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We used whole-genome analysis and subsequent 
characterization of geographically diverse strains using new 
genetic signatures to identify distinct subgroups within Fran-
cisella tularensis subsp. tularensis group A.I: A.I.3, A.I.8, and 
A.I.12. These subgroups exhibit complex phylogeographic 
patterns within North America. The widest distribution was 
observed for A.I.12, which suggests an adaptive advantage.

Tularemia, caused by the bacterium Francisella tularen-
sis, is a potentially severe disease that often causes un-

specific symptoms; because of its low infectious dose and 
ease of dissemination, F. tularensis is considered a category 
A biothreat agent (1). Three subspecies of F. tularensis have 
been identified; F. tularensis subsp. tularensis (type A) has 
been identified only in North America. Numerous subtyp-
ing schemes have subdivided type A into 2 groups, A.I and 
A.II (2–8). Group A.II is found primarily in the western 
United States (3,4), whereas group A.I is found throughout 
the central and eastern regions of the country and sporadi-
cally in some western states (3,4,9).

Groups A.I and A.II differ in virulence, as do sub-
groups within A.I, although clinical signs and symptoms 
can be similar. Human infections involving A.I strains 
are associated with a higher fatality rate than that for  

infections involving A.II strains (4,10); this finding was 
experimentally confirmed in mice (11). Kugeler et al. (10) 
used pulsed-field gel electrophoresis (PFGE) to identify 2 
subgroups within A.I, A1a and A1b; this study found A1b 
strains were associated with higher death rates and were 
more often isolated from human tissue types that were 
associated with severe disease. This difference was also 
experimentally confirmed in mice (11,12). However, viru-
lence testing is not often used in clinical settings because 
it is slow, complicated, and expensive. Thus, molecular 
approaches that can rapidly assign an unknown strain to 
one of the recognized groups with known differences in 
virulence may provide valuable information to clinicians.

Because PFGE lacks the phylogenetic resolution of 
some other testing methods (6), we independently identified 
genetic subgroups within A.I by conducting whole-genome 
sequencing (WGS) of 13 A.I strains (Figure 1; Table 1, 
Appendix, wwwnc.cdc.gov/EID/article/20/5/13-1559-T1.
htm). The 13 strains were selected on the basis of assign-
ment to PFGE subgroups A1a or A1b (10) and to maximize 
geographic diversity; the previously sequenced A.I strain 
Schu S4 (13) was also included. WGS data were gener-
ated, assembled, and analyzed as described in the online  
Technical Appendix (wwwnc.cdc.gov/EID/article/20/5/13-
1559-Techapp1.pdf).

Our whole-genome phylogeny revealed 3 major sub-
groups within F. tularensis subsp. tularensis A.I: A.I.3, 
A.I.8, and A.I.12 (Figure 1). The names we assigned to these 
subgroups are consistent with previous phylogenetic no-
menclature within F. tularensis (14). With the exception of 
1 strain (ND01-1900) that was not assigned to any of the 3 
subgroups, all strains previously assigned to PFGE subgroup 
A1a belonged to the newly designated A.I.12 subgroup (Fig-
ure 1; Table 1). In contrast, strains previously assigned to 
PFGE subgroup A1b were distributed among all 3 of the new 
subgroups (Figure 1; Table 1). We concluded that results of 
characterization of subgroups A1a and A1b by PFGE are not 
in agreement with findings of a robust whole-genome phy-
logeny and therefore focused the remainder of our analysis 
on subgroups identified by using WGS.

We observed several differences among the 3 sub-
groups in the whole-genome phylogeny (Figure 1). The first 
split separated the A.I.3 subgroup from the A.I.8 and A.I.12 
subgroups; a second split separated the A.I.8 and A.I.12 
subgroups. A long branch of 25 single nucleotide polymor-
phisms (SNPs) led to the A.I.3 subgroup, in which related-
ness among the sequenced strains was moderate. A branch 
of 9 SNPs led to the A.I.8 subgroup, and again, relatedness 
among the sequenced strains was moderate. The branch 
leading to subgroup A.I.12 was, by comparison, much lon-
ger (37 SNPs), and the sequenced strains were separated 
only by 3 short branches (1–4 SNPs). This pattern of several 
short branches without hierarchical structuring is consistent 
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with a recent radiation, an evolutionary process in response 
to adaptive change, new ecologic opportunities, or a combi-
nation of these factors.

