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Abstract

Women are at a twofold risk of developing late onset Alzheimer’s disease (LOAD) (onset ≥65

years of age) compared to men. During perimenopausal years, women undergo hormonal changes

that are accompanied by metabolic, cardiovascular and inflammatory changes. These all together

have been suggested as risk factors for LOAD. However, not all perimenopausal women develop

AD; we hypothesize that certain genetic factors might underlie the increased susceptibility for

developing AD in postmenopausal women. We investigated the androgen receptor (AR) gene in a

clinical cohort of male and female AD patients and normal controls by sequencing all coding

exons and evaluating the length and distribution of the CAG repeat in exon 1. We could not

establish a correlation between the repeat length, gender and the disease status, nor did we identify

possible pathogenic variants. AR is located on the X chromosome; in order to assess its role in

AD, X-inactivation patterns will need to be studied to directly correlate the actual expressed repeat

length to a possible sex specific phenotypic effect.
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Introduction

Age is a major risk factor for Alzheimer’s disease (AD) (Rocca, Amaducci, & Schoenberg,

1986). Gender differences (Henderson, 1997) as well as hormonal changes (Pike, Rosario, &

Nguyen, 2006; E. R. Rosario & Pike, 2008) have also been reported as possible risk factors

leading to the development of AD.

Women are at a twofold risk of developing late onset Alzheimer’s disease (LOAD) (onset

≥65 years of age) compared to men (Alzheimer’s, 2012). Yet, while it is known that women

have a longer life expectancy this difference in risk cannot be solely attributed to survival

rate (Miniño & Murphy, 2011; Vina & Lloret, 2010).

Menopause in women is characterized by dramatic hormonal changes, primarily, an increase

in the androgen/estrogen ratio due to the sudden drop in ovarian hormones, i.e. estrogen and

progesterone. This near complete depletion of primary sex hormones is accompanied by

metabolic, cardiovascular and inflammatory changes in women. Aging men also experience

a decrease in their primary sex hormones, although in a much more gradual manner than

women (Morley et al., 1997).

Estrogen and progesterone are synthesized in ovaries, testis and the adrenal cortex and play

a neuroprotective role in the brain health of both women and men; it has been shown that

estrogens may prevent or reduce the formation of amyloid deposits in the brain (Chang,

Kwan, & Timiras, 1997; Singh & Su, 2012; Thomas & Rhodin, 2000). As it has been

suggested that hormonal changes may influence increased susceptibility for developing AD

(Pike et al., 2006; E. R. Rosario & Pike, 2008), one may argue that imbalanced levels of

estrogens might strongly contribute to the higher incidence of AD in women. However,

estrogen and progesterone depletion alone does not appear to exert a uniform effect across

all postmenopausal women since not all women over the age of 65 years are affected by AD.

Then, what is the cause of sex divergence/bias in the pathogenesis of AD? Why are not all

perimenopausal women, who undergo hormonal changes, affected in a similar way

cognitively?

We hypothesized that there must be other factors, specifically genetic differences, that

confer susceptibility and increase the risk of developing AD in women.

In our ongoing longitudinal study we developed a targeted multiplex genotyping assay using

the illumina Veracode technology to identify gender specific genetic entities that could be

involved in the differential pathogenesis of AD in perimenopausal women. Statistical

analysis revealed the Androgen Receptor gene (AR) to be associated with the AD status in

women in our cohort (unpublished data).

Human androgen receptor gene (hAR, MIM313700) is a steroid hormone ligand-activated

transcription factor located on the X chromosome. Exon 1 of AR encodes for a highly

polymorphic polyglutamine repeat stretch located in the N-terminal domain of the AR

protein. The range of the CAG repeat length in the unaffected population is reported to be 8–

33 units with the mean of 21, while in individuals with disorders such as spinal bulbar

muscular atrophy or Kennedy disease the repeat countreaches 44 triplets (Greenland, Beilin,
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Castro, Varghese, & Zajac, 2004; Rajender, Singh, & Thangaraj, 2007). It has been

suggested that the activity of AR is inversely correlated to the length of CAG repeat

