Abstract
Integration of viral DNA into the host nuclear genome, although not unusual in bacterial and animal systems, has surprisingly not been reported for plants. We have discovered geminvirus-related DNA (GRD) sequences, in the form of distinct sets of multiple direct repeats comprising three related repeat classes, situated in a unique locus in the Nicotiana tabacum (tobacco) nuclear genome. The organization of these sequences is similar or identical in eight different tobacco cultivars we have examined. DNA sequence analysis reveals that each repeat has sequences most resembling those of the New World geminiviral DNA replication origin plus the adjacent AL1 gene, encoding the viral replication protein. We believe these GRD sequences originated quite recently in Nicotiana evolution through integration of geminiviral DNA by some combination of the processes of illegitimate recombination, amplification, deletions, and rearrangements. These events must have occurred in plant tissue that was subsequently able to contribute to meristematic tissue yielding gametes. GRD may have been retained in tobacco by selection or by random fixation in a small evolving population. Although we cannot detect transcription of these sequences, this does not exclude the possibility that they may originally have been expressed.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
- Day A. G., Bejarano E. R., Buck K. W., Burrell M., Lichtenstein C. P. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6721–6725. doi: 10.1073/pnas.88.15.6721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fontes E. P., Eagle P. A., Sipe P. S., Luckow V. A., Hanley-Bowdoin L. Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem. 1994 Mar 18;269(11):8459–8465. [PubMed] [Google Scholar]
- Gorbalenya A. E., Koonin E. V., Wolf Y. I. A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett. 1990 Mar 12;262(1):145–148. doi: 10.1016/0014-5793(90)80175-i. [DOI] [PubMed] [Google Scholar]
- Greene A. E., Allison R. F. Recombination between viral RNA and transgenic plant transcripts. Science. 1994 Mar 11;263(5152):1423–1425. doi: 10.1126/science.8128222. [DOI] [PubMed] [Google Scholar]
- Ilyina T. V., Koonin E. V. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 1992 Jul 11;20(13):3279–3285. doi: 10.1093/nar/20.13.3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenton A., Khashoggi A., Parokonny A., Bennett M. D., Lichtenstein C. Chromosomal location of endogenous geminivirus-related DNA sequences in Nicotiana tabacum L. Chromosome Res. 1995 Sep;3(6):346–350. doi: 10.1007/BF00710015. [DOI] [PubMed] [Google Scholar]
- Koonin E. V., Ilyina T. V. Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol. 1992 Oct;73(Pt 10):2763–2766. doi: 10.1099/0022-1317-73-10-2763. [DOI] [PubMed] [Google Scholar]
- Lazarowitz S. G., Wu L. C., Rogers S. G., Elmer J. S. Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell. 1992 Jul;4(7):799–809. doi: 10.1105/tpc.4.7.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
- Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
- Stanley J., Frischmuth T., Ellwood S. Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6291–6295. doi: 10.1073/pnas.87.16.6291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Y., Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]