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ABSTRACT RNA sequencing (RNA-seq) not only measures total gene expression but may also measure allele-specific gene expression
in diploid individuals. RNA-seq data collected from F1 reciprocal crosses in mice can powerfully dissect strain and parent-of-origin
effects on allelic imbalance of gene expression. In this article, we develop a novel statistical approach to analyze RNA-seq data from F1
and inbred strains. Method development was motivated by a study of F1 reciprocal crosses derived from highly divergent mouse strains,
to which we apply the proposed method. Our method jointly models the total number of reads and the number of allele-specific reads
of each gene, which significantly boosts power for detecting strain and particularly parent-of-origin effects. The method deals with the
overdispersion problem commonly observed in read counts and can flexibly adjust for the effects of covariates such as sex and read
depth. The X chromosome in mouse presents particular challenges. As in other mammals, X chromosome inactivation silences one of
the two X chromosomes in each female cell, although the choice of which chromosome to be silenced can be highly skewed by alleles
at the X-linked X-controlling element (Xce) and stochastic effects. Our model accounts for these chromosome-wide effects on an
individual level, allowing proper analysis of chromosome X expression. Furthermore, we propose a genomic control procedure to
properly control type I error for RNA-seq studies. A number of these methodological improvements can also be applied to RNA-seq
data from other species as well as other types of next-generation sequencing data sets. Finally, we show through simulations that
increasing the number of samples is more beneficial than increasing the library size for mapping both the strain and parent-of-origin
effects. Unless sample recruiting is too expensive to conduct, we recommend sequencing more samples with lower coverage.

HIGH-THROUGHPUT RNA sequencing (RNA-seq) is an
increasingly popular technique to measure gene expres-

sion abundance (Mortazavi et al. 2008; Wang et al. 2009).
RNA-seq offers several advantages over microarrays. For
example, RNA-seq data are often less noisy with a larger
dynamic range than microarray data. In addition, RNA-seq
offers the opportunity to identify new transcripts while the
detection capability of microarrays tends to be limited by
microarray probes (Wang et al. 2009). Furthermore, RNA-seq

is able to measure allele-specific expression (ASE), which re-
quires special methods to attempt using microarrays. The tran-
script abundance of each allele (i.e., the ASE) allows dissection
of cis- and trans-regulation (Doss et al. 2005; Ronald et al.
2005). ASE from reciprocal F1 mouse hybrids (Babak et al.
2008; Wang et al. 2008; Gregg et al. 2010a,b; Deveale et al.
2012; Okae et al. 2012) enables the study of allelic imbalance
on gene expression and in particular the imbalance due to
parent-of-origin effects.

For RNA-seq data, one analytic strategy to detect differ-
entially expressed genes is to normalize read counts and
then to apply linear regression or equivalent approaches
commonly used for microarray data (Cloonan et al. 2008;
‘t Hoen et al. 2008; Langmead et al. 2010). However, these
approaches do not fully consider the characteristics of read
count data and are thus not efficient. More sophisticated
approaches are to directly model the count data (Oshlack
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et al. 2010; Robinson and Oshlack 2010; Skelly et al. 2011;
McCarthy et al. 2012), which include generalized regression
models and chi-square tests on contingency tables. Count
models tend to have higher statistical power for detecting
differentially expressed genes than approximate normal
models (Robinson and Oshlack 2010). However, overdisper-
sion where the variance of read counts is greater than would
be expected from simple Poisson or binomial distribution
has been commonly observed in count data, including RNA-
seq data (Robinson and Oshlack 2010). To overcome the
overdispersion problem of RNA-seq data, several groups have
proposed, for example, negative binomial and b-binomial
models (Skelly et al. 2011; Zhou et al. 2011; Sun 2012) for
detecting differentially expressed genes.

However, these methods are not specifically designed for
F1 reciprocals and do not consider the special structure of F1
reciprocal hybrids. They do not specifically model, for exam-
ple, parent-of-origin effects. The statistical methods used in
Wang et al. (2008) and other studies (Babak et al. 2008;
Gregg et al. 2010a,b; Deveale et al. 2012; Okae et al. 2012)
for reciprocal F1 mouse hybrid data are simply based on
binomial distributions. In addition, they test imprinting
effects in isolation from strain effects. Joint modeling of
strain and parent-of-origin effects is potentially more power-
ful for detecting imprinting genes. To address these limita-
tions, we extend the eQTL approach of Sun (2012) to F1
reciprocal crosses, simultaneously model the total read
counts and allelic-specific counts, and estimate the strain
and parent-of-origin effects together. For genes on the X
chromosome, we further consider dosage compensation in
our model. In mammals, dosage compensation is achieved
by inactivating one of the two X chromosomes in female
cells. The choice of which X chromosome to be silenced
can be nonrandom and has been shown to be biased by
alleles at the X-linked X-controlling element (Xce) in mouse.
For genes located on the X chromosome, the strain-dependent
skewing in X inactivation needs to be modeled to avoid high
false positive findings of strain-dependent differentially
expressed genes. In addition, for RNA-seq studies with small
samples, such as ours, it is critical to check the accuracy of
P-values based on asymptotic distributions of test statistics.
We use simulations to address this concern and propose
a modified procedure to properly control family-wise error
or false discovery rate. The rest of the article is arranged as
follows. In Methods, we describe the data structure of RNA-
seq data and our approach. We then evaluate the method by
simulation in the Simulation section. As a case study, we
summarize our analysis results on real RNA-seq data derived
from brain tissue of reciprocal F1 mouse hybrids and their
parental strains. We chose to study three inbred strains
(CAST/EiJ, PWK/PhJ, and WSB/EiJ) representing three
subspecies ofMus musculus (M. m. castaneus,M. m. musculus,
and M. m. domesticus, respectively). These strains were cho-
sen to sample a very high level of genetic diversity and to
thoroughly characterize differentially expressed genes among
mouse subspecies.

