b?/[4(m - a)], then Eg is asymptotically stable. Note that 7*
was previously encountered in Eq. (56) in the context of the branching process. Figure S9 shows the division of the (7, ¢.)-
parameter space into areas where FEg is asymptotically stable (blue) and unstable (orange), respectively. As just shown,
there are parameter combinations such that E‘B is asymptotically stable for very low and for high values of ¢., but unstable
for intermediate ¢, (Figures S9A-S9C).

In principle, analogous conditions for asymptotic stability of EB under the two-locus dynamics could be obtained in
terms of a critical migrationr rate m** at which Ej is not hyperbolic (z = 0). However, we were not able to derive infor-
mative explicit conditions (see File S7 for a graphical exploration).

So far, we have described the conditions for instability of the marginal one-locus migration—selection equilibrium Ejg
under the two-locus dynamics, both for a monomorphic (¢. = 0) and a polymorphic (0 < ¢. < 1) continent. In both cases,
there is no other stable equilibrium on the boundary for 0 < m < 1. As mentioned above, for the case of a monomorphic
continent, the coordinates of the fully-polymorphic equilibria can be found (Burger and Akerman 2011) and asymptotic
stability proved (Bank et al. 2012). For a polymorphic continent, simple explicit expressions are not available, but we could
show analytically that at most three candidates for a fully-polymorphic equilibrium exist. Numerical and graphical explo-
rations suggest that if FEg is unstable, at most one of these candidates is an admissible equilibrium, and it is asymptotically
stable (see File S7 for details). Figures S7-S9 therefore directly tell us when A; can be established if introduced near EB
(orange areas).

In the following section, we will derive a diffusion approximation of sojourn and absorption times under the assump-
tion of quasi-linkage equilibrium (QLE), i.e. for > max(m,b). Therefore, we briefly discuss the properties under the
QLE assumption of the fully-polymorphic, asymptotically stable, equilibria mentioned in the previous paragraphs. For a
monomorphic continent, E+ is approximated to first order in 1/r by

bm + ar — m(m +r) ~m  m(b-m)

ps = =1-—+ , (97a)
ar a T a

:+:am+br—m(m+7'):1_@+m(a—m)7 (97b)
br b r b

b, = lemmlOmm _m (y_m) ;) (97¢)
abr r a b

(cf. Eq. 4.3 in Burger and Akerman 2011). As » — oo, Eq. (97) converges to the case of no linkage, where ;5+ =1-m/a,

§+ =1-m/b, and D, =0. Turning to the case of a polymorphic continent, we recall from above that there is at most one
admissible fully-polymorphic equilibrium. To first order in 1/r, its coordinates are

5 _ 2ar +m(b-2bg. —m —2r +\/R3) _ _bch+m(b—m)+m Ry m

. 1 , (98a)
2ar ar 2ar 2ar a
s 1 am(2bg. —b+m-/R3) +m(m+r)(m—\/R3) . b +m(2qc—1)(m+2r) (98b)
&=y 21/ Rs 2%/ R 2R3 9/ R ’
2 - b(1-2q.) —m++/R:
D, = m(a—m) [b(1 - 2qc) ~m + VRa] (98¢)
2abr

Setting ¢. = 0 and recalling that m < m™* = a (1 + ”‘Ta) must hold for invasion in this case (section 3), it is easy to verify
that Eq. (98) coincides with Eq. (97). This is why we call the equilibrium in Eq. (98) E+QLE. Graphical exploration in File S7
confirms that F,qLk is asymptotically stable whenever it exists under the QLE regime.

Finally, we ask when E+QLE exists in the admissible state space. We note that @QLE is a strictly decreasing function

of the recombination rate 7, independently of the migration rate m. In contrast, ¢.qrE is a strictly decreasing function of
r if and only if m < a, which is of limited interest, because A; can then be established in any case. We denote by 750

+QLE

and rz; the recombination rates at which p.qrr equals 0 and 1, respectively. Analogously, we use 7z and rz;

PiqQLE ) 9;QLE 9iQLE

for the recombination rates at which ¢,qrr equals 0 and 1, respectively. These critical recombination rates are found to
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be
mm_b(1_2QC)_VR3

