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Report

In the era of personalized medicine, all initially successful 
molecularly targeted therapies are limited by the invariable and 
often rapid occurrence of resistance in tumor cells. Although new 
cancer drugs have been developed to specifically and efficiently 
interfere with defined genetic aberrations, resistance commonly 
occurs through the acquisition of compensatory mechanisms that 
bypass the function of the cancer gene that is pharmacologically 

targeted.1 Interestingly, one of the available pathways that can 
bypass the driver status of the genetic target is a common feature 
across multiple types of cancer: deregulated cellular metabolism.2-6 
The metabolic properties of cancer cells are remarkably different 
from those of normal cells, and mounting evidence supports the 
idea that metabolic reprogramming is linked not only to the 
efficacy of classical therapeutic approaches in cancer, such as 
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Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired 
resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism 
may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast 
cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of 
the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and 
in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might 
have on the metformin-like “dirty” drugs that are able to simultaneously hit several metabolic pathways, we employed the 
ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays 
in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a “global” 
targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence 
of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome 
reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome 
(KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, 
DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases 
(MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor 
microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the 
G2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA, AURKB, 
BUB1, CENP-A, CENP-M) and pro-autophagic features (i.e., TRAIL upregulation and BCL-2 downregulation), it appears that 
the unique mechanism of acquired resistance to metformin has opposing roles in growth and metastatic dissemination. 
While refractoriness to metformin limits breast cancer cell growth, likely due to aberrant mitotic/cytokinetic machinery 
and accelerated autophagy, it notably increases the potential of metastatic dissemination by amplifying the number of 
pro-migratory and stemness inputs via the activation of a significant number of proteases and EMT regulators. Future 
studies should elucidate whether our findings using supra-physiological concentrations of metformin mechanistically 
mimic the ultimate processes that could paradoxically occur in a polyploid, senescent-autophagic scenario triggered by 
the chronic metabolic stresses that occur during cancer development and after treatment with cancer drugs.
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radiotherapy, hormonotherapy, and chemotherapy but also to the 
efficacy of newly developed molecularly targeted drugs.7-19

While it might appear intuitive that deregulated cancer 
metabolism can activate pro-survival signaling and decrease drug-
induced apoptosis to provide a general, unspecific protection 
against cell injuries induced by multiple types of cytotoxicities, 
it is worth noting that resistance to oncogene-mediated targeted 
therapy has been shown to require a shift toward the very same 
metabolic state that is controlled by growth factor signaling.20,21 
In cancer cells sensitive to lapatinib, the small-molecule dual 
inhibitor of the oncogenes EGFR and HER2, receptor tyrosine 
kinase signaling is disrupted, and activity of its Ras, PI3K, and 
mTOR downstream effectors is abrogated; because oncogene-
dependent metabolic rewiring is prevented, cancer cell death 
is observed. In drug-resistant cells, however, the resistance 
mechanism does not involve the expected reactivation of the Ras, 
PI3K or mTOR pathways, but rather involves the reactivation 
of multiple metabolic processes, including the unfolded protein 
response, autophagy, glycolysis, and gluconeogenesis, which 
ensures a metabolic rewiring that permits cancer cell proliferation 
even upon the removal of any activity from canonical growth 
factor signaling pathways.

The latter observations strongly confirm that mutations 
that activate oncogenes or inactivate tumor suppressors appear 
to “softwire” cancer genes to metabolism, because these 
cancer driver genes directly regulate metabolic enzymes.22-25 
Importantly, because metabolic reprogramming is a central (re)
wiring or convergence point of many, if not all, cancer-related 
signaling pathways, tumor cells might be unable to adapt to 
the molecular challenges imposed by multifaceted drugs that 
act on cell metabolism at multiple levels. Not surprisingly, the 
area of cancer metabolism research is undergoing an unstoppable 
renaissance, because therapeutic interventions based on metabolic 
inhibitor-based therapies should be less prone to acquired 
resistance, assuming that the changes in tumor metabolism are 
similar across multiple cancerous tissues and affect many cancer 
cell types, including cancer stem cells (CSCs). In this regard, 
there have been no studies assessing the possibility that targeting 
tumor cell metabolism may face yet-to-be discovered resistance.

Metabolic reprogramming may not be a “passenger” 
phenomenon, but rather an active driver of the transformed 
phenotype. For this reason, we recently speculated that currently 
proposed antitumor drugs that target various metabolic pathways 
would impose great selective pressure for the emergence of 
resistant cells. An ever-growing amount of in vitro studies have 
confirmed that the anti-diabetic drug metformin can exert 
anticancer activity by decreasing the activation of the mammalian 
target of rapamycin (mTOR), a unique sensor that coordinates 
nutrient availability and energy metabolism with cell responses 
to growth factors. In vivo studies have shown that metformin 
can negatively affect the growth of human tumors even in the 
presence of activating mutations in the PIK3CA oncogene, 
another evolutionary conserved regulator of cell metabolism 
that converges with and impinges on the mTOR pathway.10,26-37 
To anticipate the potential mechanisms of acquired resistance 
to metformin during the course of treatment, we recently 

established metformin-resistant pooled cell populations from 
the MCF-7 breast carcinoma cell line. Thus, to assess what 
impact the resistance phenomenon might have on metformin-
based therapies, genome-wide analyses using Agilent 44K Whole 
Human Genome Arrays were evaluated using a bioinformatics 
approach with the ingenuity pathway analysis (IPA) software. 
Here, we reveal for the first time that the genomic spaces related 
to chronic adaptation to the AMPK agonist/mTOR inhibitor 
metformin involve a degradome-related metastasis aggressiveness 
gene expression-like signature.