Methods

Throughout this article, we denote each F1 sample by its ma-
ternal strain 3 paternal strain. For example, a CAST 3 WSB
mouse is an offspring of a CAST female that is mated with
a WSB male. For simplification, we define the two parental
strains as A and B. Suppose there are totals of K1 F1 samples
(eitherA3BorB3A) andK2 inbred samples (either strainAor
strain B). For a particular gene of interest, we have the total
number of reads from each sample, denoted as ml for l = 1,
2, . . . ,K1+K2. For eachF1 sample,wemayhave twoadditional
counts, allele-specific reads that are mapped to strain A and
strain B, denoted by niA and niB (i = 1, . . . , K1), respectively.
Let ni = niA + niB, the total allele-specific read counts. Further,
for the ith F1 sample, let xi be the cross indicator such that xi=1
or21 if the sample is an A3 B or a B3 A cross, respectively.

Total read count plus allele specific expression
(TReCASE) model

We group genes into two groups, one with both total read
count (TReC) and allele specific expression (ASE) and
another with only TReC. In this subsection, we describe our
TReCASE model for genes in the first group with both TReC
and ASE. We further subdivide the genes in the first group
into autosomal genes and chromosome X genes since genes
on the X chromosome deserve a special treatment.

Autosomal genes: We assume niB follows a b-binomial dis-
tribution that extends a binomial distribution and allows for
possible overdispersion,

fBBðniB;ni;pi;fÞ ¼
�

ni
niB

�QniB21
k¼0 ðpi þ kfÞQni2niB21

k¼0 ð12pi þ kfÞQni21
k¼1 ð1þ kfÞ ;

(1)

where pi is the expected proportion of ASE of F1 sample i
that are mapped to strain B and f is the overdispersion
parameter. When f = 0, no overdispersion exists, and niB
follows a binomial distribution. To model the sex effect, we
create a dummy variable sexi such that sexi = 1 if sample i is
a female, otherwise sexi = 0. The following logistic regres-
sion is used for linking pi with the strain and parent-of-
origin effects plus the sex effect,

log
�

pi

12pi

�
¼ ðb0F þ b1FxiÞsexi þ ðb0M þ b1M xiÞð12 sexiÞ;

(2)

where the regression coefficients b0F and b1F correspond to
the strain and parent-of-origin effects in females, respec-
tively, and b0M and b1M are the strain and parent-of-origin
effects in males, respectively.

The following discussions can help us to understand b0F
and b1F (and analogously, b0M and b1M). For a female
sample, let m

ðpÞ
F;B

�
m
ðmÞ
F;B

�
define its expected expression of

strain Bwhen strain B is its paternal (maternal) allele. Similarly
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m
ðpÞ
F;A and m

ðmÞ
F;A can be defined. Then from the above logistic

regression model, we have

log

0
@m

ðpÞ
F;B

m
ðmÞ
F;A

1
A ¼ b0F þ b1F and log

0
@m

ðmÞ
F;B

m
ðpÞ
F;A

1
A ¼ b0F 2 b1F ;

(3)

and

b0F ¼ log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
ðpÞ
F;Bm

ðmÞ
F;B

m
ðpÞ
F;Am

ðmÞ
F;A

vuuut
!

and b1F ¼ log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
ðpÞ
F;Bm

ðpÞ
F;A

m
ðmÞ
F;Bm

ðmÞ
F;A

vuuut
!

:

(4)

For the TReC, ml(l = 1, . . . , K1 + K2), we assume it follows
a negative binomial distribution with mean ml and an over-
dispersion parameter u. Specifically, we have

m l � fNBðm l;ml;uÞ; for l ¼ 1;2; . . . ;K1 þ K2; with
logðmlÞ ¼ b0 þ b1kl þ b2sexl þ b3doml þ b4doml 3 sexl þ hl;

(5)

where kl = log(library size of sample l), doml = 0 if sample l
is an inbred sample, and otherwise doml = 1. The sex effect
b2 = logmðpÞ

M;A 2 logmðpÞ
F;A: The term hl is related to the

additive allelic effect that we describe below in detail. To
facilitate the joint modeling of ASE and TReC, we make the
following assumptions for F1 females:

m
ðpÞ
F;B

m
ðpÞ
F;A

¼ m
ðmÞ
F;B

m
ðmÞ
F;A

¼ expðb0FÞ and
m
ðpÞ
F;B

m
ðmÞ
F;B

¼ m
ðpÞ
F;A

m
ðmÞ
F;A

¼ expðb1FÞ:

Similar assumptions are made for F1 males. Then for
females, the expected TReCs due to the additive allelic effect
for the four crosses are8>>>>>>>><
>>>>>>>>:

m
ðmÞ
F;A þ m

ðpÞ
F;A ¼ m

ðpÞ
F;Af1þ expð2b1FÞg for A3A

m
ðmÞ
F;B þ m

ðpÞ
F;B ¼ m

ðpÞ
F;Afexpðb0FÞ þ expðb0F 2 b1FÞg for B3B

m
ðmÞ
F;A þ m

ðpÞ
F;B ¼ m

ðpÞ
F;Afexpðb0FÞ þ expð2b1FÞg for A3B

m
ðmÞ
F;B þ m

ðpÞ
F;A ¼ m

ðpÞ
F;Af1þ expðb0F 2 b1FÞg for B3A:

(6)

By taking the A 3 A females as the reference group, we end
up with
The joint likelihood of the combined F1 and inbred samples
is therefore

LðQÞ ¼
YK1

i¼1

fBBðni B; ni;pi;fÞ
YK1þK2

l¼1

fNBðml;ml;uÞ;

where Q = (b0F, b0M, b1F, b1M, b0, b1, b2, b3, b4, f, u).
We test the strain and parent-of-origin effects on the

following hypotheses,

Strain  effect : H0 : b0F ¼ b0M ¼ 0

Parent � of � origin effect : H0 : b1F ¼ b1M ¼ 0

with likelihood-ratio testing.
In the above model, we assume the strain effects from

ASE and TReC are the same for model parsimony. For genes
that do not show the consistent strain effects from ASE and
TReC, we relax the assumption and replace b0F and b0M in hl

with b*0F and b*0M ; respectively. The hypothesis for the overall
strain effect then becomes

Strain effect : H0 : b0F ¼ b*0F ¼ b0M ¼ b*0M ¼ 0:

We can also test the consistency of the strain effects in ASE
and TReC according to

Consistency : H0 : b0F 2 b*0 F ¼ b0M 2 b*0M ¼ 0:

Chromosome X genes: As mentioned in the Introduction,
due to X chromosome inactivation, one of the two X
chromosomes in each female cell is silenced but the choice
of which chromosome to be silenced can be nonrandom and
is biased by the Xce allele. For female F1 sample i, let ti,A and
ti,B define the proportions of the cells where the expressed
copies of the X chromosome are the A allele and the B allele,
respectively. Thus ti,A + ti,B = 1. Further, let mðpÞ

iF;B and m
ðmÞ
iF;B

be the expression of the B allele (across a large number of
cells) for the ith female sample when the B allele is the
paternal or the maternal allele. Similarly, we can define

hl ¼

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ðlog f1 þ expð2b1MÞg2 logf1þ expð2b1FÞgÞ3 ð12 sexlÞ sample l 2 A3A

b0F sexl þ ðb0M þ logf1þ exp ð2b1MÞg2 log f1þ expð2b1FÞgÞ3 ð12 sexlÞ sample l 2 B3B

ð2b1F þ log f1þ exp ðb0F þ b1FÞg2 log f1þ expð2b1FÞgÞ3 sexl þ
ð2b1M þ log f1þ exp ðb0M þ b1MÞg2 log f1þ expð2b1FÞgÞ3 ð12 sexlÞ sample l 2 A3B

ðlog f1þ exp ðb0F 2 b1FÞg2 log f1þ expð2b1FÞgÞsexlþ
log ½1þ exp ðb0M 2 b1MÞ2 log f1þ expð2b1FÞg�ð12 sexlÞ sample l 2 B3A:
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m
ðpÞ
iF;A and m

ðmÞ
iF;A: For male samples, we define m

ðpÞ
iM;B, m

ðmÞ
iM;B,

m
ðpÞ
iM;A; and m

ðmÞ
iM;A accordingly.

For ASE, we assume niB follows the b-binomial model (1)
but replace pi in (2) with one that satisfies

log
�

pi

12pi

�
¼ log

0
@m

ðpÞ
iF;B

m
ðmÞ
iF;A

1
A ¼ log

0
@ti;Bm

ðpÞ
F;B

ti;Am
ðmÞ
F;A

1
A

¼ log
�
ti;B
ti;A

�
þ b0F þ b1F xi (7)

for F1 females.
For the TReCml, we again use model (5) but replace hl in

it by

hl ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0 sample l 2 A3A

b0F sample l 2 B3B

log
�
1þ exp

�
log
�
tl;B
tl;A

�
þ b0F þ b1F

��
2 logf1þ expðb1FÞg þ log

	
2tl;A


 sample l 2 A3B

log
�
1þ exp

�
log
�
tl;B
tl;A

�
þ b0F 2 b1F

��
2 logf1þ expð2b1FÞg þ log

	
2tl;A


 sample l 2 B3A

for female samples.
Males only have one X chromosome and it is always

maternally inherited. Therefore no parent-of-origin effect
and no X inactivation exist, leading us to replace hl in model
(5) by

hl ¼

8>>><
>>>:

log f2g
2   log f1þ expð2b1FÞg sample l 2 A3A or A3B

b0M þ log f2g
2   log f1þ expð2b1FÞg

sample l 2 B3B or B3A

for male samples.