2 = 99a
"Maue 2(a-m) (99a)
1
T = 3 (b m — 2bg, + Rg) , (99b)
and
b+m-+R
reo =(m-a) v (100a)
+QLE 2/ R3
b-m++R
ra =(a-m) ————". (100b)
+QLE 2/ R3
As shown in File S7, if m < a, E+QLE exists in the admissible state space if and only if » > max (rlng ,T&]Q ) Ifm>a,
+QLE +QLE

E+QLE exists in the admissible state space if and only if max (7“51 ) <T<TzH . Ata first glance, it may seem
+Q +QLE

T2
LE’ q}QLE
surprising to obtain an upper limit on . However, as is easily verified, 0 is also the critical value at which E, g1
+QLE

coincides with the QLE approximation of EB, which becomes asymptotically stable. Thus, with looser linkage, allele A is
lost.

7 Diffusion approximation to sojourn and absorption times assuming quasi-linkage equilibrium

Although some two-locus diffusion theory has been developped (Ewens 2004; Ethier and Nagylaki 1989, 1988, 1980),
explicit calculation of quantities of interest, such as absorption probabilities or times, seems difficult. Substantial progress
can be made, though, by assuming that recombination is much stronger compared to selection (and migration). Then,
linkage disequilibrium decays on a fast time scale, whereas allele frequencies evolve on a slow time scale under quasi-
linkage equilibrium (QLE) (Kimura 1965; Nagylaki et al. 1999; Kirkpatrick et al. 2002). Here, we employ the QLE assumption
to approximate the expected amount of time the focal allele A; spends in a certain range of allele frequencies (the sojourn
times), as well as the expected time to extinction (the mean absorption time). We do so in detail for a monomorphic
continent (q. = 0) first. For a polymorphic continent (0 < ¢. < 1), we will only give a brief outline and refer to File S7 for
details. Throughout, we closely follow Ewens (2004) in our application of diffusion theory.

We start from the continuous-time dynamics of the allele frequencies (p, q) and the linkage disequilibrium (D) in Eq.
(87), setting q. = 0 for a monomorphic continent. Given that recombination is strong compared to selection and migration,
D will be close to an equilibrium, so that D= dD/dt ~ 0 may be assumed. Moreover, we assume that the frequency of the
beneficial background allele Bj is not affected by establishment of A;. Specifically, ¢ = qB constant, where gg = 1 —m/bis
the frequency of B; at the one-locus migration—selection equilibrium in continuous time (Eq. 88). Equation (87) is therefore
approximated by

dp

p= pn =ap(l-p)-mp+bD, (101a)
. _dg
=—1_0 101b
Q== (101b)
. dD
D=—-=[a(1-2p) +b(1-2¢)] D +m(pq - D) -rD = 0. (101c)

Solving Eq. (101c) for D, plugging the solution into Eq. (101a) and setting g = 58, we obtain a single differential equation in

p:
m(b-m)

102
b—m—a(1—2p)+rp (102)

p=ap(l-p)-mp+

In the limit of  — oo, we recover the one-locus migration-selecion dynamics for the continent—island model, p = ap(1 -
p)-

We now consider the diffusion process obtained from the Wright—Fisher model (Fisher 1930; Wright 1931). More
precisely, we measure time in units of 2NV, generations, where N, is the effective population size, and use T' for time on the
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diffusion scale. Further, we introduce the scaled selection coefficients a = 2N a and 3 = 2N.b, the scaled recombination
rate p = 2N.r, and the scaled migration rate i« = 2N.m. Equation (102) yields the infinitesimal mean

p(B — )
B-p-a(l-2p)+p

(cf. Eq. 5 in the main text). It expresses the mean change in p per unit of time on the diffusion scale. The infinitesimal
variance is

M(p) =ap(1-p)-up+

V(p)=p(1-p) (103)
(Karlin and Taylor 1981, p. 159).
Later, we will need the ratio of M (p) to V (p), which is

M _
®_, n (1_ B-p ) (104)
V(p) 1-p B-a(l-2p)-p+p
We define the function 1 (p) according to Eq. (4.16) in Ewens (2004) as
= -2 d 105
¥(p) exp[ Vo) Z] (105)
Inserting Eq. (104), we find,
a+ 1(B- L(p=0)
Y(p) = 2P (1 - p) #5055 (B — =+ p)arines [B— (L= 2p)a— pu+ p] =0 mos (106)

The derivation assumes that (o — 3 + 11 — p) /(ap) < 0 holds. Recalling from section 3 that, for instability of the marginal
one-locus equilibrium Ep, it is required that m < m* = a (1 + b:—“) and that then a < min(b,r), one can show that
(=B +p—-p)/(ap) <0 holds indeed (see File S7).

