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Abstract

Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate even

fibrotic tissue and kill antigen-expressing tumor cells. A variety of groups have investigated

different genetic engineering strategies designed to enhance tumor specificity, increase T cell

potency, improve proliferation, persistence, or migratory capacity, and increase safety. In this

review we focus on recent developments in the T cell engineering arena, discuss the application of

these engineered cell products clinically, and outline future prospects for this therapeutic modality.
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Introduction

To date, monoclonal antibodies have been the most widely used form of immunotherapy for

cancer. However, their limited, biodistribution, range of effector mechanisms recruited, and

in vivo persistence have all restricted their clinical potency. In contrast, adoptively

transferred effector T cells have the capacity to effectively traffic through multiple tissue

planes to distant tumor sites (1), recruit multiple cellular and humoral effector mechanisms,

and persist for many years, thereby producing complete and sustained disease remissions.

Genetic engineering is a means by which we can further increase the potency of these

tumor-targeted cellular products. In this review, we evaluate recent improvements in T cell

engineering, describe their current clinical impact, and discuss the future prospects of this

novel approach.
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Adoptive transfer of T cells with native antigen specificity

T cells have the capacity to identify and eradicate malignant disease through native receptor

recognition of tumor-associated antigens (TAAs), even without modification. Examples of

such activity are well described in melanoma, where Rosenberg and others have reported

that infusion of melanoma-specific tumor-infiltrating lymphocytes (TILs) and T cell clones

targeting melanoma-associated antigens produces clinical responses in approx. 50% of

patients(2–5). Similarly, we have infused over 100 hematopoietic stem cell transplant

(HSCT) recipients with donor-derived polyclonal T cell lines targeting Epstein-Barr virus

(EBV) to prevent and treat the often lethal EBV-associated lymphoproliferative disorder

(post-transplant lymphoproliferative disease; PTLD) that frequently occurs in these severely

immunocompromised patients(6,7). Small doses (circa 2x107 CTL/m2) of in vitro expanded

EBV-specific cytotoxic T lymphocytes (CTLs) proved to be both safe and effective for the

prophylaxis and treatment of EBV reactivation post-transplant(8). Subsequently this strategy

was extended to EBV-associated malignancies that occur in immunocompetent individuals

including Hodgkin disease (HD), non-Hodgkin lymphoma (NHL), and nasopharyngeal

carcinoma (NPC). Although the viral antigen expression pattern in these patients is restricted

to weakly immunogenic EBV proteins such as LMP1 and LMP2, the adoptively transferred

CTLs trafficked to tumor sites, and produced complete remission in over half the subjects

with refractory or relapsed disease(9–14).

In principle the successes described above should be extendable to any other TAAs that can

be targeted by T cells. Unfortunately, however, most TAAs are self antigens and self-

reactive T cells are largely anergized or deleted. Moreover, even if TAA-specific T cells can

be generated and are then infused, these cells may fail to persist due to tumor immune

evasion strategies such as (i) down-regulation of T cell target antigens, major

histocompatibility complex (MHC) and co-stimulatory molecules; (ii) production of

inhibitory/Th2-polarizing factors such as transforming growth factor (TGF) β, interleukin

(IL) 10, IL13, and IL4, (iii) expression of pro-apoptotic molecules on the cell surface; and

(iv) recruitment of regulatory T cells (Tregs) that inhibit the effector T cell response to

tumor(15).

Nevertheless, advances in cell engineering technology has now allowed us to modify T cells

with genes that can; increase the range of antigens they can recognize and/or augment their

affinity for their targets; improve their homing to tumor sites; increase their resistance to

tumor immune evasion strategies; enhance their proliferation and survival; and ensure their

safety (Figure 1). Although it remains unclear as to which of these modifications, or

combination thereof, will be most relevant in the clinical setting, in this review we will

discuss the current status of T cell engineering.

Genetic modification of T cells

Effective genetic modification of T cells requires the use of systems that produce adequate

gene transfer and expression of the desired transgene. The choice of gene transfer vector is

dictated by the desired level and duration of expression necessary for the hoped-for

therapeutic benefit.
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Viral vectors have long been used as vehicles to deliver therapeutic genes to target cells. To

permit sustained expression in a highly proliferative cell, such as the T cell, the majority of

studies to date have used vectors that integrate in the host T cell genome, usually

gammaretrovirus or lentivirus-based vectors, thereby avoiding the dilutional effect that

would follow cell division if a non-integrating, non-replicating vector is used. Though gene-

modified T cells have a long in vivo safety profile(16, 17) viral vectors are expensive to

produce and test, and there is often a requirement for onerous and prolonged follow-up of

treated patients that further adds to both cost and complexity(18). This has ensured continued

interest in the development of efficient non-viral gene transfer.