TReC model

Autosomal genes: For genes with only TReC, model (5)
cannot be directly applied. There is an identifiability
problem on the parent-of-origin effect: when no strain effect
exists, the parent-of-origin effect in model (5) is unidentifi-
able. Specifically, when plugging b0F = 0 into the equations of
(6), we end up with the same mean expression for all four
groups (A 3 A, A 3 B, B 3 A, and B 3 B), leading to the
identifiability problem of b1F. The ASE data help us to avoid
the identifiability problem. However, for genes with only
TReC, we need an alternative solution, which we propose
below by reparameterizing model (5),

ml � fNBðml;ml;uÞ; for l ¼ 1; 2; :  :  :;K1 þ K2; with
logðmlÞ ¼ b0 þ b1kl þ b2sexl þ b3doml þ b4doml 3 sexl

þ   b5zl þ b6zl 3 sexl þ hl;

(8)

where zl = 0 if sample l is an inbred and 1 if it is an A 3 B
sample, and otherwise zl = 21, and

hl ¼

8>>>>>>>><
>>>>>>>>:

0 sample l 2 A3A

b0F sexl þ b0Mð12 sexlÞ sample l 2 B3B

log f1þ exp ðb0FÞgsexl
þ   log f1þ exp ðb0MÞg
3 ð12 sex lÞ2 logf2g

sample l 2 A3B or B3A:

It is easy to check that when b0F = b0M = 0 in model (5), b5

and b6 in (8) become 0. Model (8) avoids the identifiability
problem of model (5) but essentially has no power for
detecting the imprinting effect in the absence of the strain
effect, which is demonstrated in the Simulation section.

Chromosome X genes: For chromosome X genes with only
TReC, we modify model (5) accordingly and consider the
following model,

ml � fNBðml;ml;uÞ; for l ¼ 1; 2; . . . ;K1 þ K2;
log ðmlÞ ¼ b0 þ b1kl þ b2sexl þ b3doml þ b4sexl

3 doml þ b5 wl þ hl;
(9)

where wl = 0 for all males and also for female inbreds,
wl =1 for A 3 B females, and wl = 21 for B 3 A females;
and

hl ¼

8>>>><
>>>>:

0 sample l 2 A3A

b0F sample l 2 B3B

log
�
1þ exp

�
log
�
tl;B
tl;A

�
þ b0F

��
sample l 2 A3B or B3A

for females. For males,

hl ¼
�

0 sample l 2 A3A or A3B
b0M sample l 2 B3B or B3A:

Note that in the above model, we restrict the parent-of-
origin effect, b5 to females. This makes sense since males
only have one copy of the X chromosome that is always
maternally inherited and gene expression from males does
not provide imprinting information for genes on the X chro-
mosome. In models (7) and (9), we need to know tl,A and
tl,B, which we propose to estimate globally using all X chro-
mosome genes that have enough allele-specific counts. We
may jointly estimate tl,A and tl,B with other parameters, but
this can cause model instability for small RNA-seq studies
and becomes computationally very intensive as well.

Test statistics inflation adjustment

For each test associated with the models described above,
we employ the likelihood-ratio test, which follows a chi-
square distribution asymptotically. However, for RNA-seq
data with a small number of samples, the asymptotic result
may not hold. The P-values based on the chi-square distribution
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can sometimes be very liberal (see the results in the Simulation
section), resulting in a highly inflated type I error or false dis-
covery rate. To overcome this problem, we adopt the genomic
control (GC) approach (Devlin and Roeder 1999). The GC ap-
proach was originally developed for controlling the inflation of
test statistics observed in association studies with population
substructures or cryptic relatedness. We follow the same idea
of the GC approach. Specifically, we assume that our original
test statistics, Tj (j = 1, . . . ,M) � lx2, where M is the total
number of genes tested. When the asymptotic distribution is
approximated, l � 1. However, for studies with limited sam-
ple sizes, the asymptotic distribution may not attain, and the
inflation factor l might depart from 1. With the large num-
ber of tests performed in RNA-seq studies, we empirically, by
following the GC approach, estimate l as

l̂ ¼ max

 
1;median1# j#M

�
Tj
�

medianðx2Þ

!

and rescale the original test statistics Tj to ~Tj ¼ Tj=l̂: We
then compare ~Tj with the chi-square distribution for P-value
calculation. This procedure should perform well when the
number of differentially expressed genes is small. However,
if the number of differentially expressed genes is large, l can
be upwardly biased, leading to a severe power loss. For real
data where the proportion of differentially expressed genes
is high, we alternatively propose the following empirical
permutation procedure:

1. For each gene j ( j = 1, . . . ,M), permute the sample
labels and repeat the data analysis on the permuted data
and define the permuted test statistic as T perm

j :

2. Let ~l ¼ maxð1;median1# j#MðT perm
j Þ=medianðx2ÞÞ:

3. Repeat steps 1 and 2 a large number of times and average
the ~l-values.

The final averaged value is set as l̂ and used for calculating
the ~Tj’s.

Simulation

To evaluate the performances of the proposed models, we
generated ASE and TReC from model (1) with varying strain
and parent-of-origin effects. We also varied the sample size
and library size, as well as the proportion of allele-specific
reads over TReC, and investigated how each of those factors
affects power.

To make fair power comparisons, we first investigated
the inflation of the test statistics and evaluated the perfor-
mance of the proposed GC procedure. Let the numbers of
female and male A 3 B samples be nF,A3B and nM,A3B, the
numbers of female and male B 3 A samples be nF,B3A and
nM,B3A, and the numbers of female and male inbred samples
be nF,A3A and nM,A3A and nF,B3B and nM,B3B, respectively. In
all our simulations, we set nF,A3B = nM,A3B = nF,B3A =
nM,B3A = nF,A3A = nF,B3B = n0 and nM,A3A = nM,B3B = n1
with n0 . n1 to mimic the sample size structure of the real
mouse data and varied n0 and n1. We set the overdispersion
parameter f of the b-binomial and the overdispersion pa-
rameter u of the negative binomial to 1. In addition, we set
b0 = log(1025) = 211.5 and b1 = 1 in all simulations. The
parameters were chosen based on the corresponding param-
eter estimates from the real mouse data. The library size kl
of each sample was generated uniformly from [20M, 80M]
(l = 1, . . . , K1 + K2). Conditioning on the sampled library
size kl, we simulated TReC for 10,000 genes.