We now turn to the sojourn times as defined in Ewens (2004, pp. 141-144). We denote the initial frequency of the
focal mutation A; by py and introduce the function ¢(p; po) to describe the sojourn-time density (STD). The interpretation
of t(p; po) is the following. The integral

p2
f t(p;po)dp

p1

approximates the mean time in units of 2N, generations allele A; spends at a frequency in the interval (p1, p2), conditional
on the initial frequency pg. According to Egs. (4.38) and (4.39) in Ewens (2004), we define

v _ [ ti(pipo) ifO<p<po,
tpipo) = { ta(pipo) ifpo<p<l. (107)

To make the assumption of quasi-linkage equilibrium explicit, we will add the subscript QLE to relevant quantities from
now on. The densities t; qr.e(p; po) are given by Eq. (7) in the main text, with ¢)(y) as in Eq. (105). The integral jom Y(y)dy
cannot be found explicitly. However, because Eq. (7a) takes the form t1 qre(p;po) = 2¢(y) ™ (1-p) 'p~! [ 1 (y)dy and
! [ ¥(y)dy — 1 asp — 0 (File S7), we approximate ¢, qr.E (p; po) by

t1,que(p;po) = (108)

2p
V(p)¥(p)
whenever p is small. Recall from Eq. (107) that ¢1 (p; po) is needed only if 0 < p < py. We are in general interested in a

de-novo mutation, i.e. po = 1/(2N), with population size N at least about 100. Hence, p < pg automatically implies that p
is small whenever t1 qr.e(p; po) is employed. The approximation in Eq. (108) is therefore valid for our purpose.

Similarly, we may multiply ¢2 qrLe(p; po) by po and 1/pg and write

ta.que(P;Po) = 2p0¥(y) " (1-p) 'p ' py’ fopo ¥(y)dy.

Again, py* [ ¥ (y)dy — 1 as po — 0 (File S7). We therefore approximate t2 qre(p; po) by

to,que(p;po) = % (109)
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whenever pg is small. In the following, we use a tilde (~) to denote the assumption of small pg.

The expected time to extinction of allele A; in our model is identical to the mean absorption time, because extinction is
the only absorbing state. For arbitrary initial frequency pg, the approximate mean absorption time under the QLE approxi-
mation is obtained from the sojourn-time densities as shown in Eq. (8) of the main text. Assuming small pg, this simplifies
to

= pPo . 1 _
lQLE = /(; t1,que(P; po)dp + f t2,qLE(P; po)dp. (110)
Po

In both cases, the integrals must be computed numerically. As a further approximation for very small pg, one may omit the
first integral on the right-hand side of Eq. (110), as its contribution becomes negligible when py — 0.

The predictions for the sojourn-time densities (STDs) and the mean absorption time derived above are accurate if the
QLE assumption holds (Figures 7, S11 and S12). However, the analytical expressions for the STDs in Egs. (108) and (109)
are not very informative once we plug in explicit formulae for V(p) and ¢(p) (see File S7). In the following, we will gain
more insight by making an additional assumption.

We assume that recombination is much stronger than selection and migration, and expand M (p) from Eq. (5) as a
function of p~! to first order into a Taylor series. This yields

M(p) » Mpso(p) =ap(l-p) —pp+ Mp

and hence Eq. (16) in the main text. The infinitesimal variance V' (p) from Eq. (103) remains unchanged, but the ratio of
M (p) to V(p) simplifies to

M _
o>0(P) K (1—6 “). (111)
V(p) 1-p P
Insertion into Eq. (105), integration and some algebra yields
_2a _2p(p=B+p)
Ypso(p) =2 P(1-p)" 7 . (112)
The sojourn-time density (STD) is then given by
t (pio) : " bpmo(y)d (113a)
1,QLE,p>»0\P; Po :7[ oly)ay, a
LR V)pso(p) Jo "~
t (pio) = " Ymay)d (113b)
,QLE, pip :7f y)ay.
2,Q p>0 0 V(p)L/Jp»o(p) 0 p>0

