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Abstract

Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas 

segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a 

single estimate of the underlying segmentation. In the multi-label case, typical label fusion 

algorithms treat all labels equally – fully neglecting the known, yet complex, anatomical 

relationships exhibited in the data. To address this problem, we propose a generalized statistical 

fusion framework using hierarchical models of rater performance. Building on the seminal work in 

statistical fusion, we reformulate the traditional rater performance model from a multi-tiered 

hierarchical perspective. This new approach provides a natural framework for leveraging known 

anatomical relationships and accurately modeling the types of errors that raters (or atlases) make 

within a hierarchically consistent formulation. Herein, we describe several contributions. First, we 

derive a theoretical advancement to the statistical fusion framework that enables the simultaneous 

estimation of multiple (hierarchical) performance models within the statistical fusion context. 

Second, we demonstrate that the proposed hierarchical formulation is highly amenable to the state-

of-the-art advancements that have been made to the statistical fusion framework. Lastly, in an 

empirical whole-brain segmentation task we demonstrate substantial qualitative and significant 

quantitative improvement in overall segmentation accuracy.
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1. INTRODUCTION

Multi-atlas segmentation represents an extremely powerful generalize-from-example 

framework for image segmentation [1, 2]. In multi-atlas segmentation, multiple labeled 

examples (i.e., atlases) are registered to a previously unseen target-of-interest [3, 4], and the 

resulting voxelwise label conflicts are resolved using label fusion [5–10]. Herein, we focus 

on the problem of label fusion – a critical component of multi-atlas segmentation that has a 

substantial impact on segmentation accuracy.
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Over the past decade, interest and research into the label fusion problem has exploded in 

popularity and significant improvement across an incredible range of applications has been 

shown. Broadly speaking, there are two primary perspectives on the problem of label fusion: 

(1) voting methods in which the underlying segmentation is modeled as some local, semi-

local, or non-local weighted combination of the provided atlas information (e.g., [8–10]), 

and (2) statistical fusion methods in which the problem is cast from a Bayesian inference 

perspective and generative models of rater/atlas performance are maximized through an 

expectation-maximization (EM) [11] framework (e.g., [5–7, 12, 13]).

Regardless of the fusion approach, fusion algorithms typically treat all of the considered 

labels equally. As a result, the complex anatomical relationships that are often exhibited in 

multi-label segmentation problems are entirely neglected. To illustrate, consider a typical 

whole-brain segmentation problem in which there are often upwards of 100 unique labels 

that are estimated. Within those structures there are known anatomical and hierarchical 

relationships which could be leveraged – e.g., one such relationship might be medial frontal 

cortex → frontal cortex → cerebral cortex → cerebrum → brain (where “→” could be 

interpreted as “is part of”). While generalized hierarchical segmentation frameworks have 

been around for almost two decades (e.g., [14]) and recently considered for an application-

specific voting fusion approach [15], a general hierarchical fusion framework has not been 

considered in the statistical fusion context.

We propose a generalized statistical fusion framework using hierarchical models of rater 

performance. Building on the seminal Simultaneous Truth and Performance Level 

Estimation (STAPLE) [7] algorithm, we reformulate the rater performance model to utilize 

hierarchical relationships through a multi-tier performance model (Figure 1). The proposed 

model is built on the simple concept that the performance of a rater at the higher levels of 

the hierarchical model (e.g., brain vs. non-brain or cerebrum vs. cerebellum) should 

propagate to the lower levels of the hierarchy (i.e., the individual labels-of-interest) in an 

informed manner. This work (1) provides an important theoretical advancement to the 

underlying theory of statistical fusion, (2) demonstrates superior performance in both 

simulated and empirical whole-brain data, and (3) shows that the proposed framework is 

amenable to many of the current advancements in the statistical fusion family.

This manuscript is organized in the following manner. First, the theory for the generalized 

hierarchical statistical fusion is derived. Second, we demonstrate superior performance on 

both simulated and empirical whole-brain segmentation data. Finally, we conclude with a 

brief discussion on the optimality of the approach and the potential for improvement.