(Chamberlain, Driver, & Miesfeld, 1994). Recent studies have shown that CAG repeat in AR

modulates body fat and concentration of leptin and insulin in men implying to the role of

androgen receptor in cardiovascular diseases (Zitzmann, Gromoll, von Eckardstein, &

Nieschlag, 2003). However, similar results have not been found in women (Rexrode et al.,

2008). Reduced AR CAG repeat has also been associated with violent criminal behavior in

men (Rajender et al., 2008). The association of AR CAG repeat with the serum androgen

level was previously examined in two independent studies: in a Swedish cohort study,

premenopausal women with lower CAG repeat had higher serum androgen levels and in the

other study where the sum of both alleles was counted (biallelic CAG count),

postmenopausal women with lower repeat numbers also had higher serum androgen levels

(Brum et al., 2005; Westberg et al., 2001).

In this study we sought to examine the role of AR gene in the pathogenesis of AD in women

by screening the CAG repeat in exon 1 and sequencing exons 2–8 in a cohort of AD patients

and neurologically normal controls from the Texas Alzheimer’s Research and Care

Consortium (TARCC).

Material and Methods

Cohort

The cohort included 696 individuals subdivided into 241 female AD patients, 164 male AD

patients, 198 female neurologically normal controls and 93 male neurologically normal

controls enrolled by TARCC; in addition, 131 DNA samples of neurologically normal

control subjects (n=68 females and n=63 males), obtained from Coriell Institute [NDP096

(http://ccr.coriell.org/Sections/Search/Panel_Detail.aspx?Ref=NDPT096&PgId=202) and

NDP098 (http://ccr.coriell.org/Sections/Search/Panel_Detail.aspx?

Ref=NDPT098&PgId=202)] were screened. The methodology for recruitment has been

described in detail elsewhere (Waring SC, 2008). TARCC participants underwent a

standardized annual examination at the respective sites that included a medical evaluation,

neuropsychological testing, and interview. Each participant also provided blood for storage

in the TARCC biobank. Diagnosis of AD status was based on National Institute of

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and

Related Disorders Association (NINCDS-ADRDA) criteria and control subjects performed

within normal limits on psychometric assessment. Institutional Review Board approval was

obtained at each site and written informed consent was obtained for all participants.

DNA sequencing and CAG repeat genotyping

The polymerase chain reaction (PCR) primers for AR exons 2–8 were designed using Primer

3 version 0.4.0 (frodo.wi.mit.edu/primer3). The primer sequences are available upon

request. The PCR fragments were amplified using Roche FastStart PCR Mastermix (Roche

Diagnostic, Corp., Indianapolis, IN, USA). Sequencing of purified PCR amplicons was

carried out from one direction using the Big Dye Terminator kit (ABI, Foster City, CA,

USA) using the manufacturer’s recommended protocol, run on a 3730 DNA analyzer (ABI)
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and analyzed using the Sequencher 4.9 software (Gene Codes Corporation, Ann Arbor, MI,

USA). The effect of each SNP or novel variant in the protein structure was examined using

PolyPhen-2 software (genetics.bwh.harvard.edu/pph2). The amplimer containing CAG

repeat in the exon 1 was amplified as described in Ferlin et al. 2004. The amplimers were

sequenced using the forward PCR primer. The sequences were analyzed using the

Sequencher 4.9 software (Gene Codes Corporation, Ann Arbor, MI, USA).

Allelic distribution profile and statistical analysis

We divided our cohort into 4 groups consisting of: female AD patients (F-AD), female

normal controls (F-NC), male AD patients (M-AD) and male normal controls (M-NC). In

this study we compared the CAG allele distribution profile of women who have two alleles

and men who have one allele as follows: female patients vs. female controls within one

group and male patients vs. male controls within another group. We, therefore, first analyzed

the allelic distribution of female and male participants separately. Subsequently we analyzed

five modes of allelic presentations: 1- comparing the male alleles: AD vs. NC (Figure 1); 2-

comparing the average allelic length for females: AD vs. NC (Figure 2); 3- comparing the

long allelic length for females: AD vs. NC; 4-comparing the short allelic length for females:

AD vs. NC; 5- comparing the long and short allelic length for female AD and NC (Figure 3).