Results

To anticipate the potential mechanisms of acquired resistance 
to metformin during the course of treatment, we established 
a pooled population of metformin-adapted cancer cells from 
metformin-naïve MCF-7 breast cancer cells. To simulate the 
clinic where patients receive metformin on a daily chronic basis, 
we developed a model of acquired adaptation to metformin 
by chronically exposing MCF-7 cells to graded concentrations 
of metformin for longer than 10 mo before starting any 
experimental procedure (Fig.  1, left panels). We have now 
isolated the metformin-refractory pooled populations of MCF-7/
MET-R cells that are capable of growing in the presence of 30 to 
40 mmol/L metformin, a range of metformin concentrations that 
are highly cytotoxic to the parental MCF-7 cells, as confirmed by 
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide 
[MTT]-based metabolic assays (Fig. 1, right panel).

Characterization of a pathway-based transcriptomic 
signature in MCF-7 breast cancer cells with acquired resistance 
to metformin

To determine the gene expression effects related to metformin 
efficacy in breast cancer cells, we performed genome-wide 
analyses by comparing the global transcriptomic profiles of 
metformin-naïve MCF-7 cells to those obtained from a pooled 
population of metformin-adapted MCF7/MET-R cells. After 
RNA hybridization to an Agilent 44K (double density) Whole 
Human Genome Oligo Microarray, which contains 45 220 
probes representing 41 000 unique human genes and transcripts, 
the normalized and filtered data from all experimental groups 
were simultaneously analyzed using the SAM algorithm. Using 
a 2.0-fold-change cut-off value relative to the transcriptome 
of metformin-naïve MCF-7 parental cells, genes that showed 
significant expression changes were identified. Only genes with 
well-annotated transcripts (i.e., not partial cds for hypothetical 
proteins, hypothetical insert cDNA clones, etc.) were selected, 
and genes that could not be identified were eliminated. We 
identified 840 genes (474 upregulated and 366 downregulated) 
that were differentially expressed in the MCF-7/MET-R cells. 
Tables S1 and S2 summarize the upregulated and downregulated 
gene transcripts, respectively, in the “metformin adaptation” 
transcriptomic signature.

To identify functions that were significantly altered under 
the metabolic selective pressure (i.e., metformin treatment), we 
used an experimental approach that focused on gene pathways. 
Although several computational methods have been proposed 
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for incorporating biological pathway information and gene sets 
into microarray data analysis, we decided to employ Ingenuity 
Pathway Analysis (IPA) using the Ingenuity® software. We 
utilized the “core analysis” function included in the software 
package to interpret the metformin resistance-related global 
transcriptomic profiles in the context of biological processes, 
networks, and pathways. The IPA software algorithmically 
generates networks of up- and downregulated functionally 
related annotated genes based on their connectivity and assigns 
a score that considers both the number of the focus genes in a 
network and the size of the network to approximate the relevance 
of each network in relation to the original list of focus genes. 
Figure  2 graphically illustrates the 5 gene network functions 
that were most significantly (score > 30) upregulated (red), 
and Figure 3 illustrates the 5 gene network functions that were 
most significantly (score > 30) downregulated (green) in the 
metformin resistance-related transcriptomic signature of MCF-7 
breast cancer cells.

The top functions of the upregulated gene networks (Fig. 2) 
were related to: (1) Connective tissue disorders, dermatological 
diseases and conditions, developmental disorder (score = 41), 
including the cancer stem cell marker DCLK1, the enhancer of the 
cell motility and metastasis BCAR3 (breast cancer antiestrogen 

resistance 3) gene, and the PABPC1 (poly A binding protein 1) 
gene, a component of the ezrin-driven metastatic phenotype. 
Intriguingly, this gene network included the LAMA3, LAMB3, 
and LAMC2 genes, which encode 3 polypeptide chains, alpha3, 
β3, and gamma2, respectively, of laminin 5, which anchors 
epithelial cells to the underlying basement membrane and 
negatively regulates tumor invasion, and the tumor suppressor 
DACH1, whose expression is lost in some forms of metastastic 
cancer but is highly expressed in other metastastic carcinomas; 
(2) Metabolic disease, neurological disease, organismal injury, 
and abnormalities (score = 40), including genes coding for one 
of the indirect targets of metformin, AMPK, β2 non-catalytic 
subunit (PRKAB2), focal adhesion kinase (FAK ), which is a 
prominent determinant in breast cancer initiation, progression, 
and metastasis via the maintenance of mammary cancer stem 
cells, beta-secretase 2 (BACE-2), which is a type I integral 
membrane glycoprotein and aspartic protease belonging to the 
peptidase A1 protein family, and the calpain inhibitor calpastatin 
(CASP), which plays a key, opposing role within the calpain/
calpastatin system in initial tumor growth and subsequent 
metastastic dissemination. This gene network was identified 
around the amyloid precursor protein (APP), an androgen-
induced gene associated with breast cancer cell proliferation; 