2. THEORY

2.1 Problem Definition

Let T∈L N×1 be the latent representation of the true target segmentation, where L = {0, …, 

L – 1} is the set of possible labels that can be assigned to a given voxel. Consider a 

collection of R raters (or registered atlases) with associated la decisions, D∈L N×R. The goal 

of any statistical fusion algorithm is to estimate the latent segmentation, T, using the 

observed labels, D and the provided generative model of rater performance.
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2.2 Hierarchical Performance Model

Consider a pre-defined hierarchical model with levels. At each level of the hierarchy, let 

 be a mapping vector that maps a label in the original collection 

of labels, s ∈ L, to the corresponding label at the be mth level of the, hierarchy,  is 

the collection labels at the mth level of the hierarchy. Additionally, let the performance of the 

raters at hierarchical level m be parameterized by  (i.e., Lm × Lm confusion 

matrix for each rater). Specifically,  is the probability that rater j observes label s' 

given that the true label is mth at the mth level of the hierarchy. Thus, the generative model 

that must be defined is described by

(1)

which can be directly interpreted as the probability that rater j observes label s' given the 

true label, hierarchical model, and the corresponding confusion matrices. To directly 

estimate this distribution we propose a formulation in which the complete model of 

hierarchical performance (Eq. 1) is unified through a constrained geometric mean across the 

multitier estimate of rater performance.

(2)

where, μjs is an exponent that maintains the constraint that . In 

other words, μjs ensures that the model in Eq. 1 is valid discrete probability mass function. 

Note, given the constraints on each individual θm (i.e., a valid confusion matrix) a unique 

value for μjs is guaranteed to exist and can easily be found using a standard searching 

algorithm (e.g., binary search, gradient descent). Given the model in Eq. 2, it is now possible 

to utilize the provided hierarchical model within the EM-based statistical fusion framework.

2.3 E-Step: Estimation of the Voxelwise Label Probabilities

Let  where  represents the probability that the true label associated with 

voxel i is label s at iteration k of the algorithm given the provided information and model 

parameters

(3)

Using a Bayesian expansion and the assumed conditional independence between the 

registered atlas observations, Eq. 3 can be re-written as
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(4)

where f(Ti = s) is a voxelwise a priori distribution of the underlying segmentation. Note that 

the denominator of Eq. 4 is simply the solution for the partition function that enables W to 

be a valid probability mass function (i.e., Σs Wsi = 1). Using the simplified generative model 

in Eq. 2, the final form for the E-step of the EM algorithm can be written as

(5)

2.4 M-Step: Estimation of the Hierarchical Performance Level Parameters

The estimate of the performance level parameters (M-step) is obtained by finding the 

parameters that maximize the expected value of the conditional log likelihood function (i.e., 

using the result in Eq. 5). Unlike the traditional STAPLE approach, however, the parameters 

for each level of the hierarchy are maximized independently.

(6)

Noting the constraint that each row of the rater performance level parameters must sum to 

unity to be a valid probability mass function (i.e., ), we can maximize the 

performance level parameters at each level of the hierarchical model by differentiating with 

respect to each element and using a Lagrange Multiplier (λ) to formulate the constrained 

optimization problem. Following this procedure, we obtain
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(7)

where  is the collection of all labels that map to the true label of interest, 

and  is the collection of all voxels in which the observed label, Dij maps to 

the observed label of interest, . At this point, it is important to note that (1) that 

performance model formulation in Eq. 2 allows for each level of the hierarchy to be 

maximized independently when maximizing the log-likelihood function, and (2) the result in 

Eq. 7 uses  which can then be updated following the constraint: 

.

2.5 Initialization and Detection of Convergence

Given an a priori hierarchical model, there are no additional parameters in the proposed 

approach when compared to the original STAPLE algorithm. As a result, the algorithm can 

be initialized in exactly the same manner as described in [7]. With that said, the detection of 

convergence is slightly different, as we utilize all levels of the hierarchy. Thus, convergence 

is detected when the normalized trace between consecutive iterations falls below some 

arbitrary threshold (herein, ∈ = 10−4), where the normalized trace is given by

(8)

2.6 Application to state-of-the-art Statistical Fusion Approaches

Over the past decade, there have been several advancements to the statistical fusion 

framework, for instance (1) characterizing spatially varying performance – Spatial STAPLE 

[6], and (2) incorporation of non-local correspondence models – Non-Local STAPLE (NLS) 