RNA or DNA-based expression plasmids are much less expensive than viral vectors to

produce and test, and can be used to alter T cell biology when efficient transgene integration

(and hence long-term expression) is not required. More recently, transposon-based gene

delivery systems have been developed that offer the practical advantages of plasmids

coupled with the integrative capabilities of retroviruses. Most transposons are binary

systems, incorporating two expression plasmids, one encoding the transposase and the other

containing the gene of interest flanked by the transposon terminal repeat sequence required

for transposition. After delivery to the target cell, the transposase binds to the terminal

repeat sequences of the donor plasmid and the host genome, excises the gene of interest, and

inserts it into the host genome. Transposons, unlike retroviral vectors, do not preferentially

integrate close to transcription start sites in the host cell genome, potentially improving their

safety profile. The Sleeping Beauty transposon is now being used to gene-modify T cells

that are then adoptively transferred to patients with B cell malignancies, while the Piggybac

system is being evaluated for similar application(19–22).

Modifications that enhance T cell targeting

The generation of tumor-reactive T cells from cancer patients is often difficult due to the

low immunogenicity of TAAs, which are either “self” antigens or “naïve” targets for the

immune system. Therefore, investigators have explored genetic engineering approaches

whereby autologous T cells are modified to express tumor-specific receptors. Two basic

gene transfer approaches have been pursued clinically – (i) the transfer of antigen-specific

receptor α and β chains, and (ii) the transgenic expression of chimeric antigen receptors

composed of antibody-binding domains fused to T cell signaling domains (Figure 2).

αβTCR gene transfer

In the above process, T cells are modified ex vivo to express TCR αβ heterodimers directed

against a specific tumor target. These α and β chains may be isolated from T cell clones,

from mice that are transgenic for the human TCR, or from phage/yeast/T cell displays(23,24).

Once selected, the affinity of these TCRs can be further enhanced by mutation/selection. To

date, transgenic α and β TCR chains targeting TAAs including melanoma antigens, minor

histocompatibility antigens, and common oncoproteins have been generated and used to

modify non-specifically activated T cells, rapidly producing a tumor-directed clinical grade

product(25).
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A number of factors have limited the broader introduction of this approach. Transferred α
and β chains can cross-pair with endogenous TCR chains, forming hybrid TCRs with either

loss of activity or gain of new and unwanted (autoimmune) specificity. The frequency of this

problem can be reduced by incorporating a murine-derived transmembrane region in the

transgenic TCR, though this is not ideal given the potential immunogenicity(26), or through

the introduction of sequences encoding cysteine residues to form additional disulfide bonds

that stabilize pairing of the transgenic TCR and minimize cross pairing with endogenous α
and β chains(27–29). Alternatively, selective disruption of the endogenous αβTCR using

zinc-finger nucleases (ZFNs)(30,31), or the substitution of γδ T cells as the platform for αβ
transgenic TCR transduction may prevent this problem(32). At the moment we do not know

how crucial these modifications will be or which will be most favorable for clinical use.

Perhaps a more important general limitation of this strategy is that conventional TCRs

recognize only single peptides presented in the context of individual HLA alleles, thus

limiting their use to individuals with the appropriate HLA polymorphism. Hence,

application to the broadest possible range of patients requires large panels of TCRs to be

made and tested in large numbers of patients. Even then, loss of the single targeted peptide

epitope may lead to tumor immune escape. Finally, as investigators select TCR clones with

non-physiologically high levels of affinity, the risk of toxicity due to off-target binding to

related epitopes present on normal tissue becomes an increasing concern.