Modes 3, 4, and 5 were combined into a two-factor ANOVA with one between factor

(diagnosis) and one within factor (allelic length). For modes 1 and 2, independent samples t-

tests were performed. The assumptions for all statistical tests were satisfied.

IBM SPSS Statistics V20 was used to analyses these data. Significance was set to p < 0.05

and all tests were two tailed.

Results

CAG repeat allelic distribution statistical analysis

Androgen receptor gene AR CAG repeats in our cohort ranged from 7 to 40. These numbers

exceed the highest range of CAG repeats reported in the literature, 8–31, in the normal

population, while the reported disease ranges were at least 38 repeats for Kennedy disease,

and 43–65 repeats for X-linked spinal and bulbar muscular atrophy (Beitel, Scanlon,

Gottlieb, & Trifiro, 2005; Choong, Kemppainen, Zhou, & Wilson, 1996; Mariani et al.,

2012). The range of CAG allelic distribution, mean, the median, standard deviation,

percentile and number of alleles in each group of our cohort are summarized in Tables 1a–c.

As it can be seen in Table 1a, the number of AR CAG repeats in female AD ranged from 14

to 33 with a median length of 21 for the short allele and 24 for the long allele. The number

of CAG repeats among the female NC group (Table 1b) ranges from 8 to 40 with the median

of 21 for the short allele and 24 for the long allele. The male group (Table 1c) shows allele

sizes that range from 7 to 32 in the AD group and 14 to 32 in the NC group.

Table 2 provides the comparison of the allelic lengths for AD vs. NC males (Figure 1). The

difference between normal controls and AD patients was non-significant (t=1.30, df=318,

p=0.195).
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Figure 2 presents the mean value of two alleles of female patients compared to the mean

value of two alleles of female controls, in order to have a single presentation for each

individual and to take into consideration that X chromosomes in women are subjected to

random X-inactivation; as we did not have X-inactivation data on each person, instead, we

calculated and considered the mean value. Additionally, in the study of Alzheimer’s disease,

the conventional X-inactivation analysis assay, performed with DNA extracted from

peripheral blood would not be informative as this is a disease of the central nervous system

(CNS). To understand the X-inactivation or in other words, the methylation pattern of the

DNA, one would need the areas of the brain which are affected by Alzheimer’s disease, for

example the hippocampus, to determine the role of AR CAG repeat expression in the

pathogenesis of the disease. As our cohort is clinical and our subjects are still alive, we

could not investigate that aspect.

When comparing NC and AD groups using the average of the long and short alleles in

females (Figure 2), the average allelic length was not significant (t=1.26, df=505, p=0.208)

(Table 3).

To understand the paired allelic sizes in female patients and controls, we performed an

ANOVA comparing allelic length (within factor) and diagnostic groups (between factor) for

females (Tables 4a–c;). Table 4a shows that the comparison between the average short vs.

long allelic length in females was significant (F=446.89, df=1/505, p<0.0001). This,

however, has no biological significance as we have no data on which allele is inactivated

and which is expressed in each patient. Table 4b presents the non-significant result of the

average allelic length for females in the AD vs. NC groups (F=1.59, df=1/505, p=0.208).

Table 4c presents the results of the interaction comparing the long and short allelic length

for female AD and NC (Figure 3). The interaction of allelic length (long vs. short) and

disease status (AD vs. NC) was not significant (F=1.23, df=1/505, p=0.269).