[5]. In the interest of brevity, we only derive the hierarchical version of STAPLE in this 

manuscript. However, in the following experiments we demonstrate the amenability of the 

hierarchical approach to Spatial STAPLE, NLS, and the combination of the two Non-Local 

Spatial STAPLE (NLSS).
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3. METHODS AND RESULTS

3.1 Motivating Simulation

Before assessing the empirical performance, we present a motivating simulation to 

demonstrate the manner in which hierarchical models can be integrated into the statistical 

fusion framework (Figure 2). Here, a single 2D slice model (300 × 300 voxels) was 

constructed to loosely approximate the types of relationships that are often exhibited in the 

brain. Given the provided truth model, a collection of 15 labeled observations were 

constructed by randomly applying boundary errors of varying strength (see Figure 2 for the 

best/worst observations). As baselines, the results of a majority vote, STAPLE, and Spatial 

STAPLE are presented. Additionally, we consider three different hierarchical models with 

depths ranging from 3 to 5. The presented simulation was performed with 20 Monte Carlo 

iterations in order to estimate the variance in the results. The results in Figure 2 demonstrate 

substantial qualitative and significant (p < 0.01, paired t – test) improvement exhibited by 

the hierarchical implementations of both STAPLE and Spatial STAPLE. The different 

hierarchical models provide important insight into the effect of differing perspectives on the 

hierarchical relationships exhibited in the data. Here, the 4-level model was statistically 

superior to both the 3-level model and the 5-level model. While the proposed formulation 

relies on an a priori hierarchical model, it is intriguing to quantify the impact of both 

neglecting the observed hierarchical relationships (i.e., the 3-level model) and over-

modeling these relationships (i.e., the 5-level model).

3.2 Empirical Whole-Brain Data and Experimental Design

For the empirical whole-brain experiments, a collection of 45 MPRAGE images from 

unique subjects are considered as part of the Open Access Series of Imaging Studies 

(OASIS, http://www.oasis-brains.org) [16] with subjects ranging in age from 18 to 90. All 

images had a resolution of 1 × 1 × 1mm3. All images were labeled using the brainCOLOR 

protocol (http://www.braincolor.org/) [17] and provided by Neuromorphometrics, Inc. 

(Somerville, MA, www.neuromorphometrics.com). Each labeled image contained exactly 

133 unique labels (including background). For the purposes of evaluation, 15 of these 

images were randomly selected as training data, and the remaining 30 were selected as 

testing data.

Herein, we consider two separate registration frameworks. First we consider an affine-only 

pairwise registration framework [3] (using “reg_aladin” as part of the “NiftyReg” package – 

http://sourceforge.net/projects/niftyreg/). Additionally, we consider a pairwise non-rigid 

registration framework in which the provided affine registrations are augmented with a non-

rigid registration [4] (using the Advanced Normalization Tools (ANTs) package – http://

stnava.github.io/ANTs/). For both registration frameworks, all 15 training atlases were 

independently registered to all 30 of the testing atlases – resulting in 450 registrations.

To evaluate fusion performance, we consider several algorithms. First, in order to provide a 

benchmark of algorithmic performance, we consider a majority vote and a locally weighted 

vote (as described in [8]). Additionally, we consider STAPLE, Spatial STAPLE, NLS, and 

NLSS as well as the hierarchical versions of each, referred to as Hierarchical STAPLE, 
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Hierarchical Spatial STAPLE, Hierarchical NLS, and Hierarchical NLSS, respectively. For 

the hierarchical algorithms, we constructed a 12-level hierarchical model (manually 

constructed by an experienced neuroimaging analyst). Note, for clarity of presentation only 

NLSS and hierarchical NLSS are considered for the non-rigid registration approach.

3.3 Empirical Whole-Brain Results

The quantitative results for the empirical whole-brain experiment (Figure 3) demonstrate 

consistent improvement by the hierarchical implementations of each of the considered 

statistical fusion algorithms. The quantitative results are broken up into 3 different 

categories (1) all labels, (2) non-cortical labels, and (3) cortical labels. As expected, the 

results for the cortical labels are considerably poorer than the results for the non-cortical 

labels. Regardless, the hierarchical implementations provide consistent improvement 

regardless of the differing label contexts. For the affine registration framework, the 

hierarchical implementations provided a mean improvement across the testing data of 

0.0188, 0.0245, 0.0250, and 0.0237 for STAPLE, Spatial STAPLE, NLS, and NLSS, 

respectively. All improvements were statistically significant (p < 0.01, paired t – test). Note, 

the relatively poor performance by STAPLE and Spatial STAPLE are not surprising 

considering the fact that they do not utilize the atlas-target intensity differences when 

estimating the final segmentation.