Clinical studies with αβTCRs

Despite these concerns a number of clinical trials using engineered T cells expressing

αβTCR have been initiated. These trials have focused on targeting well studied and

extensively characterized self antigens including MART1 and gp100 (melanoma)(33,34),

carcinoembryonic antigen (CEA) (colorectal cancer)(35), NY-ESO-1 (melanoma, synovial

sarcoma and multiple myeloma)(36) and MAGE-A3 (melanoma, multiple myeloma, synovial

sarcoma and esophageal cancer)(37). Though promising clinical responses support the

therapeutic potential of this approach, there have also been a number of reported toxicities

related to “on target” but “off tissue” effects. For example, investigators at the National

Cancer Institute (NCI) reported the development of skin rashes, uveitis and hearing loss in

patients treated with high affinity transgenic αβTCRs specific for MART1 or gp100(33),

while the infusion of CEA-targeted T cells was associated with the development of severe

inflammatory colitis(35). More recently, Morgan et al treated 9 patients with MAGE-A3

positive tumors with T cells modified with a high-avidity TCR directed against an HLA-A2-

restricted MAGE-A3 epitope and though 5 patients experienced clinical regressions, 3

experienced mental status changes, two of whom lapsed into comas and subsequently died.

Brain biopsies or postmortem brain autopsies revealed infiltration of CD8+ T-cells into the

white matter and perivascular spaces. Furthermore, expanded CSF cells from an affected

patient produced IFNγ in response to MAGE-A3+ tumor cell lines. It subsequently

transpired that the TCR used in this study recognized not only MAGE-A3 but also MAGE-

A9 and MAGE-A12, which was found to be expressed in human brain possibly explaining

the neuronal cell destruction that precipitated post adoptive transfer(37).

Finally, “off target” toxicity has also been reported using MAGE-A3 TCR-modified T cells.

In this case T cells were modified to express an affinity-enhanced αβTCRs targeting an
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HLA-A1 epitope from MAGE-A3 that was subsequently used as treatment for melanoma or

relapsed multiple myeloma. The first patient, who received the cells as treatment for

metastatic melanoma, died 4 days post-infusion of cardiac failure. Following extensive

studies the cause of death was attributed to hemorrhagic myocardial infarction precipitated

by demand ischemia and subsequently the trial was re-opened. However, the second patient,

treated for relapsed multiple myeloma, also developed cardiogenic shock and died 5 days

after infusion. Again, after ruling out the expression of MAGE-A3 or related MAGE

proteins in cardiomyocytes/heart tissue, the group undertook a systematic investigation of

TCR binding and reactivity, which revealed that their affinity-enhanced TCR recognized an

unrelated peptide derived from Titin, which is highly expressed in muscle tissue and a target

of auto-antibodies in some forms of myasthenia gravis, particularly in patients with

thymomas(38). Subsequently, iPS cardiomyocytes were confirmed to express Titin.

However, Maus et al also indicated that endogenous T cells with native specificity for the

same epitope did not demonstrate any activity against Titin. Thus, in this case the cross-

reactivity and subsequent toxicity appears to be a function of the engineering process that

was designed to enhance affinity rather than the endogenous specificity(39,40 ).

Chimeric antigen receptors (CARs)

T cell specificity can also be altered by expressing chimeric antigen receptors (CAR), which

are artificial receptors composed of an extracellular domain that is responsible for antigen

recognition, a transmembrane domain and one or more intracellular signaling domains. The

extracellular domain is most commonly derived from the variable regions (i.e. antigen

binding portion) of the heavy and light chains (VH and VL,) of a monoclonal antibody joined

by a flexible linker. The intracellular signaling domain (endodomain) is most usually

derived from the T cell receptor (CD3) zeta chain. CAR expression allows tumors to be

targeted in an HLA-unrestricted manner, increasing the number of eligible patients, and

extends the types of antigens that can be recognized by T cells to include carbohydrates and

glycolipids. Second and third generation CARs incorporate additional endodomains that

provide the necessary accessory signals or co-stimulation to allow T cells to pass through

the multiple checkpoints that under physiological conditions regulate T cell activation,

proliferation, differentiation and survival following receptor engagement(41).

Table I describes some of the CARs that have been developed for clinical use in solid

tumors and hematological malignancies. Initial trials using T cells modified to express

CARs that contained exclusively the CD3ζ signaling domain (so called first generation

constructs) proved sub-optimal. Indeed, CAR engagement failed to induce either cytokine

production or T cell expansion in vivo. Subsequently, second generation CARs, which

contained additional co-stimulatory endodomains including CD27, CD28, 41BB, DAP10,

OX40 or ICOS proved to confer greater strength of signaling and persistence to the T cells,

resulting in improved potency. For example, in a head to head comparison, Savoldo and

colleagues demonstrated that CAR-CD19 T cells encoding the costimulatory CD28

endodomain had strikingly enhanced expansion and persistence compared with their

counterparts lacking this endodomain(42). Porter and colleagues used CAR-CD19-modified