As before, 7! fow Yps0(p)dp — 1 as z — 0. Arguments analogous to those leading to Egs. (108) and (109) show that, for
a small initial frequency pg, the STD is approximated by

- 2p 2pu(p=B+p) _
t1,QLE,p>>o(p;po) = m = 262pa(1 —P) e 17
P>
- 2po _ 2pu(p=B+p) _
t2,QLE,p>0(P: Do) = m = QP()GQWP 1(1 -p) ’ !
P>

(cf. Eg. 17 of the main text). For details, we refer to File S7. The mean absorption time is again obtained as

_ Po 1
tQLE,p>>o=/(; tl,QLE,p>>O(p§p0)dp+/ t2.QLE, p0(P; Po)dp (114)
Po

using the STD in Eq. (113) for arbitrary initial frequency pg, or as

= Po _ 1 _
LQLE,p»0 = fo t1,QLE, p0(D; Po )dp + / t2,QLE, p»0(P; Po)dp (115)
Po

using the STD in Eq. (17) for small pg. Figure 5 compares the various approximations to the STD derived under the QLE
assumption for a monomorphic continent (g.). It also includes a comparison to the STD for a one-locus model (OLM),
which is specified by

t1,0um(p;po) = 2627 (1 - p)* if 0 < p < po,
ta,0rMm (D3 o) = 2poe®pt (1 - p)2~! ifpo<p<l
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for small pg (cf. Eg. 15 in the main text).

A comparison of the STD given in Eq. (17) for two loci with large p and small py to the corresponding one-locus STD in
Eq. (15) is interesting. The difference is that x in the one-locus model is replaced by u(p — 3+ p)/p to obtain the formulae
for the two-locus model. Hence, for strong recombination, we may define an effective scaled migration rate

+p-0 B ? B
=u%=u—i+&““(l_7)v
P PP

e

where the approximation holds for ;1 <« min(g, p). The interpretation is that . denotes the scaled migration rate in
a one-locus migration—selection model for which allele A; has the same sojourn-time properties as if it arose in a two-
locus model with scaled migration rate p and linkage to a previously established polymorphism that decays at a scaled
recombination rate p. Transforming back from the diffusion to the natural scale, we obtain the invasion-effective migration
rates m, and m, given in Egs. (19) and (20) of the main text, respectively (see also Figure S18A).

We now turn to the case of a polymorhpic continent (0 < g. < 1). Derivations are analogous to those shown above for
the monomorphic continent, but more cumbersome. We therefore give only a rough summary here and refer to File S7
for details.

The mean change in p per unit of time on the diffusion scale and under the assumption of quasi-linkage equilibrium
(QLE) is
dp (B -p-28q+Rs)

M(p)=:ﬁ=ap(1—p)—up—2[a(1_2p)_p_\/R_5]p, (116)

where Rs = (3 - p)? + 48uq. > 0.

Equation (116) can be used to numerically compute the sojourn-time densities (STDs) and the mean absorption time
analogous to Egs. (7) and (8) (see File S7). To obtain informative analytical results for the STDs, however, it is necessary
to assume that recombination is strong compared to selection and migration, i.e. p > min(b, m). Then, the infinitesimal
mean is approximated by

M(p) » Myso(p) = ap(l —p) — up + Gl ;iqe +VFs) p (117)

The infinitesimal variance is the same as for a monomorphic continent, V(p) = p(1-p). Inserting M .o (p) from Eq. (117)
and V (p) into the definition of ¢)(p) in Eqg. (105), we obtain

% ;L(@—M—Q{J—Q[f{]c-#m)
1b,o>>0(p) =€ p(l _p) 4 . (118)

The STDs t1,QLE, p»0(P; Po) and t2.qLE, p»0(P; Po) are found by insertion of 1,50 (p) from Eq. (118) into Eq. (113). Exploit-
ing the fact that 2! ]Oz Yps0(p)dp converges to 1 as = approaches 0, the STDs can be approximated by

N N~ /L(;l,—[3+2[3qc+2p—m) 1
t1,QLE,p»0(P; P0) = 2P (1 - p) ? ) (119a)

~ B IL(H_ﬂ+2ﬁIZc+20—\/R75) B
t2.QLE,p>0(D; Do) = 2p0e*?*p~ (1 - p) 2 ! (119b)

This approximation is valid if the initial frequency pg is small and p is large. The mean absorption time for arbitrary pg is
found according to Eq. (114). For small py, it is given by Eq. (115), with ¢; qLE, p»0(P; po) from Eq. (119).