To show more comprehensive phylogenetic pat-
terns, we developed 16 canonical SNP (canSNP) assays 
as described (online Technical Appendix) and used them 
to screen 179 F. tularensis subsp. tularensis A.I strains 

selected from the collections of the Centers for Disease 
Control and Prevention (Fort Collins, CO, USA). We se-
lected strains that were representative of all states where 
A.I infections occur and of all PFGE classification types 
(Table 1). One limitation of our study is that we did not 
analyze an equal number of strains from all regions of the 
country. However, our sample reflects the distribution 
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Table	2.	Melt-MAMA	primers	targeting	canSNPs	for	new	phylogenetic	branches	in	Francisella tularensis subsp.	tularensis A.I	in	
United	States* 

 
SchuS4† 
position 

SNP	
state,	

der/anc‡ Primers,	5  3§ Con¶ 
Temp,	
°C# 

Subgroup 
Major	 Minor 
NA A.I.7 1005448** C/T A:	TATTTCAATTTTTGCGATGGTAgGT 0.80 55 
    D:	ggggcggggcggggcTATTTCAATTTTTGCGATGGTAcTC 0.20  
    C:	AAGTATGTTGGCAAGTAAAGTGAGAAGA 0.20  
A.I.12 NA 142781†† C/G A:	GCTTATCGCCGACATTCATCtAC 0.20 60 
    D:	ggggcggggcggggcgggCTTATCGCCGACATTCATCcAG 0.20  
    C:	GGTATGGCAAAAAATACTTATGGTACG 0.20  
A.I.12 A.I.13 1833651‡‡ T/C A:	CTTTCAATCATGTAACCATCATTATTTAaGC 0.80 60 
    D:	cggggcggggcggggcggggCTTTCAATCATGTAACCATCATTATTTAgGT 0.20  
    C:	CTTAATGAACTTGGTGTAATGGGTAGATA 0.20  
A.I.12 A.I.16 273622 T/C A:	AAACTTAAAAAAGAGCAAGAACTTAATGATcTC 0.60 60 
    D:	ggggcggggcggggcgAAACTTAAAAAAGAGCAAGAACTTAATGATaTT 0.15  
    C:	CATCTTCATTAAAAGTCTTATTGTTTAAACGC 0.15  
A.I.12 A.I.15 1210286 A/G A:	TCTTAAAACATCGACACTCTCAACcTG 0.80 60 
    D:	ggggcggggcggggcGATCTTAAAACATCGACACTCTCAACtTA 0.20  
    C:	GTATCATTCAGATCATAATGAAGCAACTATC 0.20  
A.I.12 A.I.14 1296147 T/C A:	ATCATACTGGTTATATTGGCGGTcTC 0.80 60 
    D:	cggggcggggcggggcggggATCATACTGGTTATATTGGCGGTgTT 0.20  
    C:	GATGAGTCGCTATTAGCTTCTCGAAAG 0.20  
A.I.8 NA 1150298 G/A A:	TAGTCAATCTTGGAACTCCAGAtAA 0.75 60 
    D:	ggggcggggcggggcTAGTCAATCTTGGAACTCCAGAaAG 0.15  
    C:	TCTATTACTCTAGGGTCAGATAGAAATTC 0.15  
A.I.8 A.I.9 1453599 C/T A:	GCTGCTGCTAGATTAGCTATgCT 0.15 60 
    D:	ggggcggggcggggcGCTGCTGCTAGATTAGCTATcCC 0.15  
    C:	TCAAGCAATCAACAATAATTTTACTAT 0.15  
A.I.8 A.I.10 797599 T/G A:	GATCAATTGGTGGTGTTcCG 0.80 60 
    D:	ggggcggggcggggcGTGATCAATTGGTGGTGTTtCT 0.20  
    C:	AACGTTTTATCCTCTTGAATATCAACTAT 0.20  
A.I.8 A.I.11 1278606 G/A A:	AAGGAACAAAAAACATCATCATTgCT 0.20 60 
    D:	ggggcggggcggggcAAAAGGAACAAAAAACATCATCATTaCC 0.20  
    C:	TCATACTAACAACGGCTATTCAGGGA 0.20  
A.I.3 NA 1233898 T/G A:	GCTTGACAATATTAGCTTATAAAACTATAgTG 0.15 60 
    D:	ggggcggggcggggcGCTTGACAATATTAGCTTATAAAACTATAaTT 0.15  
    C:	TTTTTTCCATATTTCTGTAAAAAATATACTATTATG 0.15  
A.I.3 A.I.4 830715§§ T/C A:	GTTAAGTCGGTAAGTATCGACAAaTC 0.60 60 
    D:	ggggcggggcggggcGTTAAGTCGGTAAGTATCGACAAgTT 0.20  
    C:	CAAATCTTCTAGTATCTCTTTATCTTCAG 0.20  
A.I.3 A.I.5 113671 G/A A:	cgggcgggcgggcgggGCTTGAGTTTATTTTTTGTTTAATGTgTA 0.20 60 
    D:	GCTTGAGTTTATTTTTTGTTTAATGTaTG 0.20  
    C:	GGACAAAACTGTGGACGTTAAGAA 0.20  
A.I.3 A.I.6 580153 G/A A:	cgggcgggcgggcgggTATAATGGTAACTCATGATCAAGAAcAA 0.20 60 
    D:	TTATAATGGTAACTCATGATCAAGAAaAG 0.20  
    C:	ATCTGTCATGATACCAATTCTTGTCG 0.20  
*Melt-MAMA,	melt–mismatch	amplification	mutation	assay;	SNP,	single	nucleotide	polymporphism;	canSNP,	canonical	SNP;	con,	concentration,	μmol/L;	
temp,	annealing	temperature,	°C;	NA,	not	applicable;	der,	derived	SNP	state;	anc,	ancestral	SNP	state;	D,	derived	allele	primer;	A,	ancestral	allele	
primer;	C,	common	primer. 
†Genomic position	in	reference	A.I	SchuS4	strain	(GenBank	accession	no.	NC_006570). 
‡SNP states are listed according to their orientation in the SCHU S4 reference genome (GenBank accession no. AJ749949.2). 
§Melt-MAMA	primer	sequences;	primer	tails	and	antepenultimate	mismatch	bases	are	in	lower	case. 
¶Final	concentration	of	each	primer	in	Melt-MAMA	genotyping	assays. 
#Assay	annealing	temperature. 
**Assay	designed	on	the	reverse	complement. 
††SNP from (6). 
‡‡Assay supplemented with 0.025 U of Platinum Taq DNA polymerase (Life	Technologies,	Invitrogen,	Frederick,	MD,	USA). 
§§SNP	from	(7). 
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of human disease caused by F. tularensis subsp. tular-
ensis A.I strains: prevalent in the central United States, 
less common in the eastern United States, and rare in the 
western United States (4). The canSNP assays were based 
on 12 SNP signatures (Table 2) from the whole-genome 
phylogeny (Figure 1) and 4 previously described SNP sig-
natures (6–8). Using these assays, we assigned the 179 
strains to 15 F. tularensis subsp. tularensis A.I subpopula-
tions, including 8 intervening nodes (Figure 2, panel A). 
We found 6 subpopulations in the A.I.12 subgroup, 4 in 
A.I.8, and 4 in A.I.3 (Table 1). To identify broad phylo-
geographic patterns, we created maps indicating specific 
states where strains from the 15 subpopulations were iso-
lated (Figure 2, panel B). Within these maps, we created 
boundaries corresponding to 3 regions within the United 
States: western, central, and eastern.