T cells expressing the 41BB endodomain to treat chronic lymphocytic leukemia (CLL) and

saw significant in vivo expansion, and persistence for at least 6 months, which resulted in
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complete clinical responses in 2 of 3 treated patients(43,44). More recently the same group

has applied this strategy for the treatment of patients with relapsed and refractory pre-B cell

acute lymphoblastic leukemia (ALL)(45). Initial results from two treated patients confirmed

the in vivo proliferative capacity of the infused cells in vivo, with detection in blood, bone

marrow and cerebrospinal fluid post-infusion. Again, the transferred T cells produced initial

clinical responses in both patients. However, this was sustained in only one while the second

patient relapsed with a CD19 negative tumor two months post-treatment, demonstrating the

potential for immune escape using a mono-specific therapy that targets a molecule that is not

of direct pathogenic relevance(45). In addition, many of the B-CLL and ALL responders

have developed acute toxicities during the expansion phase of the T cells, associated with

fevers and the release of high levels of cytokines and cytokine receptors including soluble

IL1Rα, IL2R, IL2, IL6, IL10, TNFα and IFNγ. Monoclonal antibodies to TNFα and the

IL6R (etanercept and tocilizumab, respectively) were apparently able to rapidly reverse

these toxicities. Other investigators using second and third generation CARs (incorporating

3 or more endodomains) have described similar toxicities(46–48).

Immune responses to transgenic receptors

Most CARs and many transgenic TCRs contain novel sequences or sequences derived from

other species. As a consequence, the recipient may generate an immune response that

eliminates the modified T cells. For example, Lamers and colleagues reported the

development of anti-scFv antibodies in three patients treated with T cells expressing a

carbonic anhydrase IX (CAIX)-specific CAR(49–51), while Kershaw and colleagues

observed a CAR-specific antibody response in a patient treated with CAR T cells modified

to recognize the ovarian-associated α-folate receptor (αFR)(52). More recently, Jensen and

colleagues reported lack of in vivo persistence due to the induction of endogenous cellular

immune responses directed against a selection gene (neomycin phosphotransferase)

incorporated in their CD20 CAR-containing plasmid(53). Although cellular and humoral

responses have not been observed in all treated patients, the substitution of humanized single

chain CARs may reduce the risk of premature deletion of T cells due to immune responses.

Safety concerns

As for αβTCR-modified T cells, a major concern with CAR T cell transfer relates to the

potential for “on target antigen” but “off target tissue” toxicity – an effect associated with

targeting TAAs that are not exclusively tumor-restricted in their expression profile. Lamers

et al reported the development of cholestasis following the infusion of T cells modified with

a CAR targeting carbonic anhydrase as treatment for renal cell carcinoma, which correlated

with expression of carbonic anhydrase on biliary epithelial cells(49–51). Brentjens and

colleagues reported renal and respiratory failure in a patient with CLL after a single infusion

(3x107/kg) of T cells modified with a second generation CAR targeting CD19 that was

given following high dose cyclophosphamide, administered to induce host

lymphodepletion(54). The authors hypothesized the combination therapy may have led to a

cytokine storm in vivo or to rapid tumor lysis. Finally, Morgan et al infused >1010 T cells

modified with a third generation CAR targeting HER2 to a patient with widely metastatic

colon cancer after intensive lymphodepletion. The subject rapidly developed pulmonary

toxicity and died 4 days after infusion. After extensive analysis the investigators concluded
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that the toxicity might have been due to targeting of low levels of HER2 on pulmonary

endothelium - a known site at which intravenously infused human CAR T cells

accumulate(55,56).

Selective targeting

While it is now clear that genetically modified T cells can be targeted to tumors, it is equally

apparent that targeting a single epitope or antigen alone has a high risk of leading to tumor

immune escape or to toxicity due to “on target, off organ” effects if the targeted antigen is

not uniquely expressed on target tumor cells. To improve safety Wilkie et al modified

activated T cells with two CARs targeting the breast cancer-expressed TAAs HER2

(coupled with the CD3ζ endodomain) and MUC1 (coupled to CD28) and demonstrated that

these dual-targeted T cells were able to deliver complementary signals, leading to potent

cytotoxicity and synergistically-enhanced proliferation in the presence of tumor cells

expressing both target antigens(57). Similar results have more recently been reported by

Sadelain and colleagues(58). In addition, investigators are developing hybrid receptors which

will induce T cell activation at the tumor site by inverting the inhibitory effects of cytokines,

such as IL4, produced in the local environment(59,60). Finally, an alternate approach to

promote potent anti-tumor effects while minimizing toxicity is to combine CAR and

conventional therapies. The feasibility of such a strategy has recently been demonstrated by

Sanchez and colleagues, who combined CAR T cells engineered to recognize MUC1 with

anti-androgen therapy to provide additive anti-tumor effects in a prostate cancer model(61).