For the non-rigid registration framework, Hierarchical NLSS provided a small, but 

significant mean improvement across the testing data of 0.0068 over NLSS. Despite this 

relatively small magnitude of improvement, Hierarchical NLSS provided statistically 

significant improvement (p < 0.01, paired t – test) over NLSS for labels (the remaining 54 

were statistically indistinguishable).

The qualitative results (Figure 4) support the quantitative improvement. Using the affine 

registration framework, all of the considered statistical fusion algorithms exhibit substantial 

visual improvement for many of the considered labels. In particular, there appears to be 

marked improvement in the quality of the lateral ventricle labels and many of the cortical 

labels.

4. DISCUSSION

Herein, we propose a novel statistical fusion framework using a reformulated hierarchical 

performance model. Given an a priori model of the hierarchical relationships for a given 

segmentation task, the proposed generative model of performance provides a straightforward 

mechanism for quantifying rater performance at each level of the hierarchy. The primary 

contributions of this manuscript are: (1) we have demonstrated statistically significant 

improvement on both simulated and empirical whole-brain data, (2) we have shown that the 

proposed hierarchical formulation is highly amenable to many of the state-of-the-art 

advancements that have been made to the statistical fusion framework, and (3) we have 

provided a theoretical advancement to the statistical fusion framework that enables the 

simultaneous estimation of multiple (hierarchical) confusion matrices for each rater.
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There are several potential advancements to this framework that require future exploration. 

First, all of the presented experiments have relied upon an a priori model of the hierarchical 

relationships within the data. The ability to infer these hierarchical relationships directly 

from a provided training set would dramatically increase the potential applications for this 

type of framework, and provide an underlying foundation for estimating the optimal 

hierarchical formulation for a given application. Second, we have derived this approach 

from the perspective of hierarchical relationships between labels. However, the same (or 

very similar) estimation framework could potentially be used to estimate rater performance 

using multiple labeling protocols. For example, if one had a collection of datasets that were 

labeled using two separate protocols (either manually or automatically) it may be possible to 

(1) estimate the relationships between the protocols, and (2) simultaneously estimate rater 

performance in terms of both protocols. This type of framework is fascinating and certainly 

warrants further investigation.

We have presented a powerful theoretical framework for leveraging the complex inter-

structure relationships within the statistical fusion context. While traditional fusion 

approaches treat all labels equally, the proposed rater model more accurately infers the types 

of errors that raters (or atlases) make within a hierarchically consistent formulation.
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Figure 1. 
Hierarchical representation of rater performance. A hierarchical model is developed for the 

brain, where, at each level, the performance of a rater is quantified. The overall quality of 

rater is then estimated through the unified hierarchical performance model.
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Figure 2. 
Results on the motivating simulation. A simulated truth model was constructed to loosely 

model the types of relationships exhibited in the brain. The hierarchical formulations of 

STAPLE and Spatial STAPLE provide significant increases in overall segmentation 

accuracy. Here, the 4-level model results in statistically superior performance when 

compared to the 3- and 5-level models.
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Figure 3. 
Quantitative results on the empirical whole-brain segmentation experiment. The hierarchical 

implementations of STAPLE, Spatial STAPLE, NLS, and NLSS provide statistically 

significant accuracy improvements across each of the considered label sets for the affine 

registration framework. Similarly, Hierarchical NLSS provides substantial accuracy 

improvements for the non-rigid registration framework.
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Figure 4. 
Qualitative improvement exhibited by several state-of-the-art statistical fusion algorithms 

with the reformulated hierarchical performance model for the affine registration framework. 

For each of the considered statistical fusion algorithms we see substantial visual 

improvement for many of the considered labels. In particular, there appears to be marked 

improvement in the quality of the lateral ventricle labels and many of the cortical labels.
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