8 Effective migration rate at a neutral site linked to two migration—selection polymorphisms

We derive the effective migration rate experienced by a neutral locus (C) linked to two loci (A and B) that are maintained
polymorphic at migration—selection balance. Locus C has two alleles C; and Cs, which are assumed to segregate at con-
stant frequencies 1. and 1 — n. on the continent. The frequency of C; on the island at time ¢ is denoted by n(t). Loci A
and B are as above, with alleles A; and B segregating at frequencies p and ¢ on the island, respectively. Without loss of
generality, we assume that A is located to the left of B on the chromosome. We denote by rxy the recombination rate
between loci X and Y, where rxy = ry x. Because we consider a continuous-time model here, we may assume that the
recombination rate increases additively with distance on the chromosome. For simplicity, we restrict the analysis to the
case of a monomorphic continent, i.e. alleles A; and B are fixed on the continent.
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Following Blirger and Akerman (2011), we define the effective migration rate as the asymptotic rate of convergence of
n(t) to the fully-polymorphic three-locus equilibrium. This rate of convergence is defined by the leading eigenvalue Ay
of the Jacobian of the system that describes the evolution of the frequency of C and the linkage disequilibria associated
with locus C. Specifically, we define the effective migration rate as m,. = -y (cf. Kobayashi et al. 2008).

We start by assuming that the neutral locus is located between the two selected ones (configuration A—-C-B). We
denote by Dag = D, Dac and Dcg the linkage disequilibria between the indicated loci, and by Dacg = y1 —pgn — pDcp —
qDac — nDag the three-way linkage disequilibrium, where y; is the frequency of gamete A, B;. The changes due to
selection, migration and recombination in p, ¢, and Dag are given by Eq. (87) of this text, with r replaced by rag. The
frequency of C; evolves according to

n=m(ne.—n)+aDac +bDcg (120)

and the differential equations for the linkage disequilibria associated with locus C are

Dac = a(1 - 2p)Dac +bDacg — mDac — mp(ne — n) — rac Dac, (121a)

Dcg = aDacg + b(1 - 2¢) Dcg — mDcg — mq(n. —n) — rcgDeg, (121b)
Dacg = [a(1 - 2p) +b(1 -2q)] Dacs — 2(aDac +bDcg)Dag + m(pDcg + ¢Dac — Dacg)

+m(pq — Dag)(ne —n) —ragDacs (121c)

(we use z for the differential of = with respect to time, dz/dt). We refer to File S8 for the derivation. Recall that rag =
rac + rcg. This system has an asymptotically stable equilibrium such that the selected loci are at the equilibrium E, (Eq.
3.15 in Blirger and Akerman 2011), and n = n. and Dac = Dcg = Dacg = 0 hold. The Jacobian at this equilibrium has the

block structure P
_(Js O
1=(% 1)
where Jg is the Jacobian approximating convergence of (p,q, Dag) to E+, and J is the Jacobian approximating con-

vergence of (n, Dac, Dcg, Dacg) to (n.,0,0,0). In the limit of weak migration, i.e. m <« (a,b,r), the latter is given
by

-m a b 0
ACB —a-Tact mz(zi;i::f) 0 b
JN = m(b—a+rag) (122)
m O _b —7rce + W a
m(b—a+rag) m(a—b+rag) m(a+b+3rag)
-m a+b+rAB a+b+rAB —a- b - T.AB + a+b+rAB
As shown previously (Blirger and Akerman 2011), to first order in m, the leading eigenvalue of J?VCB is given by
TACT
XIAVCB _ ACTCB (123)

- (a+7‘Ac) (b"'rCB),

and hence the approximation of the effective migration rate in Eq. (22b) in the main text is obtained (see File S8 for details).
We note that Eqgs. (120), (121) and (122) correct errors in Eqgs. (4.25), (4.26) and (4.28) of Burger and Akerman (2011),
respectively. The main results by Burger and Akerman (2011) were not affected, though.