Genetic modification of T cells to improve in vivo migration, proliferation

and survival

T cell migration

Once tumor-specific T cells are infused, they must migrate to distal tumor sites before

exerting their cytotoxic effects. T cell migration occurs along a chemokine gradient so

efficient trafficking requires that the chemokine receptors expressed by the infused T cells

must match the chemokines produced by the tumor. In practice, however, tumor and

surrounding stromal cells can produce a chemokine milieu that recruits T cell subsets such

as Tregs that support rather than perturb the tumor microenvironment. In HD, for example,

malignant Reed-Sternberg cells secrete chemokines (e.g. TARC) that attract

immunoinhibitory/suppressive Th2 cells and Tregs, both of which contribute to the hostile

immune microenvironment and directly impair the antitumor activity of effector T cells.

Gene transfer can alter the migration profile of infused, tumor-targeted (and pro-

inflammatory) T cells through the forced expression of chemokine receptors that are

matched with the chemokines produced by the target tumor, allowing the transferred cells to

exploit the tumor’s own inhibitory mechanisms. Our group has expressed transgenic CCR4

receptors on T cells expressing CAR-CD30, an antigen that is highly expressed by many HD

cells, allowing the tumor targeted effector cells to migrate toward the HD-generated TARC

gradient, the cognate chemokine for CCR4(62). Similarly, Moon et al increased the migration

of mesothelin-directed CAR T cells towards malignant pleural mesotheliomas, by modifying

them to express CCR2b, the cognate receptor for the chemokine CCL2 that the tumors
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produce(63). CCL2 is secreted by many tumor types, and modifying CAR-GD2 T cells with

the same chemokine receptor (CCR2b) produces a >10-fold increase in the homing capacity

of the transgenic cells towards CCL2-secreting neuroblastoma with increased anti-tumor

activity(64). A similar approach could be applied to other human malignancies in which a

signature chemokine expression profile can be identified.

T cell proliferation and in vivo persistence

T cell proliferation requires continued antigenic stimulation, either via direct interaction

with tumor cells or through professional APCs that present tumor antigens, as well as the

presence of appropriate cytokines. Moreover, a proportion of the cells should enter the

memory T cell compartment after infusion, so that protection can be assured long-term.

Tumors have developed an array of strategies to prevent these events from occurring,

necessitating countermeasures that will ensure T cell proliferation and survival.

Transgenic expression of growth factors/growth factor receptors

Recombinant IL2 has been systemically administered to support the expansion and

persistence of adoptively-transferred T cells, but is associated with significant toxicity and

the expansion of T regs, potentially offsetting the immunological benefits(65). Investigators

are now exploring alternative methods to expand T cells in vivo, by genetically modifying

them to express the growth factors IL2 or IL15, thereby producing effector T cells that are

self-sustaining. Both IL2 and IL15-modified cells have been shown to retain their antigen

specificity, phenotype and function. Importantly, they also retain their dependence on

antigenic stimulation for continued expansion. For example, Quintarelli and colleagues

genetically modified EBV-specific T cells with retroviral vectors encoding either IL15 or

IL2 and showed that both promoted ex vivo and in vivo expansion and antitumor activity,

confirming that this was achieved without induction of Tregs(66,67).

T cell growth and survival can also be increased by engineering cells to respond to

cytokines, which do not normally induce proliferation of in vitro expanded T cells. Vera and

colleagues have shown that transgenic expression of the IL7 receptor by antigen-specific T

cells restores their responsiveness to the IL7 cytokine, and sustains their expansion in vitro

and in vivo without affecting their antigen specificity or cytokine dependence(68). Since this

cytokine has been safely administered to human subjects without apparent enhancement of

Treg cell number and function, the infusion of a tumor-targeted T cell product engineered to

express the IL7R could be followed by exogenous administration of clinical grade IL7

cytokine to promote transgenic cell proliferation and survival(69–72).