Figure 1 displays the type I error of the TReCASE model
before and after the GC correction. Clearly, when the sample
size is small, naive P-values from the original uncorrected
test statistics are liberal, resulting in highly inflated type I
errors. However, as sample size increases, the type I error
inflation decreases. The proposed GC correction works well
regardless of whether the sample size is small or large and
has type I error controlled at the targeted level of 0.05.
Similar conclusions were observed for the TReC model.
For the remainder of this article, power is calculated based
on the GC-corrected test statistics.

Our next simulation compared the power of the TReC
model with that of the TReCASE model. Table 1 reports the

Figure 1 Type I error of the TReCASE
model for testing the (A) parent-of-
origin (PoO) and (B) strain effects before
and after the GC correction. The tar-
geted type I error is 0.05. The red hori-
zontal lines refer the type I error of 0.05.
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power where the targeted type I error is set to 0.05. In this
simulation, the strain and parent-of-origin effects for males
and females were set the same and n0 was fixed at 6 and n1
was set to 2. Clearly, the TReCASE model dramatically
improves power for detecting both the strain effect and
the parent-of-origin effect compared to the TReC model. In
addition, the TReCASE model lacks power for testing the
parent-of-origin effect in the absence of the strain effect.
As expected, the TReC model has almost no power in map-
ping the parent-of-origin effect. This phenomenon provides
strong support for the usage of RNA-seq data over micro-
array data for studying allelic imbalance on gene expression.
For further comparisons, we ignored the overdispersion is-
sue and analyzed the simulated data with simple Poisson
and binomial models referred as simple analysis. For testing
the strain effect, we combined the test statistics from the
Poisson model on TReC and those from the binomial model
on ASE. For testing the parent-of-origin effect, we applied
the binomial model to ASE. The simple analysis was per-
formed by the R function glm and the results are presented
in Table 1. Clearly the simple analysis has a lower power for
testing the strain and parent-of-origin effects. Moreover, it is
worth mentioning the type I error inflation of the simple
analysis in testing the parent-of-origin effect and that the
GC-corrected procedure fails the task to control the type I
error properly.

To evaluate the performances of the proposed models
when the model assumptions are violated, we next gener-
ated a new set of data, using the Flux Simulator (Griebel
et al. 2012), which models RNA-seq experiments in silico. It
uses reference genomes according to annotated transcripts
to generate sequencing reads. The simulation pipeline adds
common sources of systematic bias due to, for example,
fragmentation and PCR amplification to the produced reads
by in silico library preparation and sequencing. The simula-
tion setups were similar to the previous ones except that we
made some minor tweaks to ensure adequate power. That is,
we kept the sample size and strain and parent-of-origin
effects the same but modified the library sizes. After discard-
ing all poly(A) reads in produced .bed files, we counted the
remaining reads gene by gene and sampled a fraction of
those reads to produce allele-specific reads. Table 2 summarizes

the power where the type I error is set to 0.05. Clearly, the
TReCASE model outperforms the simple analysis. Interest-
ingly, the simple analysis has well controlled type I error at
0.05 for testing the strain effect in the previous simulation.
However, when data are simulated from the Flux Simulator,
the simple analysis has an inflated type I error when testing
either the strain or the parent-of-origin effect. The GC-
corrected procedure apparently is not powerful enough to deal
with the additional noise in the data created by the Flux
Simulator. On the other hand, the TReCASE and TReC models
are relatively robust to the model misspecification and have
the type I error reasonably controlled at 0.05. For genome-
wide RNA-seq analysis, it is of great interest to also investigate
whether the GC-corrected procedure can control the type I
error at lower significance levels. To address this concern,
we increased the number of simulations from 10,000 to 2
million and Table 3 summarizes the results under various
significance levels. The results confirm that for the TReCASE
and TReC models, the GC-corrected procedure works reason-
ably well even when the significance level is as low as 1025,
no matter whether the data were from model (1) or the Flux
Simulator. However, for the simple analysis, the GC-corrected
procedure produced poorly controlled type I errors when the
data were simulated from the Flux Simulator.

Table 1 Power analysis with data from model (1)

TReC TReCASE Simple

b0 b1 Strain PoO Strain PoO Strain PoO

0 0 0.052 0.051 0.052 0.046 0.048 0.047
0 0.5 0.055 0.051 0.053 0.310 0.053 0.170
0 1 0.051 0.049 0.049 0.841 0.049 0.525
0.5 0 0.106 0.049 0.288 0.050 0.201 0.103
0.5 0.5 0.106 0.058 0.289 0.318 0.199 0.297
0.5 1 0.105 0.068 0.293 0.854 0.201 0.691
1 0 0.321 0.051 0.866 0.054 0.589 0.210
1 0.5 0.331 0.062 0.878 0.337 0.591 0.458
1 1 0.313 0.117 0.882 0.879 0.584 0.821

PoO: parent-of-origin effect.