Figure 1. Discovery of a transcriptomic signature defining the acquisition of resistance to metformin. Left: A schematic depicting the experimental 
approach designed to establish metformin-adapted population of MCF-7 breast cancer cells. RNA was extracted from metformin-naïve MCF-7 paren-
tal cells and metformin-resistant MCF-7/MET-R cells and then hybridized to G4112F Agilent Human Whole Genome Microarrays. Gene expression was 
analyzed as described in the “Materials and Methods” section. For the complete gene data, see Tables S1 and S2. Figure shows also representative 
immunofluorescence images demonstrating a significant augmentation of phospho-acetyl-CoA carboxylase (P-ACC) expression, a marker of metfor-
min-enhanced AMPK activity, as well as the reduced number and altered morphology of metformin-adapted MCF-7/MET-R cells compared with MCF-7 
parental cells. Right: Figure shows dose-response MTT uptake curves confirming that MCF-7/MET-R cells exhibit increased cell viability in the presence of 
extremely high concentrations of metformin. Similar optical density values of MTT uptakes were obtained in untreated MCF-7 (approx. 0.8) and MCF-7/
MET-R cells (approx. 0.7) after a 5-d culture period.
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(3) Embryonic development, nervous system development and 
function, organ development (score = 37), a gene network that 
was identified around the Akt gene and included the gene coding 
for the transmembrane protease, serine 4 (TMPRSS4), which is 
a promoter of migration, invasion, and metastasis by facilitating 
EMT-like phenomena; the gene coding for the serine hydrolases 
monoacylglycerol lipase (MGLL), which is elevated in aggressive 
human cancer cells and plays a key role in cancer metastasis; 
and the genes coding for neuronal repellent Slit2 (SLIT2) and 
its transmembrane receptor ROBO, a key autonomous duo with 
oncogenic effects on tumor cells that may regulate tumorigenesis 
and metastasis through a mechanism related to contact 
inhibition. Intriguingly, this gene network included genes 
such as N-myc downstream regulated gene 1 (NDRG1), which 
has been shown to act as a metastatic suppressor in a number 
of human cancers; (4) Cellular movement, cancer, endocrine 

system disorders (score = 34), a gene network that was identified, 
at least in part, around NUPR1, a gene that has been found to 
aid the establishment of metastasis and to play a key role in the 
progression of several malignancies, including breast cancer, 
by inducing chemoresistance, protection from apoptosis, and 
genome instability. The other sub-network was identified around 
the NFkB complex and included genes such as those coding 
for the transmembrane mucin MUC1, whose overexpression 
is frequently associated with metastastic progression, the pro-
metastatic gene AMIGO2, and the transcription factor ATF3, 
a molecule that functions as an integration point for cellular 
communication during changes in homeostasis and in the 
subsequent adaptation in response to those changes during breast 
cancer development and metastasis; (5) Cell morphology, nervous 
system development and function, skeletal and muscular system 
development and function (score = 30), a gene network that was 

Figure 2. Network analysis of genes overexpressed in MCF-7/MET-R cells that have acquired resistance to metformin. A data set containing the differen-
tially upregulated genes (called the focus molecules = 474) between metformin-refractory MCF-7/MET-R cells and metformin-sensitive MCF-7 parental 
cells was overlaid onto a global molecular network developed from information contained in the Ingenuity Pathway (IPA) Knowledge Base. Networks of 
these focus molecules were then algorithmically generated based on their connectivity. The figure shows upregulated networks with the 5 highest IPA 
scores (a composite measure that indicates the statistically significance of the interconnection between the molecules depicted in the network). The 
focus molecules are colored according to the gene expression (fold-change). The nodes are displayed using various shapes that represent the functional 
class of the gene product. Edges with dashed lines indicate indirect interactions, while continuous lines represent direct interactions.
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identified around Creb and included genes such as those coding 
for the matrix metalloproteinase 16 (MMP16 ) and cytoplasmic 
phospholipase A2 (Cpla2), whose metabolites play critical roles 
in tumor metastasis via the promotion of angiogenesis and 
MMP expression. The top functions of the downregulated gene 
networks (Fig. 3) were related to: (1) Cell cycle, cellular assembly 
and organization, DNA replication, recombination, and repair 
(score = 52), a gene network that was identified around the gene 
coding for cyclin B1 (CCNB1), whose downregulation results 
in polyploidization during DNA damage-induced senescence, 
and this network included genes coding for cell cycle checkpoint 
proteins such as CCNB2, CDC25C, as well as spindle assembly 
checkpoint proteins such as CDC20, whose downregulation 
induces aberrant mitosis, the Aurora kinases AURKA and AURKB, 
which play important roles in chromosome alignment, segregation, 
and cytokinesis during mitosis, BUB1, whose inhibition results 
in genomic instability and anchorage-independent growth, 
and 2 out of the 3 human TACC (transforming acidic coiled-
coil) genes (TACC1, TACC3) that participate in the oncogenic 
processes and whose downregulation alters the control of mRNA 
homeostasis in polarized cells; (2) Connective tissue disorders, 