Selected T cell populations for gene transfer

The persistence of gene-modified T cells may be favored by infusing T cell subsets with

stem cell-like properties since these should have superior in vivo longevity(73). One way to

achieve this goal is to culture the cells ex vivo in cytokines, including IL15, IL7 and IL21,

that have been shown to promote the expansion of T cells with a central memory

phenotype(74,75). In non-human primate proof of concept studies Berger et al infused

effector (CD62L−CD28−CD8+Fashi) and central (CD62L+CD28+CD8+ Fashi) memory-
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derived CMV-specific T cell clones and demonstrated that the central memory-derived T

cells survived longer in vivo, suggesting that T cells isolated from different compartments

have divergent fate(76). More recently Wang and colleagues isolated human melanoma-

specific T cells from the central memory compartment, grew them in culture, and then

showed that these highly differentiated and expanded effector T cell clones nonetheless

effectively targeted skin melanocytes and persisted long-term in vivo(77).

Another means of ensuring in vivo persistence of tumor directed T cells may be to retarget T

cells that have native receptor specificity for latent viruses and are known to be long-lived

memory cells. For example, adoptively transferred EBV-specific CTLs have been shown to

persist long-term (>10 years) in vivo, likely due to the fact that the infused cells derived both

from central and effector memory subsets and were able to receive physiological co-

stimulation in vivo via exposure to EBV-infected APCs(8). To assess whether the same was

true if EBV-CTLs were used as a CAR platform, Pule et al compared the longevity of

mitogen-activated T cells with that of polyclonal EBV-specific CTLs modified with a CAR

targeting GD2 in patients with advanced neuroblastoma(78). Early after infusion, CAR-GD2-

modified EBV-CTLs circulated at higher levels than activated T cells, but in extended

follow-up studies, cells derived from both activated T cells and EBV-CTL populations were

detected long-term (192 and 96 weeks, respectively), and the duration of persistence

correlated with the percentage of CD4+ helper T cells within the infused product as well as

with their expression of the central memory markers (CD45RO+CD62L+)(79). Importantly,

in vivo persistence was associated with superior clinical outcome. Thus, future clinical

studies using T cells that have been selected based on a central memory phenotype may

extend the life span of adoptively-transferred cells and improve clinical efficacy, though the

complexity, cost, and large blood volumes required for the up-front clinical grade selection

of such cells must also be taken into consideration(80).

Co-stimulation

T cell proliferation and survival requires both antigenic stimulation and the sequential

engagement of co-stimulatory molecules. Unlike “professional” APCs, which express both

antigen and co-stimulatory molecules, tumor cells may express only the target antigen.

Exposure to antigen in the absence of co-stimulation can lead to T cell apoptosis or anergy.

One means of providing T cell co-stimulation is to force the expression of co-stimulatory

ligands, such as CD80 and 41BBL by the engineered T cell that will engage their native co-

stimulatory receptors in an autocrine or paracrine manner(81). Alternatively, the signaling

portions of co-stimulatory molecules including CD27, CD28, OX40 and 41BB, have been

incorporated into the intracellular portion of second and third generation CARs so that CAR

engagement with the target antigen delivers both the antigen activation and co-stimulation

signals simultaneously, which may substitute for the lack of co-stimulation from the tumor

cells themselves(41). The effects of modifying CAR T cells with additional co-stimulatory

endodomains have been summarized in Table I.

Increasing T cell resistance to the tumor

T cell survival can be increased by overexpressing pro-survival/anti-apoptotic genes. For

example, T cells transduced with the human telomerase reverse transcriptase (hTERT) gene
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have increased longevity due to the prevention of telomere erosion. Unfortunately, this

modification may cause genomic instability, limiting both safety and clinical value(82–84).

An alternative means of increasing T cell persistence is to modify cells with anti-apoptotic

genes, such as Bcl-2 and Bcl-xL(85,86), or to downregulate pro-apoptotic genes such as Fas,

thus making the cells resistant to Fas/FasL-mediated apoptosis(87).

Counteracting the hostile tumor microenvironment

Genetic modification of T cells can also be used to counteract the immune-inhibitory tumor

microenvironment that can neutralize adoptively transferred antigen-specific CTLs. One of

the most widely used tumor evasion strategies is local secretion of TGFβ by the tumor or its

stromal elements. TGFβ is a multifunctional cytokine that promotes tumor growth, limits

effector T cell proliferation and function, activates Tregs, and induces tolerance. The

detrimental effects of TGFβ can be negated by modifying cells to express a dominant-

negative TGFβ receptor type II (dnTGFβ-RII), prolonging their persistence and enhancing

tumor elimination in mice bearing TGFβ-expressing tumors(88–90), and we are now

assessing the safety and efficacy of dnTGFβ-RII-modified tumor-specific CTLs in patients

with relapsed/refractory HD or NHL.