Sequence analysis

Sequencing of exons 2–8 in all the TARCC participants resulted in the identification of 3

variants of which one (IVS1-22 C>T) was novel and the other two had previously been

reported in the SNP database and in Gottlieb et al. 2012 (Table 5) (Gottlieb, Beitel,

Nadarajah, Paliouras, & Trifiro, 2012). The synonymous variant K558K was identified in

two AD patient with no report on pathogenicity. The missense variant S598G, which was

analyzed through PolyPhen2 software (Adzhubei et al., 2010) and was predicted, in silico, to

be probably pathogenic, was detected in one AD patient and in one normal control in our

cohort. This variant had been already isolated in a patient with Partial Androgen

Insensitivity Syndrome (PAIS) and one normal control (Gottlieb et al., 2012). Interestingly,

all variants were isolated in female individuals.

Discussion

The aim of this study was to examine the association of AR gene with the Alzheimer’s

disease status in our cohort consisting of female and male AD patients and neurologically

normal controls. The sequencing of AR exons 2–8 did not result in identification of any

variants that could be associated with the disease status. Also, we could not establish
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significant correlation between the CAG repeat length located in AR exon 1 and the disease

status or gender.

The only study of AR CAG repeats in AD, arbitrarily, divided the alleles into two groups,

considering the short alleles in the range of ≤20 and the long allele in the range of >20 and

reported an association of shorter allele with male AD patients (Lehmann et al., 2003). In

our study we did not set an a priori threshold, instead, we interrogated the repeat distribution

in a hypothesis free manner. CAG repeat length of androgen receptor gene is a functional

polymorphism within the transcription activating domain of AR protein that affects the

potential of AR to bind to the promoters of target genes. Studies have shown that plasma

testosterone levels are higher in postmenopausal women with shorter CAG tracts (Brum et

al., 2005). At this point, we could not establish a direct link between genetic variability in

AR gene and sex specific phenotypic effects in our cohort.

In the study of LOAD, with specific focus on the sub-population of female patients, it is

difficult to define a simple genotype-phenotype effect. Genetics of LOAD has proven to be

complex and is thought to be the result of a multitude of genetic factors with small effects

(Cruchaga et al., 2012; Singleton & Hardy, 2011; Tanzi, 2012). The recent genome wide

association studies (GWAS) and whole exome/genome sequencing efforts have identified

many factors which seem to exert small but definite incremental effects on the pathogenesis

of LOAD (Bettens, Sleegers, & Van Broeckhoven, 2013; Guerreiro et al., 2013). In order to

identify these factors, a study requires subject numbers in the magnitude of few thousands,

as ascertained in GWAS. Our study and focus on AR however, was based on the results of a

preliminary association study in our cohort (unpublished data). The association of the AR

gene implies to the involvement of AR in the pathogenesis of AD. The genetic association

could be the result of: 1- variations in the gene, which can be identified through Sanger

sequencing. Point mutations in AR have been previously linked to PAIS, but we did not

identify any pathogenic variations associated with the disease; 2- the repeat length variations

such as AR CAG repeat or hexanucleotide repeat in C9ORF72 (Majounie et al., 2012) could

be the reason for the genetic association. Even if not directly the cause of the disease, they

could be modifiers of the phenotype or confer susceptibility to the carriers of such variants;

3- the expression of AR gene as a transcription factor may affect expression of downstream

genes without any detectable variability in structure of AR gene.

However, the most plausible hypothetical mechanism which could explain higher prevalence

of AD in women compared to men could be X-inactivation and mosaicism in women. It is

well known that in the early stages of embryogenesis in females, one of the X chromosomes

is inactivated, creating colonies of cells with either maternal or paternal active X

chromosome. If the majority of CNS cells in a female individual express an X chromosome

harboring mainly neuroprotective genes, in the areas susceptible to AD, the outcome would

be healthy brain aging compared to those who harbor mainly risk factors on their active X

chromosome. In these women, although both X chromosomes are present, the X-inactivation

selection determines the mono-allelic expression of the genes in cells.