hereditary disorder, immunological disease (score = 37), a 
gene network that was identified around Akt, included genes 
coding for semaphorins, which are a large family of secreted and 
membrane-bound molecules that have been found to regulate cell 
adhesion and cell motility, angiogenesis, immune function, and 
tumor progression, such as SEMA3B, a putative tumor suppressor 
gene, and SEMA6A, an angiogenesis inhibitor, the serine 
protease HTRA1, a tumor suppressor whose downregulation 
activates EMT-like phenomena and ATM DNA damage 
response pathways, and different types of collagen (IV, V, and 
VI); (3) Cellular assembly and organization, DNA replication, 
recombination, and repair, cell cycle (score = 37), a gene network 
that was identified around the gene coding for the anti-apoptotic 
protein BRIC5 (survivin), the downregulation of which may 
allow cancer cells to exit mitosis without achieving proper 
chromosome alignment, leading to the formation of polyploid 
nuclei, and this network included genes coding for centromere 
and nucleosomal proteins (CENP-M, CENP-A), and members of 
the histone cluster 1 (HIST1H4A, HIST1H2AM); (4) Infectious 
disease, connective tissue disorders, developmental disorder 
(score = 30), a gene network that was identified around the gene 

Figure 3. Network analysis of genes under-expressed in MCF-7/MET-R cells that have acquired resistance to metformin. A data set containing the dif-
ferentially downregulated genes (called the focus molecules = 366) between metformin-refractory MCF-7/MET-R cells and metformin-sensitive MCF-7 
parental cells was overlaid onto a global molecular network developed from information contained in the Ingenuity Pathway (IPA) Knowledge Base. 
Networks of these focus molecules were then algorithmically generated based on their connectivity. The figure shows downregulated networks with 
the 5 highest IPA scores (a composite measure that indicates the statistically significance of the interconnection between the molecules depicted in the 
network). The focus molecules are colored according to the gene expression (fold-change). The nodes are displayed using various shapes that represent 
the functional class of the gene product. Edges with dashed lines indicate indirect interactions, while continuous lines represent direct interactions.
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coding for ubiquitin (UBC), and this network included several 
genes coding for charged multivesicular body proteins (CHMP4, 
CHMP4B, CHMP6 ) and the mammalian asunder gene (ASUN), 
the downregulation of which leads to nucleus–centrosome 
uncoupling, abnormal spindles, and multinucleation; (5) Cellular 
development, cancer, cellular growth, and proliferation (score 
= 30), a gene network that was identified around the gene coding 
for Histone H3 and included the gene coding for p63 (TP63), 
an “epithelial organizer” that suppresses tumorigenesis and 
metastasis by directly impinging on EMT, stemness, senescence, 
cell death, and cell cycle arrest, the Secreted protein, acidic 
and rich in cysteine-like 1 (SPARCL1), whose downregulation 
increases the migratory, invasive, and metastastic properties of 
cancer cells, and CXXC4, whose decreased expression promotes 
a malignant phenotype by activating the Wnt stemness signaling 
pathway.

The ATF3 and DDIT3 genes, 2 autophagy-related members 
of cell stress responses related to mTOR inhibition, and the 
AMPK gene, which codes for one of the indirect targets of 
metformin, were central in a merged network combining the top 
5 upregulated signaling networks with the highest IPA scores 
in the transcriptomic signature of metformin-adapted MCF-7/
MET-R cells (Fig. 4, top panels). The CCNB1, CCNB2, CCNA2, 
and CDC25C genes, all of them coding for checkpoint proteins 
that regulate the cell cycle, were central in a merged network 
combining the top 5 downregulated signaling networks with the 
highest IPA scores in the transcriptomic signature of metformin-
adapted MCF-7/MET-R cells (Fig. 4, bottom panels). When the 
IPA software was used to determine the canonical pathway analysis 
enrichment categories, “chemokine signaling”, “axonal guidance 
signaling”, and “VDR/RXR activation” were the most statistically 
significant maps that were modulated by the upregulated genes 

Figure 4. Merged networks combining major signaling networks associated with the transcriptomic signature of MCF-7/MET-R cells that have acquired 
resistance to metformin.
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within the metformin-unresponsiveness transcriptomic signature 
(Table 1; Fig. 5, left panel). “Mitotic roles of polo-like kinases”, 
“Axonal guidance signaling”, “Cell cycle: G2/M DNA damage 
checkpoint regulation”, and “Remodeling of epithelial adherens 
junctions” were the most statistically significant maps that were 
modulated by the downregulated genes within the metformin-
unresponsiveness transcriptomic signature (Table 1; Fig. 5, right 
panel).

Discussion

Many genetic lesions important for cancer converge to promote 
proliferative metabolism in cancer cells, thus suggesting that 
“cancer metabolism” is a single entity that differs from “normal cell 
metabolism”. Targeting cancer metabolism for cancer therapy has 
been suggested as a simpler approach than targeting the mutated 
gene products to eliminate all cancerous cells simultaneously. 
Because the extent of metabolic reprogramming that occurs in 
cancer cells goes far beyond glycolytic behavior (the Warburg 
effect) and encompasses nearly all metabolic routes, including 
glutaminolysis, lipogenesis, fatty acid oxidation, gluconeogenesis, 
and the pentose phosphate pathway, and given the extremely 
high metabolic flexibility of cancer cells, exclusively targeting 
glycolysis or specific metabolic pathways in cancer might be just 
as complicated as targeting somatic mutations, if not more so.38,39