Wilkie and colleagues took this approach one step further – they proposed not just negating

the inhibitory effects of a tumor-produced immunosuppressive cytokine, but instead

switching the signal into one that was activating for the transferred T cells. To accomplish

this goal they modified CAR T cells to express a custom chimeric cytokine receptor,

consisting of the exodomain of the IL4 receptor fused to the endodomain of the shared

IL2/15 βc endodomain. They hypothesized that transgenic expression of this molecule on T

cells would protect them from the inhibitory effects of IL4, a prototypic Th2-polarizing/

inhibitory cytokine produced by a variety of tumors, whilst providing a pro-proliferative

signal to T cells via the IL2/15 βc endodomain directly at the tumor site(60). This approach

has yet to be clinically translated.

Genetic modification to improve safety

Suicide Genes

Along with enhancing potency, increasing longevity or conferring resistance to inhibitory

signals genetic engineering approaches can also be employed to incorporate a “safety

switch’ so that the infused cells can be eliminated should adverse effects occur. Transgenic

expression of the B cell antigen CD20 by T cells has been proposed as a suicide gene

strategy, and this is being currently being evaluated preclinically(91,92). In the clinical setting

one of the most well-studied suicide systems utilizes the herpes simplex viral thymidine

kinase (TK) gene, which converts the pro-drug ganciclovir (GCV) to a purine analog,

inhibiting DNA polymerase. Thus, GCV can be administered as a means of eliminating

actively proliferating cells and the activity of this approach is currently being tested in late

phase clinical studies(93–96). There are, however, several shortcomings to using TK as a

suicide gene(97). One is the inherent immunogenicity of this virus-derived gene, which

might lead to premature clearance of infused cells. Second is the removal of a

therapeutically valuable drug as an option for the treatment of viral infections post-
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transplant. Another concern is the time required to ablate infused cells - usually days to

weeks. Even a recently developed codon-optimized HSV-TK required 3 days ganciclovir

exposure to produce transgenic cell death(98) – a time frame that would be inadequate in

cases where infused cells cause acute on- or off-target toxicity. An attractive alternative

suicide strategy is the inducible Caspase9 transgene (iCaspase9)(99–100), which is non-

immunogenic and rapidly (within 24 hours) produces apoptosis, even in non-dividing

cells(101). iCaspase9 is trigged upon administration of a small molecule dimerizer, AP20187,

and produces apoptosis in >95% of transgenic cells. Thus, incorporation of this safety switch

in combination with other modifications may be prudent as T cell potency is increased.

Commercialization Strategies

Broader clinical use of complex biologics such as engineered T cells for human disease will

require strategies that address limitations due to the personalized nature of the therapy and

the lack of scalability of the complex manufacturing processes associated with the genetic

modification and cell expansion process. Investigators have begun to explore strategies to

generate “universal T cells,” which can be use in the allogeneic setting as an “off the shelf”

product, as well as to develop simplified methodologies to generate modified T cells that use

new, scalable and cost effective manufacturing processes.

Universal T cells

To develop a “one size fits all” CAR T cell therapy, Tamada and colleagues demonstrated

that a variety of tumors could be targeted using fluorescein isothiocyanate (FITC)-labeled

monoclonal antibodies in combination with T cells engineered to express a FITC-directed

CAR(102). Powell and colleagues proposed a similar approach whereby T cells were

modified with a universal immune receptor specific for biotinylated antigen-specific

molecules (biotin binding immune receptor; BBIR). These BBIR T cells can specifically

recognize and be activated by various biotinylated molecules, including ScFVs and

antibodies. Although this is an interesting approach, the biodistribution and immunogenicity

of the modified cells is unclear(103,104). Alternatively, ZFN technology can be used to delete

endogenous HLA molecule expression facilitating the generation of a less allostimulatory T

cell product(30), but it is not clear how such cells would avoid being killed by NK effector

cells, which may be activated when they engage an HLA negative target(31).

Scalability of Process

Independent of advances in developing universal T cells, commercialization will require

manufacturing platforms for engineered T cells to become more scalable and robust.

Conventional processes rely on ex vivo cell propagation in plates, flasks or bags, all of which

have limitations with respect to the availability of nutrients and oxygen (O2), and the

accumulation of metabolic waste products including lactic acid and carbon dioxide (CO2).

