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Abstract

Spleen segmentation on clinically acquired CT data is a challenging problem given the complicity 

and variability of abdominal anatomy. Multi-atlas segmentation is a potential method for robust 

estimation of spleen segmentations, but can be negatively impacted by registration errors. 

Although labeled atlases explicitly capture information related to feasible organ shapes, multi-

atlas methods have largely used this information implicitly through registration. We propose to 

integrate a level set shape model into the traditional label fusion framework to create a shape-

constrained multi-atlas segmentation framework. Briefly, we (1) adapt two alternative atlas-to-

target registrations to obtain the loose bounds on the inner and outer boundaries of the spleen 

shape, (2) project the fusion estimate to registered shape models, and (3) convert the projected 

shape into shape priors. With the constraint of the shape prior, our proposed method offers a 

statistically significant improvement in spleen labeling accuracy with an increase in DSC by 0.06, 

a decrease in symmetric mean surface distance by 4.01 mm, and a decrease in symmetric 

Hausdorff surface distance by 23.21 mm when compared to a locally weighted vote (LWV) 

method.
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1. INTRODUCTION

Automated spleen segmentation on clinical CT data is a challenging problem due to the 

complicity and the variability of abdominal anatomy across populations. Multi-atlas 

segmentation is a potential approach that can provide robust segmentation of the spleen. 

Voting (e.g., majority vote (MV [1]), locally weighted vote (LWV [2])) and statistical fusion 

(e.g., STAPLE [3]) algorithms have been developed to improve the efficacy of combing 

potentially conflicting labels from multiple atlases. However, registrations of abdominal CT 
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images are problematic given large-scale difference in abdominal anatomy and similar 

intensities between organs. The atlas labels with problematic registrations may misalign 

with the target structure, and/or include various redundant structures, and thus substantially 

undermine the fusion results even when additional intensity information is considered (Fig. 

1).

We posit that the integration of shape information into the label fusion framework can 

provide more accurate fusion in cases of problematic registrations between atlas and target 

images. Although extensively used, point-based shape models have practical limitations as 

they require manual annotation of corresponding landmarks. Alternatively, an implicit shape 

model [4–6] has been used to characterize shape variations by voxel-wise high dimensional 

signed distance function (SDF), where each volume with its all voxels (instead of several 

landmarks) is considered as a single observation for the shape training. The implicit shape 

model has been successfully applied to some level set approaches of anatomical structures to 

constrain the shape of the segmentation [6]. Herein, we propose a multi-atlas segmentation 

framework that integrates the implicit shape model to regularize the fusion results.

2. METHODS AND RESULTS

2.1 Spleen localization

In our previous spleen approach, we used a regression method, i.e., regression forests region 

recognition (RFRR [7]), to localize the spleen region with a bounding box and demonstrated 

that multi-atlas segmentation of spleen provides better estimate on the reduced region of 

interest. In this study, all intensity and label images referred below were cropped in terms of 

the identified bounding boxes. Here we omit the mechanism of RFRR for brevity.

2.2 Pose-free implicit shape model

All atlas label images are co-registered into the same space with 7 degrees of freedom 

(DOF). The binary labels are transformed into high dimensional SDF to implicitly represent 

the shape of spleen, and then collected in an M × N observation matrix A, where M is the 

number of observations, and N is the number of voxels. A Principle Component Analysis 

(PCA) procedure is used to extract the variability of spleen shape, where the mean shape Φ̄ 

is the voxel-wise average across observations,

(1)

and the modes of variation are provided by singular value decomposition (SVD) on the 

covariance of the centered observation matrix

(2)

where Σ is a diagonal matrix with its diagonal values as the eigenvalues λi, and U denotes an 

eigenspace with each column as an eigenvector, i.e., one mode of variation Φi, associated 
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with the corresponding eigenvalue λi (Fig 2). The value of the eigenvalue indicates the 

dominance of its associated mode of variation, while the modes with relatively small 

eigenvalues are usually ignored due to their limited variances provided.

Given the implicit shape model, a specific shape can be then characterized by the 

combination of the modes of variations on the basis of the mean shape.

(3)

where ωi denotes the shape parameter associated with its mode of variation.

2.3 Shape-constrained multi-atlas segmentation framework

2.3.1 Initiate Estimate—We initialize with a regular fusion of the registered atlas labels 

via locally weighted vote (LWV). In particular, we define the weight on voxel i between the 

jth registered atlas image Sj and the target image T in terms of intensity similarity in a 3 × 3 

× 3 neighborhood Ω

(4)

where σ is a parameter that controls the de-weighting degree in terms of the local 

dissimilarity. Comparing to MV, LWV tends to capture a more complete spleen volume 

even though some regions are not covered by the majority of atlas labels.

2.3.2 Shape Registration—The pose-free implicit shape model is then transformed into 

the target space based on the registration between the binary image of the mean shape and 

that of the current segmentation. We found that a single registration on binary images is 

practically error-prone due the existence of massive missing/redundant structures. Therefore, 

we apply two registrations between these binary images with two distinct effective ranges, 

i.e., (1) the whole volume of both image and (2) the mean shape region, of the similarity 

metric of registration, so that the two sets of registered mean shapes tend to capture the outer 

and inner boundary of the current estimate, respectively. The registrations use normalized 

correlation criterion as the similarity metric with 7 DOF.

2.3.3 Shape Projection—The segmentations can then be projected to the registered shape 

model based on the mean shape registration which effectively constrains the estimate within 

the shape model. In particular, based on each set of two registrations, the pose-free shape 

model is transformed into the target space. The current estimate of the spleen is converted 

into SDF, i.e., Φc, and projected to two registered shape models.