Each subgroup exhibited complex yet distinct phy-
logeographic patterns (Figure 2, panel B). Group A.I.12 
strains, assigned to 6 subpopulations (Figure 2, panel A), 
were isolated throughout the United States: all 6 subpopu-
lations were found in the central region, 3 in the western 
region, and 5 in the eastern region (Figure 2, panel B, top). 
Group A.I.8 strains, assigned to 4 subpopulations, were 
found in the central (3 subpopulations) and western (in-
cluding Alaska and British Columbia; 3 subpopulations) 
regions, but only 1 strain was isolated in the eastern re-
gion (Figure 2, panel B, middle). For group A.I.3 strains, 
assigned to 4 subpopulations, distribution differed dra-
matically from the other subgroups; most strains and all 
4 subpopulations occurred in the eastern region and just 1 

subpopulation in the central region but none in the western 
region (Figure 2, panel B, bottom).

Conclusions
The occurrence of the A.I.3 subgroup in the east-

ern United States could be a recent or ancient event. The 
subgroup may have been introduced more recently from 
the central region to a naive niche in the eastern region 
through importation of rabbits (Sylvilagus floridanus) 
as recently as the 1920s (3); before 1937, tularemia was 
nearly nonexistent in the eastern region (15). If the in-
troduction is recent, the current lack of A.I.3 strains in 
the central United States could be the result of a selec-
tive sweep that nearly eliminated this subgroup from its 
geographic origin. However, most strains and genetic 
diversity (i.e., subpopulations) within the A.I.3 subgroup 
are found in the eastern United States, which may reflect 
a more ancient history in this region involving early in-
troduction and establishment of this subgroup east of the 
Appalachian Mountains, with only recent spread to the 
central region.

If we assume that the greatest genetic diversity in a 
phylogenetic context implies ancient origins, our find-
ings suggest that the central United States is the likely 
geographic origin of a common ancestor to F. tularensis 
subsp. tularensis subgroups A.I.12 and A.I.8 and, perhaps, 
the A.I group as a whole. The large geographic range of 
the A.I.12 subgroup and the phylogenetic pattern of a long 
branch leading to a polytomy with genetic homogeneity 
point to a possible adaptive advantage for this subgroup. 
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Figure 1. Neighbor-joining tree of 
14 Francisella tularensis subsp. 
tularensis group A.I strains constructed 
on the basis of single-nucleotide 
polymorphisms (SNPs) discovered 
from whole-genome sequencing. 
Lines represent major groups within 
A.I: red, A.I.12; purple, A.I.8; blue, 
A.I.3. Branch nomenclature for each 
group is indicated by green text. 
Bootstrap values for each group and 
subpopulation are indicated in black 
font. Pulsed-field gel electrophoresis 
classifications (A1a and A1b) are 
indicated for each sequenced strain. 
A.I strain SchuS4 (GenBank accession 
no. NC_006570) was included as a 
reference strain. Scale bar indicates 
no. SNPs.



This advantage may be related to difference in virulence 
among A.I strains, as suggested by previous testing in 
mice of 2 A.I.12 strains that exhibited lower virulence than 
that of 2 A.I.3 strains (11). Further research is needed to 
determine whether the genomic differences that define this 
subgroup are associated with known F. tularensis viru-
lence determinants.
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