Table 2 Power Analysis with Data from Flux Simulator

TReC TReCASE Simple

b0 b1 Strain PoO Strain PoO Strain PoO

0 0 0.061 0.049 0.054 0.053 0.164 0.162
0 0.5 0.055 0.046 0.052 0.233 0.147 0.245
0 1 0.060 0.052 0.049 0.695 0.154 0.457
0.5 0 0.110 0.049 0.226 0.054 0.258 0.186
0.5 0.5 0.106 0.056 0.226 0.252 0.230 0.268
0.5 1 0.120 0.067 0.204 0.689 0.201 0.436
1 0 0.318 0.049 0.766 0.055 0.483 0.254
1 0.5 0.327 0.079 0.753 0.248 0.452 0.343
1 1 0.326 0.103 0.756 0.708 0.411 0.530

PoO: parent-of-origin effect.

Table 3 Type I error analysis

TReC TReCASE Simple

aa Strain PoO Strain PoO Strain PoO

Data generated from model (1)
5E-02 4.95E-02 5.06E-02 4.94E-02 5.07E-02 4.99E-02 4.89E-02
1E-02 9.74E-03 1.01E-02 9.74E-03 1.01E-02 1.01E-02 9.55E-03
1E-03 8.88E-04 9.76E-04 8.92E-04 1.02E-03 9.88E-04 9.40E-04
1E-04 7.90E-05 9.40E-05 8.25E-05 9.75E-05 1.02E-04 8.25E-05
1E-05 5.50E-06 5.50E-06 9.00E-06 7.50E-06 1.40E-05 8.50E-06

Data generated from Flux Simulator
5E-02 5.23E-02 4.93E-02 5.10E-02 5.24E-02 1.60E-01 1.53E-01
1E-02 1.10E-02 1.09E-02 1.00E-02 1.13E-02 1.01E-01 9.41E-02
1E-03 1.21E-03 1.44E-03 1.02E-03 1.30E-03 6.10E-02 5.78E-02
1E-04 1.20E-04 8.81E-05 8.92E-05 2.27E-04 4.17E-02 3.87E-02
1E-05 6.21E-06 3.66E-06 7.31E-06 4.57E-05 2.97E-02 2.80E-02
a Targeted type I error.
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Finally we investigated how each of the following factors—
sample size, library size, and the proportion of ASE over
TReC—affects power. This addresses an important design
question related to RNA-seq studies: With a fixed amount
of budget, should we sequence more samples at lower cov-
erage or less samples at higher coverage? To answer this
question, we kept the expected total number of reads across
all samples constant and varied n0 and n1 (and thus accord-
ingly the library size). The result is presented in Figure 2
and Figure 3. Clearly, increasing the number of samples is
more beneficial than increasing the library size for mapping
both the strain and parent-of-origin effects. Unless sample
recruiting is too expensive to conduct, we recommend
sequencing more samples with lower coverage.

We then varied the proportion of ASE to investigate its
impact. Figure 3 shows that when the proportion of ASE is
low, increasing ASE even by a very small percentage can
drastically increase statistical power for testing the strain
and parent-of-origin effects. However, when the proportion
of ASE is relatively high (e.g., .10%), we gain very little
power by further increasing the ASE proportion. Note that
the proportion of ASE is determined largely by the DNA
similarity of the parental strains, which is out of our control
once the parental strains are selected for a given study. We

can, however, increase the proportion of ASE by improving
the quality of the reference genomes.

Real Data Analysis

This is a small 3 3 3 diallele mouse project conducted for
investigating allelic imbalances on gene expression of three
wild-derived mouse strains. We focus our analysis on the F1
hybrids from two of the strains, CAST/EiJ and WSB/EiJ. The
two strains are incipient species within the M. musculus spe-
cies group and highly divergent from each other. RNA sam-
ples from the whole brains of 12 F1 females (6 of CAST 3
WSB and 6 of WSB 3 CAST) and 12 F1 males (again 6 of
CAST 3 WSB and 6 of WSB 3 CAST) were collected. In
addition, RNA samples were also collected from 6 females
and 2 males from each of the two inbred strains. The Illu-
mina HiSequation 2000 instrument was used to generate
100-bp paired-end reads (2 3 100) from the 40 samples.
The median total number of reads of the 40 samples is �28
million after the reads with low-quality score (i.e., phred
score ,30) were filtered out. Our custom RNA-seq align-
ment pipeline first aligned reads with high quality from each
sample to the pseudogenomes of CAST and WSB, repre-
senting each paternal strain genome, using TopHat11

Figure 2 Power of the TReCASE model
for the (A) parent-of-origin (PoO) and (B)
strain effects with varying sample size
and library size. In this simulation, k,
the expected TReC, ranges from 201
to 742, and n, the number of samples
(mice), is 6. The effect size is calculated
as exp(b1) [and exp(b0)] for the PoO ef-
fect (and strain effect). The red horizon-
tal lines refer the type I error of 0.05.