We began to recognize that cancer cells can escape death 
from metabolic inhibitors by turning off the glycolytic pathway 
and switching to aerobic respiration and high oxidative 
capacity phenotype.40 If glycolysis-addicted cancer cells can 

easily perform these metabolic tricks to hide among the non-
proliferative oxidative phosphorylation-dependent normal 
cells until the treatment is over, then the possibility exists that 
the metabolic features of cancer cells will come back after the 
cessation of treatment with glycolysis inhibitors.41 An alternative 
approach may involve the use of “dirty” drugs, which are able 
to hit several metabolic pathways simultaneously. In this regard, 
there is considerable excitement and an increasing number of 
clinical trials testing the efficacy of the anti-diabetic biguanide 
metformin in cancer treatment, and these trials are based on 
epidemiological observations linking metformin use in diabetics 
to reduced cancer incidence and the multi-faceted ability of 
metformin to redundantly reprogram energy metabolism at 
both the organismal and cellular levels.10-37 Given the intrinsic 
metabolic flexibility of cancer cells, we recently envisioned that 
cancer cells could elude the metabolic stress-mediated signal 
transduction pathway targeted by metformin. To anticipate these 
obstacles, we explored the transcriptomic and signaling pathways 
activated upon the chronic metformin exposure of MCF-7 cells, 
a widely studied model for hormone-dependent human breast 
cancer. Our current findings establish, for the first time, that a 
“global” targeting of metabolic reprogramming using metformin 
certainly imposes great selective pressure for the emergence of 
resistant breast cancer cells. Intriguingly, acquired resistance to 
metformin in breast cancer cells appears to trigger a transcriptome 
reprogramming toward a degradome-related metastatic profile, 
as many genes encoding extracellular matrix secreted and cell 
membrane-associated proteases, all of which are commonly 
involved in cancer cell migration and invasion, were included 

Figure 5. Canonical pathway analysis of differentially expressed genes in MCF-7/MET-R cell populations chronically adapted to grow in the presence of 
metformin. Using the “canonical pathways” feature of the IPA global functional analysis, we were able to identify metformin response-related pathways 
that were significantly impacted in metformin-refractory MCF-7/MET-R cells when compared with metformin-naïve MCF-7 parental cells. Figure shows 
2 selected canonical pathways with the lowest P value differentially activated (left panel) or deactivated (right panel) in MCF-7 cells upon acquisition of 
resistance to metformin.
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in the signature. These findings suggest a convergent activation 
of pathways underlying tumor-microenvironment interactions 
when the cancer cells adapt to the metabolic challenges of drugs 
targeting various metabolic pathways, such as the biguanide 
metformin.

Metformin-refractory MCF-7/MET-R cells drastically 
increased (30-fold upregulation vs. metformin-naïve MCF-7 
cells) the expression of KLK11 (Table 2), a gene encoding a cell-
surface-expressed type II, trypsin-like transmembrane serine 
protease that was originally identified as one of the most highly 
upregulated genes in prostate cancer.42-46 Kallikrein-related 
peptidases (KLKs) are enzymes with extracellular hydrolysis 
activities, such as the activation and/or degradation of their 
substrates, including growth factors, extracellular matrix (ECM) 
proteins, other cancer-associated proteases, cell membrane-
bound, and adhesion proteins. These serine proteases were 
among the first proteolytic enzymes to be studied extensively in 
the “degradome”, i.e., the complete set of proteases expressed at a 
given time within a cell, tissue, or organism.47-51 KLK11 protein 
expression has been shown to be highly expressed at sites of bone 
metastasis and in late-stage primary tumors, suggesting a role in 
tumor progression. Accordingly, in vivo studies demonstrated 
that overexpression of KLK11 led to tumor progression and 
metastasis. KLK11 expressed in ER-positive breast cancer 
cells, such as MCF-7, has been suggested to play a crucial role 
in breast cancer progression by increasing the bioavailability of 
insulin growth factors (IGFs) via the degradation of IGF binding 
protein-3 (IGFBP-3).52

Metformin-refractory MCF-7/MET-R cells exhibited a 
drastic increase (24-fold upregulation vs. metformin-naïve 
MCF-7 cells) in the expression of CTSF (Table 2), a gene coding 
for Cathepsin F, a member of the degradome cysteine proteases.53 
Although only little data are available on Cathepsin F, several 
human cancer cell lines have increased expression of CTSF 
compared with its normal counterpart, suggesting that this 
enzyme could be involved in degradative processes during tumor 
progression.53-55 Cathepsins are a class of globular proteases 
that were initially described as intracellular peptide hydrolases, 
although several cathepsins also have extracellular functions. 
Most studies have confirmed that cathepsins are highly expressed 
in invasive tumors, and they mediate degradation of the ECM 

and collagen, increase the motility and invasion of cancer 
cells, mediate the dissemination of cancer cells, and induce the 
EMT and angiogenesis.56-59 Cathepsins can also activate other 
proteases, thereby indirectly affecting invasion by participating 
in proteolytic cascades; moreover, cathepsins can inactivate key 
cell adhesion factors involved in the maintenance of the epithelial 
phenotype by cleaving cell surface proteins, such as E-cadherin, 
thus abrogating its cell–cell adhesion function and promoting 
tumor cell invasion.