Female X-chromosome mosaicism has been suggested to be a survival mechanism (Aviv,

2007). If skewed gene inactivation leads to the expression of some X-chromosomal genes,
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disadvantageous for cognition, it might be one of the mechanisms underlying the higher

prevalence of AD in women, Also, women who are not affected at the perimenopausal years

may have a majority of cells in the CNS that express both copies of protective alleles. If X-

chromosome carries multiple risk factors with variable degrees of penetrance and

pathogenicity, the potential inactivation, partial or complete, has an immense effect on the

expression of these variants and the possible pathogenesis of late onset Alzheimer’s disease.

This mechanism can potentially explain the variability of phenotype in families with LOAD.

An alternative approach to study the involvement of AR gene in the gender specific

pathogenesis of LOAD in women is to consider non-genetic or epigenetic mechanisms of

action. Evidence suggests that aging may change the X-inactivation pattern in women

(Cotton et al. 2011). This may impact the X-inactivation pattern of many genes on the X

chromosome, including AR, with the possible consequence of changes in the androgen

sensitivity. X-inactivation may explain sex differences in longevity, aging processes and

prevalence of Alzheimer’s disease in the female population.

Comorbidities and epigenetics

The end of reproductive years at menopause coincides with comorbidities such as metabolic,

cardiovascular and inflammatory changes. These conditions could represent a consequence

of estrogen/progesterone depletion and androgen/testosterone increase in postmenopausal

women.

Sex differences in longevity and disease have been attributed to hormones, genetic

differences and behavior. The higher prevalence and incidence of diseases such as

Alzheimer’s disease, systemic lupus erythematosus and autoimmune disease in women is a

well-documented fact that cannot be only attributed to the environmental, behavioral and

cultural factors (W. H. Brooks, 2010; Weckerle & Niewold, 2011). The genes that may grant

health and resilience to women at the premenopausal stages of life, as they might be

favorable in the context of coping with torrent of oxidative stress and other types of insults

caused by cardiovascular, inflammatory and metabolic changes throughout life, may also

confer disadvantage such as loss of cognitive ability and neurodegeneration in later life.

Female physiology is a life-long interplay of anti- and pro-inflammatory processes which

are in balance throughout the normal production of female hormones until the end of

productive years. Female hormones and their receptors are involved in many signaling and

regulatory pathways. Estrogen receptors α and β are transcription factors that are activated

through binding to estrogen and initiate transcription of downstream genes. It is conceivable

that substantial changes in estrogen levels can influence expression of many genes, leading

to diseases such as Alzheimer’s and autoimmune disease (Candore et al., 2010; Long, He,

Shen, & Li, 2012; Simpkins, Singh, Brock, & Etgen, 2012). Androgens also play a

neuroprotective role against Alzheimer’s disease, whereas, depletion thereof can lead to AD

pathology in the brain (Azcoitia et al., 2001). Testosterone-mediated neuroprotective anti-

apoptotic pathway, triggered by a decrease in serum androgen, is initiated by AR activation

mechanism (B. P. Brooks et al., 1998; Hammond et al., 2001). Studies have shown that

circulating levels of testosterone negatively correlate with A-β in the brains of aged men and
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decreased testosterone is correlated with accumulation of A-β deposits (Gandy &

Petanceska, 2001; E.R. Rosario, Chang, Head, Stanczyk, & Pike, 2011).

Furthermore, high serum testosterone levels are associated with high levels of low density

lipoprotein (LDL) which is known to be a risk factor for cardiovascular diseases, suggesting

a mechanism for higher incidence of heart attack and stroke in men (Weidemann & Hanke,

2002). Female hormones, on the other hand, have a protective effect on the cardiovascular

system; they are also neuroprotective and have anti-inflammatory effects on the female

body. During menopause women become susceptible to cardiovascular diseases, auto-

immune diseases and dementias because of the decrease in estrogens and progesterone and

the comparative increase in levels of testosterone/estradiol (Czlonkowska et al., 2006;

Mendelsohn & Karas, 1999; Straub, 2007).