Figure 3 Power of the TReCASE model
for the (A) parent-of-origin (PoO) and (B)
strain effects with varying proportion of
ASE reads. Each line refers the propor-
tion of ASE simulated out of the TReC.
The effect size is defined the same as in
Figure 2. The red horizontal lines refer
the type I error of 0.05.
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version 1.4. The pseudogenomes are approximations con-
structed by incorporating all known SNPs and indels of CAST
and WSB reported by Wellcome Trust into the mm9 genome.
On average, the number of SNPs and/or indels per gene is�20
with the standard deviation of 27. We then mapped coordi-
nates from the pseudogenome aligned reads back to mm9
coordinates. Finally, three counts were obtained for each
gene in each sample. The first was the total number of
(paired-end) reads and the other two were the numbers of
allele-specific (paired-end) reads. A paired-end read was
allele specific if either end overlapped at least one SNP/
indel that was heterozygous between the paternal and ma-
ternal strains. If a paired-end read overlapped more than
one heterozygous SNP/indel, it was assigned to the allele
based on the majority vote of those heterozygous SNPs/
indels. We then counted the number of reads mapped to
a gene as the number of paired-end reads that overlapped
exonic regions of a gene, using the R function isoform/
countReads. Exon position information was extracted from
the file Mus_musculus.NCBIM37.66.gtf, which was down-
loaded from Ensembl (http://useast.ensembl.org/info/
data/ftp/index.html). Following alignment, we performed
a series of quality-control checks, capitalizing on clear
expectations for the proportions of reads that should align
to each parental strain for the sex, autosomal, and mito-
chondrial chromosomes. One female CAST sample has
nearly 50% of reads mapped to WSB and looks like an F1.
We dropped this sample from our analysis.

A gene is defined as expressed if the maximum number of
TReCs of the gene across all samples is no less than 50. We
restricted our analysis to expressed genes. For each
expressed gene, we modeled TReC and ASE jointly unless
the maximal ASE of the gene is ,5, leaving us to analyze
TReC only. The number of significant genes was calculated
based on the false discovery rate (FDR) of 0.05 based on the
GC-corrected P-values. To further evaluate the GC-corrected
P-values, we ran a large number of permutations and pooled
all test statistics together, producing in total �1 million test
statistics that we treated as the null test statistics and used
for calculating permutation-based P-values. The GC-corrected
procedure allows us to calculate the P-values at finer scales.
In contrast, the precision of the permutation P-values is
limited by the number of simulations performed. For
genes with very large effect sizes, their P-values might
be too small to be accurately estimated by the permutation
procedure. In Supporting Information, Figure S1 and Figure
S2, the GC-corrected and GC-uncorrected P-values for testing

the strain effect are plotted against the permutation-based
P-values. For genes with corresponding test statistics larger
than the maximum of the null test statistics, we arbitrarily set
their permutation P-values to 1026.5. These numbers clearly
show that there is a high degree of agreement between the
GC-corrected and permutation-based P-values except for the
upper right-hand corner ones where the number of permuta-
tions is not large enough to allow accurate P-value estimates.
However, the GC-uncorrected P-values are consistently larger
than the permutation-based ones, again indicating the infla-
tion of the GC-uncorrected P-values. Similar conclusions hold
for the P-values testing the parent-of-origin effect (see Figure
S3 and Figure S4).

Table 4 summarizes the analysis results. We detected
a large number of strain-dependent differentially expressed
genes, which we credit to (1) the genetic divergence of
CAST and WSB and (2) high-quality RNA-seq data. Figure
4 (left) displays the distribution of the estimated strain
effects of the significant genes at FDR = 0.05. We enlarged
a small region near the proportion of 0.5 where the strain
effects are small (Figure 4, right). The gray and blue curves
correspond to the nonsignificant and significant genes, re-
spectively. Clearly, we have declared more nonsignificant
genes than significant genes in this small region. However,
some genes with small strain effects were detected due to

Table 4 Mouse data results

No. significant genes

Chromosome type No. mapped genes No. expressed genes No. expressed genes with ASE Strain PoO

Autosomes 30,635 14,927 11,677 8,135 71
X chromosome 1,488 522 401 205 0

PoO: parent-of-origin effect.

Figure 4 Histogram of the estimated strain effects of significant genes at
FDR = 0.05 (left). The right histogram is an enlarged version of the left
histogram around the proportion of 0.5. The x-axis of the right histogram
is plotted in the logit scale for easy visualization. The blue and gray curves
correspond to the significant and nonsignificant genes, respectively.
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their high number of read counts. The number of significant
imprinting genes is smaller. Figure 5 shows that among the
71 identified imprinting genes, 39 of them overlap with the
known mouse imprinting genes, the union of imprinting
genes collected from the following three sites: http://www.
geneimprint.com/site/genes-by-species.Mus+musculus,
http://igc.otago.ac.nz, and http://www.mousebook.org/cat-
alog.php?catalog=imprinting. Our estimated imprinting
effects are in the same directions as the ones reported.
Furthermore, more paternally than maternally expressed
genes were detected in our data, which is also consistent
with the reported results on the known mouse imprinting
genes.

Several studies (Pickrell et al. 2010; Risso et al. 2011)
have shown the existence of strong sample-specific GC-
content effects on RNA-seq read counts. Our mouse data
clearly demonstrate these phenomena (Figure S5). Figure
S5 was constructed following exactly the same procedure
as that of Pickrell et al. (2010). Although the influence of
GC content is clear, the influence is random and nonsys-
tematic with respect to the two parental strains and F1
crosses and thus should have relatively small effects on
the differential gene expression analysis. Nevertheless,
we included the estimated %GC content as an additional
covariate and reanalyzed the data. Figure S6 and Figure
S7 are the density scatter plots of the P-values with and
without the correction of the %GC content. As expected,
the P-values from the two analyses agree reasonably well
with each other, especially the P-values for testing the
parent-of-origin effect and the ones corresponding to the
top ranked genes with strain effects.