Metformin-refractory MCF-7/MET-R cells intriguingly had 
increased (18-fold upregulation vs. metformin-naïve MCF-7 
cells) expression of tumor necrosis factor (ligand) superfamily, 
member 10 (TNFSF10/TRAIL) (Table  2).60-63 The protein 
encoded by this gene is a cytokine that belongs to the tumor 
necrosis factor (TNF) ligand family, which preferentially induces 
apoptosis in transformed and tumor cells, but does not appear to 
kill normal cells, even though it is expressed at a significant level 
in most normal tissues. However, in cells with a weak caspase-3 
signaling cascade, the apoptotic effects of TNFSF10 require 
the caspase-8-mediated cleavage of the BH3-only BCL2/Bcl-2 
family member BID to activate the intrinsic apoptosis pathway.64 
Indeed, there are mechanisms that tightly control TNFSF10-
induced apoptosis, which are utilized by cancer cells to counteract 
the cytotoxicity of TNFSF10. In this regard, it has been reported 
that TNFSF10 is able to induce autophagy in certain cancer 
cells, protecting them by blunting the cytotoxicity of TNFSF10 
and possibly contributing to TNFSF10 resistance.65-68 The anti-
apoptotic BCL2 family proteins, such as BCL2, bind beclin-1 
(BECN1) to inhibit autophagy, and the dissociation of BCL2 
family proteins from BECN1 promotes autophagy.69-71 Because 
MCF-7 human breast carcinoma cells do not express caspase-3, 
earlier studies have shown that TNFSF10 induces autophagy in 
MCF-7 cells, and autophagy is protective against the cytotoxicity 
of TNFSF10 in these cells,72 the prominent augmentation of 
TNFSF10 gene expression is accompanied by a severe inhibition 
of BCL2 (11-fold downregulation vs. metformin-naïve MCF-7 
cells), which strongly suggests that the activation of protective 
autophagy plays a causative role in the acquisition of resistance 
to metformin. The metformin-refractory MCF-7/MET-R cells 
also activated (14-fold vs. metformin-naïve MCF-7 cells) the 
expression of TNFAIP2, which encodes tumor necrosis factor 

Table 1. Top canonical pathways in the transcriptomic signature of metformin-adapted MCF-7/MET-R cells

Name P value Ratio

Chemokine signaling 5,57E-05 9/74 (0,122)

Axonal guidance signaling 3,02E-04 23/476 (0,048)

VDR/RXR activation 5,7E-04 8/87 (0,092)

CXCR4 signaling 1,66E-03 11/172 (0,064)

α-Adrenergic signaling 2,08E-03 8/106 (0,075)

Mitotic roles of polo-like kinase 1,7E-05 8/68 (0,118)

Axonal guidance signaling 3,79E-04 19/476 (0,04)

Cell Cycle: G2/M DNA damage checkpoint regulation 1,1E-03 5/48 (0,104)

Remodeling of epithelial adherens junctions 7,28E-03 5/68 (0,074)

Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis 7,68E-03 10/244 (0,041)
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α (TNFα)-inducible protein 2. Similar to TNFα, which is an 
inflammatory cytokine that is present in the microenvironment 
of many tumors and is known to promote tumor progression, 
TNFAIP2 is a cell migration- and invasion-promoting protein, 
and its expression predicts shorter metastasis-free survival in 
cancer patients.73

It is worth noting that acquired resistance to metformin resulted 
in a drastic augmentation (12-fold upregulation in metformin-
refractory MCF-7/MET-R cells vs. metformin-naïve MCF-7 cells) 
of DCLK1 gene expression (Table 2). Doublecortin-like kinase 1 
was originally described as a marker that was able to distinguish 
between Dclk1-positive tumor stem cells and Dclk1-negative 
normal stem cells in the intestine.74 Later studies confirmed 
that Dclk1 regulates pluripotency and angiogenic factors via 
microRNA-dependent mechanisms, and its expression marks a 
morphologically distinct subpopulation of cells with stem cells 
properties in pancreatic cancer.75,76 In this scenario, it is tempting 
to suggest that chronic adaptation to metformin accelerates the 
retrogression from a differentiated cancer cell state to a more 
stem-like state endowed with enhanced migratory capacities (i.e., 
the “migrating cancer stem cells” concept originally proposed by 
Thomas Brabletz).77-80 It is also worth mentioning that the other 
protease gene that is notably upregulated upon acquisition of 
metformin resistance, in addition to KLK11 and CTSF, is the gene 
coding for the serine hydrolase enzyme monoacylglycerol lipase 
(MAGL) (Table 2). MAGL is overexpressed in aggressive types 
of tumor cells, where it regulates a fatty acid network enriched 
in oncogenic signaling lipids that promote migration, invasion, 
survival, and in vivo tumor growth.81-83 The overexpression of 
MAGL in nonaggressive cancer cells is sufficient to increase 
their pathogenicity by recapitulating this fatty acid network, 
thus revealing how cancer cells can co-opt a lipolytic enzyme 
to translate their lipogenic state into an array of protumorigenic 
signals. Indeed, MAGL’s unique role of providing lipolytic sources 
of free fatty acids (FFAs) for the synthesis of oncogenic signaling 
lipids that promote cancer aggressiveness, together with the fact 
that MAGL blockade impairs cell migration, invasiveness, and 
tumorigenicity by lowering the levels of FFAs and protumorigenic 
signaling lipids,84-86 strongly suggest that, in response to the 
expected chronic inactivation of several lipogenic enzymes and 
lipogenesis imposed by metformin, the metformin-refractory 
MCF-7/MET-R cells re-activate the very same lipogenic state that 
is commonly controlled by metformin’s targets (AMPK, acetyl-
CoA carboxylase, mTOR) via MAGL. The serine proteinase 
degradome gene FREM1 (FRAS1-related extracellular matrix 
1/signalase-like 1)87,88 and Wnt-induced signaling protein-2 
(WISP2/CCN5), a gene coding for a metalloproteinase substrate 
implicated in the modification of the ECM, invasion, and 
angiogenesis that has been linked to a variety of human cancer 
types and may contribute to cancer metastasis,89,90 were also 
significantly upregulated in the metformin-refractory MCF-7/
MET-R cells (Table 2).