(5)

where ω̂ is the projected shape parameter, which is then used to reconstruct the projected 

shape,
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(6)

In implementation, we restrict the absolute value of projected shape parameter to be no 

larger than the square root of its corresponding eigenvalue to preserve a reasonable 

reconstructed spleen shape.

2.3.4 Shape-Probability Conversion—The output of the shape projection can be 

considered as the representation of how far voxels are inside/outside the projected spleen 

shape, which can be converted into a shape prior of how likely the voxels represent the 

spleen via an exponential function.

(7)

where α indicates the steepness of the conversion from SDF to probability.

2.3.5 Iterative Refinement—The shape probabilistic priors, along with the label 

probability provided by LWV, are used to generate a new estimate of the spleen, and the 

fusion estimate can be refined with iterative adjustment.

Please refer to Fig. 3 to the detailed flowchart of the proposed framework.

2.4 Data and Validation

Under an Institutional review board waiver, 25 portal venous phase contrast-enhanced CT 

abdomen scans were randomly selected from a larger ongoing colorectal cancer 

chemotherapy trial. Images were approximately 512 × 512 × 152 with a resolution of 0.7 × 

0.7 × 3.0 mm. Scans with poor contrast bolus timing (i.e. not portal venous phase) or 

aberrant patient positioning were excluded, leaving 20 scans for analysis. Spleens were 

manually labeled by an experienced radiologist on a volumetric basis using the MIPAV 

software (NIH, Bethesda, MD [8]). All intensity and label images were cropped in terms of 

the bounding boxes around the localized spleen region as described in section 2.1.

All subjects are processed in a leave-one-out cross validation framework. Comparing to a 

baseline LWV method, our proposed shape-constrained method achieves significantly 

higher Dice similarity coefficient (DSC [9]) (Δ= 0.06, p < 0.01), significantly lower 

symmetric mean surface distance (Δ= −4.01 mm, p < 0.01), and significantly lower 

symmetric Hausdorff surface distance (Δ= −23.21 mm, p < 0.01) (Table 1) verified by 

Wilcoxon signed rank tests. Our shape-constrained method presents a substantial effect in 

correcting the spleen shape (Fig. 4).

3. DISCUSSION

Spleen segmentation in CT images via multi-atlas segmentation can be detrimentally 

impacted by problematic registrations between atlases and target images. While the pose-

free implicit shape model is not difficult to construct, challenges lie in the model-estimate 

alignment and shape-probability conversion. We used two sets of registrations with distinct 
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effective ranges of similarity metric between the fusion estimate and the mean shape of 

shape model to provide the inner and outer boundary of the spleen shape to compensate for 

the uncertainty of the correct pose alignment. We project the fusion estimate to the 

registered shape model, which yields finer matchup with the fusion estimate under shape 

constraint. The projected shape represented in SDF is converted into the shape probabilistic 

prior through an exponential function, and thus regularizes the fusion estimate by shape 

information.

We note the pose-free implicit shape model can be built upon the atlas labels for label 

propagation with no additional data required. This presents opportunities to combine the 

proposed framework with the state-of-art label fusion methods (e.g., [10]) to yield shape-

constrained fusion estimate. In addition, the usage of the shape information, beyond a simple 

probabilistic prior, requires further study.
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Figure 1. 
Challenges of atlas-based spleen segmentation. (A) The intensity image of the target. (B) 

The manually labeled ground truth of the target. (C) – (F) The atlas labels registered to the 

target space. (G) The fusion estimate by majority vote. (H) The fusion estimate by locally 

weighted vote.
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Figure 2. 
Pose-free implicit parametric shape model. The shape model is represented by signed 

distance function (SDF) of each voxel over the whole volume. The region within the zero 

level set (highlighted in blue) is considered as the binary shape representation. The second 

row illustrates the mean and the first four modes of variation of the shape model. The first 

and the third row present the specific shapes parameterized by the square root of the 

eigenvalues.
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Figure 3. 
Flowchart of the proposed method. The atlas labels are co-registered to construct a pose-free 

implicit parametric shape model, including the mean and the modes of variation of the 

spleen shape. The atlas images are registered to the target image, based on which the atlas 

labels are propagated to the target space. The locally weighted vote yields the initial fusion 

result of the registered atlas labels weighted by the local intensity similarity between the 

registered atlas images and the target image in the form of a fuzzy estimate of label 

probability and a binary estimate of spleen segmentation. The binary image of the mean 

shape from the pre-constructed spleen shape model is registered to that of the current 

estimate with two distinct effective ranges, i.e., (1) the whole volume of both image and (2) 

the mean shape region, of the similarity metric of registration so that the pose-free shape 

model is transformed into the target space. The current estimate of the spleen is then 

projected to the two registered shape models. The shape projections are converted into 

probabilistic priors to adjust the label probability from locally weighted vote, and then 

generate a new estimate of the spleen. The estimate can be refined with iterative adjustment.
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Figure 4. 
Fusion results by locally weighted vote and the proposed shape-constrained method on 20 

subjects. The results of the two methods are placed side-by-side for each subject for 

comparison. The background rendering provides a reference of the surrounding anatomy 

(ribs, kidney, etc.). The rendering of the spleen segmentation is colored in terms of the 

surface distance from the estimate to the ground truth. Note that we use symmetric (the 

average of bi-directional) surface distance as the error metrics for validation in Table 1, but 

the one-way surface distance here for ease of visualization.
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Table 1

Error metrics via different methods

Metrics MV LWV Proposed method

Dice Similarity Coefficient 0.69±0.17 0.77±0.13 0.83±0.08

Symmetric Mean Surface Distance (mm) 8.01±6.12 7.49±7.66 3.48±1.88

Symmetric Hausdorff Surface Distance (mm) 33.81±19.00 45.88±27.84 22.67±8.23
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