If the neutral locus is located to the right of the two selected ones (configuration A—-B-C), Egs. (120) and (121) remain
the same (recall that rxy = ry x and in this case rac = rag + rsc). In Eq. (87c), 7 must be replaced by rac. Then, the
Jacobian JJA\,BC approximating convergence of (n, Dac, Dsc = Dcg, Dasc = Dacg) to (n.,0,0,0) in the limit of weak

m(a+b+3rag)

migration is equal to J]A\,CB with the last entry of the last row replaced by —a — b — rac + atbirn

. To first order in m,
the leading eigenvalue of JAEC is
b+
)\,IAVBC =m BC ( TAC) , (124)
(b+rsc) (a+b+rac)

and hence Eq. (22c) in the main text. Details are given in File S8.

Last, the leading eigenvalue for configuration C—A—-B follows directly by symmetry,

+
AAB - rea(a+res) (125)

~(a+rca)(a+b+rcg)’

and hence Eq. (22a) in the main text.
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Recall that the Jacobian matrices JAE and JAEC hold under the assumption of weak migration. In File S8, we derive
analogous matrices under the assumption of weak recombination, i.e. r < (a,b,m). These are too complicated to be
shown here, but importantly, to first order in m, their leading eigenvalues are identical to Egs. (123) and (124), respectively.
By symmetry, this also applies to the configuration C—A-B. Therefore, the approximate effective migration rates in Eq. (22)
are valid also for tight linkage between the neutral locus and the selected loci.

To test the robustness of our results agaist violation of the assumption of weak migration, we numerically computed
exact effective migration rates. In most cases, the deviation is very small; compare dashed to solid curves in Figures 8 and
S19, and dots to curves in Figure S20.
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File S2

Deterministic analysis of a diploid two-locus continent—island model in discrete time.

File S2 is a PDF version of the Mathematica Notebook 2LocContlsland_Determ_Discr.nb (see File S10) and available for
download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S3

Branching-process approximation of the invasion probability of a weakly beneficial mutation linked to an established
polymorphism at migration—selection balance.

File S3 is a PDF version of the Mathematica Notebook 2LocContlsland_Stoch_Discr.nb (see File $10) and available for down-
load at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S4

Comparison of the Jacobian of the marginal one-locus migration—selection equilibrium (Eg) to the mean matrix of the
corresponding branching process.

File S4 is a PDF version of the Mathematica Notebook 2LocContlsland_Compare_JacobianVsMeanMatrix.nb (see File $10)
and available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S5

Analytical approximation of the invasion probability for a slightly supercritical branching process.

File S5 is a PDF version of the Mathematica Notebook 2LocContlsland_Stoch_Discr_SlightlySupercritBP.nb (see File S10) and
available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S6

Derivative of the weighted mean invasion probability 7 at recombination rate r = 0.

File S6 is a PDF version of the Mathematica Notebook 2LocContlsland_Stoch_Discr_OptRecombRate.nb (see File S10) and
available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S7

Diffusion approximation of sojourn and absorption times assuming quasi-linkage disequilibrium.

File S7 refers to the Mathematica Notebook 2LocContlsland_Stoch_DiffusionApprox_QLE.nb archived in File S10. File S10
is available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.
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File S8
The effective migration rate experienced by a neutral site linked to two loci at migration—selection balance.

File S8 is a PDF version of the Mathematica Notebook 2LocContlsland_Determ_effMigRate.nb (see File S10) and available
for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S9
The effect on neutral variation of migration and selection at two linked sites.
File S9 is a PDF version of the Mathematica Notebook 2LocContlsland_Stoch_NeutralLinkedMut.nb (see File S10) and avail-

able for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DCL1.

File S10
Archive of Mathematica Notebooks in the NB format (Files $2-S9).
File S10 is available for download as a ZIP file at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.

File S11
Archive of Java source code, binaries, and JAR files for simulations as described in Methods.

File S11 is available for download as a ZIP file at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163477/-/DC1.
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