Metformin-refractory MCF-7/MET-R cells drastically 
decreased (14-fold downregulation vs. metformin-naïve MCF-7 
cells) the expression of PMP22/GAS3 (Table 2), a putative tumor 
suppressor gene. PMP22/gas3 overexpression was originally 

found to induce an apoptotic-like phenotype,91 and recent studies 
have revealed that the induction of GAS3 inhibits breast cancer 
by inhibiting the attachment and proliferation of the tumor cells, 
at least in part by blocking the interaction of β1 integrin with 
fibronectin.92 Indeed, the tumor-suppressive activity of GAS3 is 
related to the significantly increased metastasis-free survival of 
breast cancer patients. Another top molecule notably decreased 
upon acquisition of metformin resistance was the S100A14 (S100 
calcium binding protein A14) gene (14-fold downregulation vs. 
metformin-naïve MCF-7 cells; Table 2). The levels of the protein 
encoded by the S100A14 gene have been found to be lower in 
cancerous tissues and are associated with higher metastatic 
potential and advanced clinical stage, suggesting this gene has 
a tumor suppressor function.93,94 The expression of the Trefoil 
factor 3 (TFF3) gene, which has been identified as a part of a 
gene expression signature of biologically aggressive basal-like 
and claudin-low breast carcinomas that are characterized by 
reduced expression levels or loss of epigenetic biomarker genes, 
such as E-cadherin and estrogen receptor, due to aberrant 
DNA hypermethylation,95 was found to be notably decreased 
(13-fold downregulation) in the metformin-refractory MCF-7/
MET-R cells compared with the metformin-naïve MCF-7 
cells (Table 2). The MCF-7/MET-R cells notably lost (12-fold 
downregulation vs. metformin-naïve MCF-7 cells) the expression 
of the Dickkopf1 (DKK1) gene (Table  2), which encodes a 
secreted inhibitor of the Wnt/β-catenin pathway and may have 
tumor suppressor functions.96-98 Exogenous expression of DKK1 

Table 2. Top molecules in the transcriptomic signature of metfor-
min-adapted MCF-7/MET-R cells

Molecules Fold-change

KLK11 ↑30,460

CTSF ↑24,119

TNFSF10 ↑17,960

TNFAIP2 ↑13,558

TMTC1 ↑13,390

DCLK1 ↑12,452

MGLL ↑12,360

WISP2 ↑10,812

FRAS1 ↑10,342

CYP1B1 ↑10,268

CXorf61 ↓23,062

PMP22 ↓14,517

S100A14 ↓14,192

TFF3 ↓13,100

DKK1 ↓12,359

TFF1 ↓10,680

BCL2 ↓10,660

CYP26B1 ↓9,515

MGP ↓9,131

S100A16 ↓8,254
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in human malignant breast cancer cells with mesenchymal-
like phenotype significantly reduces the expression of EMT-
promoting factors, such as SLUG and TWIST;99 conversely, 
silencing DKK1 expression in non-tumorigenic epithelial breast 
cells leads to increased invasive capacity and decreased E-cadherin 
expression.100 Together, these findings strongly suggest that the 
negative effect of DKK1 on the EMT is part of the suppressive 
reprogramming that occurs when epithelial MCF-7 breast cancer 
cells adapt to the continuous presence of metformin.

Mounting evidence supports the idea that deregulated cellular 
metabolism is linked to drug resistance in cancer therapy.7-19,101 
Although the demonstration of resistance to oncogene-
mediated targeted therapy through the adaptation of cellular 
metabolism suggests that the rewiring of cellular metabolism 
plays a fundamental, convergent role for oncogenes and signal 
transduction in promoting tumorigenesis, little is known about 
how the cancer signaling networks are remodeled and which 
pathways are invoked to sustain survival in the presence of drugs 
targeting central key signaling metabolic hubs (e.g., AMPK, 
mTOR) that respond to an array of signaling metabolic inputs 
and regulate a range of downstream effector metabolic pathways. 
Together, our current findings suggest, for the first time, that 
chronic adaptation to high doses of the AMPK agonist/mTOR 
inhibitor metformin appears to causally involve 2 highly 
intertwined molecular phenomena underlying enhanced cancer 
aggressiveness. On the one hand, low-proliferative MCF-7/
MET-R cells appear to circumvent mitotic catastrophe-induced 
cell death by becoming polyploid cells and increasing genome 
instability; on the other hand, genomically unstable MCF-7/
MET-R cells appear to simultaneously acquire a metastatic 
profile, as many genes encoding extracellular matrix secreted 
and cell membrane-associated proteases involved in cancer cell 
migration and invasion were included in the signature. Because 
adhesion-dependent loss of genomic surveillance mechanisms 
can significantly increase genome instability, the possibility 
of a reciprocal relationship exists between the activation of 
the cellular degradome and increased genome instability as a 
previously unrecognized mechanism of resistance to multi-
targeted metabolic drugs, such as metformin. Indeed, it is 
reasonable to suggest that the unique mechanism of acquired 
resistance to metformin has opposing roles in growth and 
metastatic dissemination, while refractoriness to metformin 
limits breast cancer cell growth, likely due to an aberrant 
mitotic/cytokinetic machinery and accelerated autophagy, it 
notably increases the potential of metastatic dissemination by 
amplifying the number of pro-migratory and stemness inputs 
via the activation of a significant number of proteases and EMT 
regulators. Future studies should unambiguously elucidate 
whether our findings using supra-physiological concentrations 
of metformin mechanistically recapitulate the processes 
through which the induction of a migratory-stemness cellular 
state paradoxically occurs in a polyploid, senescent–autophagic 
scenario102-105 that is triggered by the chronic metabolic stresses 
that commonly occur during cancer development and after 
treatment with cancer drugs.