The aging process is always accompanied by many comorbidities and onset of diseases of

old age. Women endure many diseases as they enter menopause and experience the

comorbidities that coincide with termination of reproductive life. As women experience

metabolic, inflammatory and cardiovascular changes many common diseases such as

dementias, diabetes, metabolic disorder and heart disease are manifested in women. If these

comorbidities epidemiologically coincide with the diseases of old age such as dementias or

cancer, it is quite possible that hormonal changes and the consequent cardiovascular,

inflammatory and metabolic changes act as epigenetic forces on the genome to change the

pattern of gene expression. Hence, the cause of the late onset diseases could be found in the

epigenetic mechanisms rather than in the sequences of the genome alone. A probable reason

for the limited success in the quest for finding the late onset Alzheimer’s disease gene may

have been the conventional approach. We may therefore, from now on, look at the

epigenetic mechanisms that affect gene expression.

A change in X-inactivation patterns could be among the epigenetic effects of aging, altering

even a number of regions that escape inactivation including coding regions and regions of

long non-coding RNAs (lnc-RNAs). Through such changes, a female individual not only

faces a tremendous imbalance of gene dosage but also a sex bias that can lead to a sex

specific phenotypic effect.

Role of AR

The brain is one of the androgen responsive tissues of the body. Given dense localization of

androgen receptors in the hippocampus, androgen receptors, together with estrogen

receptors, support the notion of a strong role of sex hormones in brain development and

neuronal protection, specifically, in the areas affected by Alzheimer’s disease (Kerr, Allore,

Beck, & Handa, 1995; Simerly, Chang, Muramatsu, & Swanson, 1990; Tohgi, Utsugisawa,

Yamagata, & Yoshimura, 1995). If the AR gene exerts its effect in the pathogenesis of AD

through modulating plasma androgen levels, the genetic effect of CAG repeat length could

be possibly examined and verified by investigating the X-inactivation patterns in these areas

of the brain. Studies have indicated that blood cells X-inactivation pattern, are not in

concordance with the pattern of X-inactivation in other tissues (Cotton et al., 2011; Sharp,

Robinson, & Jacobs, 2000). Our approach interrogated the number of AR CAG repeats in

each patient in a clinical cohort. Our findings, however, did not support this hypothesis. As
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it was a clinical cohort, we could not verify which X chromosome, harboring a certain CAG

repeat (long or short), has been inactivated in the brains of the female subjects. This is the

crucial point in determining what allele is associated with the disease status.

In the future, the correlation between the AR repeat length and its expression needs to be

verified in the brain samples of male and female AD patients and controls, to identify the

role of AR and X chromosome in the pathogenesis of AD in women.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The bar graph shows the frequencies of each allele of male patients compared to each allele of male controls for the CAG repeat

polymorphism.

Abbreviations: M-AD = male Alzheimer’s disease patient; M-NC = male normal control.
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Figure 2.
The bar graph shows the frequencies of the mean values of two alleles of female patients compared to the mean values of two

alleles of female controls for the CAG repeat polymorphism.

Abbreviations: F-AD = female Alzheimer’s disease patient; F-NC = female normal control.
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Figure 3.
The bar graph shows the frequencies of both (short and long) alleles of female patients compared to both (short and long) alleles

of female controls for the CAG repeat polymorphism.

Abbreviations: F-AD = female Alzheimer’s disease patient; F-NC = female normal control.
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Table 2

Comparing the short allelic length for males: AD vs. NC

DX Group N Mean Standard Deviation

Short Allele
NC 156 22.83 2.89

AD 164 22.37 3.35
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Table 3

Comparing the average allelic length for females: AD vs. NC

Female Dx Group N Mean Std. Deviation

Average
NC 266 22.83 2.41

AD 241 22.57 2.17
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Table 4a

Within (repeated) Factor: Long vs. Short Allele

Allele Length Mean Standard Deviation
95% Confidence Interval

Lower Bound Upper Bound

Short 21.44 2.41 21.23 21.65

Long 23.96 2.90 23.71 24.22
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Table 4b

Between Factor: AD vs. NC

DX Group Mean Standard Deviation
95% Confidence Interval

Lower Bound Upper Bound

NC 22.83 2.30 22.55 23.11

AD 22.57 2.30 22.28 22.86
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