This occurs because conventional cultureware is restricted to the use of a shallow media

volume to allow sufficient gas diffusion from above the cells, which restricts both available

nutrients and the buffering capacity of the media. In addition, O2 and nutrient requirements

progressively increase with cell concentration and rate of growth, so that cultures must be

fed and split regularly. These frequent medium changes and cell manipulations are time
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consuming, expensive, reduce the reproducibility of the cell product manufacture and

increase the risk of contamination.

Scale-up using hollow fiber or stirred tank bioreactors or plastic bags may overcome the

above issues, but are not always easy to adapt for T cell culture(105–107). Hollyman and

colleagues used a culture system based around the WAVE Bioreactor for the expansion of

CAR-CD19 T cells, obtaining between 0.8–2.4×1010 T cells in 13–18 days of culture(108).

Indeed the same platform was also shown to support the reliable expansion of tumor

infiltrating lymphocytes, with no adverse effects on T cell phenotype or function(109,110).

The major advantage of the WAVE bioreactor is the potential for large scale T cell

production (>1010 cells). However, the system is expensive, requiring the purchase of the

bioreactors themselves as well as ancillary equipment. Supported in part by the NHLBI -

Production Assistance for Cellular Therapies (PACT) mechanism, we have taken a different

approach by using a gas-permeable culture device (G-Rex: Wilson Wolf Manufacturing). In

this G-Rex platform, O2 and CO2 are exchanged across a silicone membrane at the base of

the flask, which allows for an increased depth of medium above, providing more nutrients

and diluting waste products. This system supports the expansion of a range of suspension

cell types including genetically-modified T cells(111–115). Importantly, the platform is highly

scalable, GMP-compliant, and reduces the number of technician interventions approximately

4-fold while increasing the cell output by 3–20-fold compared with conventional methods.

These and other manufacturing improvements will help gene-modified products have a

broader clinical utility and become more attractive from a commercial perspective. Indeed,

we are seeing the first evidence of such interest with the recently formed partnerships

between Novartis and the University of Pennsylvania as well as between bluebirdbio,

Celgene and Baylor College of Medicine to advance novel T cell therapies for the treatment

of cancer.

Conclusions

T cell immunotherapy has the potential to cure patients with advanced cancer and has

already had impressive successes. However, many obstacles remain before this approach can

reach its full potential and become a standard of care. By using genetic modification to

improve target recognition, enhance T cell persistence, improve migration, and increase

safety, investigators are steadily increasing the range of cancers that can be treated and the

potency of the benefits obtained. However, even if successful, broader implementation will

also depend on the development of T cell manufacturing processes that are robust and

scalable, which will enable T cell therapies to become more accessible, in part by attracting

interest from commercial entities who will in turn ultimately transform adoptive T cell

transfer from “boutique to chain store”.
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Abbreviations

ALL acute lymphoblastic leukemia

APCs antigen presenting cells

BBIR biotin binding immune receptor

CARs chimeric antigen receptors

CLL chronic lynphocytic leukemia

CTLs Cytotoxic T lymphocytes

dnTGFβ-RII dominant-negative TGFβ receptor type II

EBV Epstein-Barr virs

GCV ganciclovir

G-Rex Gas-permeable culture device

HD Hodgkin disease

HSCT hematopoietic stem cell transplant

hTERT human telomerase reverse transcriptase gene

iCaspase9 inducible Caspase 9 transgene

IL interleukin

MHC major histocompatilibity complex

NHL non-Hodgkin lymphoma

NPC nasopharyngeal carcinoma

PACT Production Assistance for Cellular Therapies

PTLD post-transplant lymphoproliferative disease

TAAs tumor-associated antigens

TGF transforming growth factor

TILs tumor-infiltrating lymphocytes

TK thymidine kinase

Tregs regulatory T cells

ZFNs zinc-finger nucleases

αFR α-folate recptor
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Figure 1.
Examples of Genetic modifications that have been explored individually or in combination with the purpose of improving the

function and safety of T cells. These modifications include the transgenic expression of proteins that (i) enhance T cell homing

to tumor sites, (ii) provide resistance to the tumor microenvironment, (iii) improve their proliferation and persistence and (iv)

enhance their safety.
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Figure 2.
a schematic of transgenic α and β T cell receptors (αβT CRs) and chimeric antigen receptor (CARs) and shows the differences

and similarities between these two most common strategies used to redirect the immune T cell response.
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