For chromosome X genes, Figure 6 plots the proportion of
ASE mapped to the CAST allele of two F1 females (one
CAST 3 WSB and one WSB 3 CAST). Clearly, for both
samples, due to the Xce effect, the CAST allele is over-
expressed relative to the WSB allele. The estimated
t̂CAST=t̂WSB values are 0.73 and 0.63 for the CAST 3 WSB
and WSB 3 CAST samples, which are far from the 0.5 ratio
of autosomal genes. A similar pattern holds for the other F1
samples. Note that one gene, Xist, is known to have a com-
pletely opposite inactivation pattern from that of the other
genes (Avner and Heard 2001). Our data confirm this. For
example, for the same CAST 3 WSB sample, the proportion
of ASE mapped to the CAST allele at gene Xist is �0.27 and
close to 1 2 t̂CAST=t̂WSB: Clearly, if the Xce effect were ig-
nored, the majority of the chromosome X genes would be
claimed differentially expressed with strain effects. How-
ever, after correcting for the Xce effect, our model detected
only �50% significant genes (Table 4).

Figure 5 List of the identified imprinting genes. Genes colored red and
blue are known maternally and paternally expressed genes, respectively.

Genes in black are novel imprinting genes from our analysis. The size of
each circle refers to the significance of its corresponding gene (the bigger
the circle is, the more significant the gene).
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Discussion

In this article, we developed a set of analysis approaches for
F1 reciprocal samples coupled with inbred samples. The pro-
posed methods take the special structure of the F1 and in-
bred samples into consideration and jointly test for strain
and parent-of-origin effects. For genes located on chromo-
some X, our methods adjust the nonrandom X inactivation
controlled by the Xce allele, which is important for studying
the strain-dependent allelic imbalance on chromosome X. In
addition, the methods model both the additive and domi-
nant strain effects and also test the consistency of the strain
effects between TReC and ASE. Although the majority of
genes show consistent strain effects, we identified some
genes with inconsistent strain effects that deserve further
investigation. The inconsistency may result from mapping
error or other biological reasons.

A particular point of controversy in the mouse community
is the number of mouse genes subject to imprinting. Prior to
several recent studies, the estimated number of imprinted
genes had remained steady at 100–200 for .20 years de-
spite multiple screening efforts. The earliest application of
RNA-seq in brain tissue from reciprocal F1 mice yielded
a small number of novel imprinted transcripts whereas
two more recent studies claimed identification of .1300
imprinted loci (Gregg et al. 2010 a,b). However, a careful
reanalysis was unable to replicate these findings and sug-
gested that most of the novel imprinted loci were false
due to inaccurate statistical analysis (Deveale et al. 2012;
Hayden 2012). As shown by our simulations, for small
RNA-seq studies, P-values based on the asymptotic chi-square
distribution can be quite liberal, leading to highly inflated type
I errors. The studies of Gregg et al. (2010 a,b) are small (with
only two F1 samples). One likely reason among many possible
reasons for producing such high false positive findings is that
their test statistics are highly inflated and the P-values are
unadjusted. Our GC procedure greatly reduces the inflation
of the type I error and, to our best knowledge, our article is the
first to address this important issue.

Due to the nature of this article, we primarily focus on the
presentation of the statistical methods and leave the de-
tailed analysis results with more biological insights from the
mouse project to another paper (J. J.Crowley, V. Zhabotynsky,
W. Sun, S. Huang, I. K. Pakatci, Y. Kim, J. R. Wang, A. P.

Morga, J. D. Calaway, D. L. Aylor, Z. Yun, T. A. Bell, R. J. Buus,
M. E. Calaway, J. P. Didion, T. J. G. Gooch, S. D. Hansen, N. N.
Robinson, G. D. Shaw, J. S. Spence, C. R. Quackenbush, C. J. B.
Barrick, Y. Xie, W. Valdar, A. B. Lenarcic, W. Wang, C. E.
Welsh, C. P. Fu, Z. Zhang, J. Holt, Z. Guo, D. W. Threadgill,
L. M. Tarantino, D. R. Miller, F. Zou, L. McMillan, P. F. Sullivan,
F. Pardo-Manuel de Villena, unpublished results). An R
package that implements the proposed models can be found
online at http://www.bios.unc.edu/~feizou/software/rxSeq.
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Figure S1   -log10(GC-corrected P-values) (x-axis) of strain effects vs -log10(permutation 

based p-values) (y-axis).  
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Figure S2   -log10(GC-uncorrected P-values) (x-axis) of strain effects vs -log10(permutation 

based p-values) (y-axis).  
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Figure S3   -log10(GC-corrected P-values) (x-axis) of PoO  vs -log10(permutation based p-

values) (y-axis).  
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Figure S4   -log10(GC-uncorrected P-values) (x-axis) of PoO  vs  -log10(permutation based 

p-values) (y-axis).  
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Figure S5   The %GC-content vs the smoothed normalized log intensity.  The X-axis refers the bin
number where total of 200 bins are used to divide genes. The lower the bin #, the lower the %GC 

content.  
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CƛƎǳǊŜ {с  Scatter plot of -log10(P-values) of strain effects with (y-axis) and without (x-axis) 

correction of  %GC-content.   
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CƛƎǳǊŜ {т   Scatter plot of -log10(P-values) of PoO with (y-axis) and without (x-axis) 

correction of  %GC-content.   
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