Materials and Methods

Cell viability assays
The effect of metformin on cell viability was determined 

using a standard colorimetric 3,4,5-dimethylthiazol-2-yl-2,5-
diphenyl-tetrazolium bromide (MTT) reduction assay. For each 
treatment, the percent cell viability was calculated using the 
following equation: (OD

570
 of the treated sample/OD

570
 of the 

untreated sample) ×100.
Agilent gene chip analyses
Total RNA isolated from metformin-naïve MCF-7 parental 

cells and one pooled population of metformin-refractory 
MCF-7 cells (i.e., MCF-7/MET-R cells) grown in the presence 
of metformin was isolated with TRIzol reagent (Invitrogen) 
according to the manufacturer’s instructions. The RNA quantity 
and quality were determined using the RNA 6000 Nano Assay 
kit on an Agilent 2100 BioAnalyzer (Agilent Technologies) as 
recommended. Agilent Human Whole Genome Microarrays 
(G4112F) containing 45220 probes were then hybridized. Briefly, 
500 ng of total RNA from each sample was amplified by Oligo-
dT-T7 reverse transcription and labeled by in vitro transcription 
with T7 RNA polymerase in the presence of Cy5-CTP or Cy3-
CTP using the Quick Amp Labeling Kit (Agilent) and purified 
using RNeasy columns (Qiagen). After fragmentation, 825 ng of 
labeled cRNA from each of the 2 samples was cohybridized in in 
situ hybridization buffer (Agilent) for 17 h at 65 °C and washed 
at room temperature (RT) for 1 min in Gene Expression Wash 
Buffer 1 (Agilent) and 1 min at 37 °C in Gene Expression Wash 
Buffer 2 (Agilent).

Statistical analysis of microarray data
The images were generated on a confocal microarray scanner 

(G2565BA, Agilent) at 5-μm resolution and quantified using 
GenePix 6.0 software (Molecular Dynamics). Spots with signal 
intensities that were twice that of the local background, not 
saturated, and not flagged by GenePix were considered reliable. 
Extracted intensities were background-corrected, and the log2 
ratios were normalized in an intensity-dependent fashion by the 
global LOWESS method (intra-chip normalization). Normalized 
log2 ratios were scaled between arrays to allow comparisons 
between all data. The raw data were processed using MMARGE, 
a web implementation of Limma (a microarray analysis library 
developed within the Bioconductor Project in the R statistical 
environment). To identify genes that were differentially expressed, 
the multiclass SAM (significance analysis of microarrays) 
procedure was applied. Probes with Q values (FDR) below 5% 
and fold changes exceeding 2.0 in absolute value were initially 
selected as the relevant spots. The microarray probes were 
collapsed to genes by considering the median log2 ratio of the 
respective probes per gene.

Ingenuity analysis
Gene networks were constructed using Ingenuity Pathway 

Analysis (Ingenuity® Systems). Data sets containing identifiers 
of genes that were >2.0-fold up- or downregulated were 
uploaded into the application. These “focus genes” were overlaid 
onto a global molecular network developed from information 
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contained in the Ingenuity Pathway Knowledge Base. Networks 
of these “focus genes” (nodes) were algorithmically generated 
based on the principle that highly connected gene networks 
are the most biologically meaningful networks. All edges 
were supported by at least one reference from the literature 
stored in the Ingenuity Pathway Knowledge Base (the IPA 
interaction database is manually curated by scientists and 
updated quarterly). Briefly, the user-input or “focus genes” list 
was compared with the “global molecular network” (GMN) 
database, consisting of thousands of genes and interactions. The 
focus genes were sorted based on highest to lowest connectivity 
within the GMN, and networks of approximately 35 genes were 
grown starting with the most connected focus gene. IPA assigns 
a P value for a network of size n and an input focus gene list of 
size f by calculating the probability of finding f or more focus 
genes in a randomly selected set of n genes from the GMN. The 
intensity of the node color indicated the degree of expression 

(green scale for downregulated nodes; red scale for upregulated 
nodes). The nodes were displayed using various shapes, each of 
which represents a functional class of the gene products. The 
score indicated the likelihood of the genes in a network being 
found together due to random chance.
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