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Abstract

The evaluation of center-specific outcomes is often through survival analysis methods. Such

evaluations must account for differences in the distribution of patient characteristics across

centers. In the context of censored event times, it is also important that the measure chosen to

evaluate centers not be influenced by imbalances in the center-specific censoring distributions.

The practice of using center indicators in a hazard regression model is often invalid, inconvenient,

or undesirable to carry out. We propose a semiparametric version of the standardized rate ratio

(SRR) useful for the evaluation of centers with respect to a right-censored event time. The SRR

for center j can be interpreted as the ratio of the expected number of deaths in the total population

(if the total population were in fact subject to the center j mortality hazard), to the observed

number of events. The proposed measure is not affected by differences in center-specific covariate

or censoring distributions. Asymptotic properties of the proposed estimators are derived, with

finite-sample properties examined through simulation studies. The proposed methods are applied

to national kidney transplant data.
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1. Introduction

In many situations, interest lies in the comparison of survival outcomes by center (e.g.,

treatment facility, hospital, or other entity serving as health care provider). Center-specific

evaluations can be carried out on a regular basis (e.g., annually) to identity centers with poor

performance. Alternatively, a retrospective evaluation over a longer period could be used to

identify centers with exceptionally good results, with the goal of specifying best practices. In

other cases, comparisons across centers may be an interesting secondary analysis; for

example, in a multi-center study to evaluate the impact of a specific treatment on mortality.

An accurate comparison of center-specific survival outcomes needs to account for

imbalances in risk factor distributions among centers. For instance, the inclusion of high-risk
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patients by a given center can make that center’s survival appear substandard. In addition, in

the context of survival times subject to censoring, the same phenomenon can occur due to

differences in center-specific censoring distributions.

In this report, we propose a semiparametric version of direct standardization, suitable for

mortality comparisons by center. The proposed approach involves first fitting a Cox [1]

regression model, stratified by center. The regression model is not used to directly estimate

center effects, but rather to ensure that adjustment covariate effects are not confounded by

center (which could occur in the absence of adjustment for center). For each center, j, the

standardized rate ratio (SRRj) is then computed as the ratio of expected to observed numbers

of deaths; where ‘observed’ refers to the total number of deaths across all centers (j = 1, …,

J) and ‘expected’ represents the number of total deaths estimated to occur if in fact all

centers had mortality hazard equal to that of center j. Due to the use of direct

standardization, the {SRR1, SRR2, …, SRRJ } can be compared (and validly ordered) since

the same covariate and censoring distribution is applied to each; i.e., the total study

population serves as the standard. This is in contrast to indirectly standardized measures,

such as the Standardized Mortality Ratio (SMR).

The motivating example for this study involves the evaluation of center-specific post-

transplant mortality for kidney transplant patients. Examples of factors known to strongly

affect the post-transplant mortality hazard include age, primary renal diagnosis and pre-

transplant time on dialysis; each of which may differ in distribution by center. Centers with

mortality significantly greater than the national average may be subject to various degrees of

intervention, including site visits and perhaps de-accreditation. Given the high stakes of such

evaluations, it is important that the statistical methods used for identifying outlying centers

be accurate.

A commonly used measure for evaluating center-specific survival is the standardized

mortality ratio (SMR), defined as the ratio of the observed number of deaths at a given

center, to the number expected if the center had mortality equal to the population average.

The SMR is a tool familiar to fields such as epidemiology; for example, [2, 3, 4, 5]. The

comparison of observed and expected outcomes is also commonly used for health care

regulation; for example, [6, 7]. In the context of renal research, Wolfe et al. [8] and Wolfe

[9] calculated SMRs among kidney transplant patients using mortality tables published by

the United States Renal Data Systems. To relax the assumption of known standard mortality

rates, Dickinson et al. [10] studied a semiparametric SMR based on Cox regression.

Limitations of the SMR include its use of indirect standardization; each center’s SMR is

essentially adjusted to a different (center-specific) covariate and censoring distribution.

Centers cannot be rank-ordered based on indirect standardization, since two centers with

equal covariate-specific mortality hazards could have different SMRs, merely due to

differences in their respective covariate or censoring distributions. Therefore, although

SMRs are potentially useful for internal evaluation (e.g., for centers to evaluate themselves

or for a governing body to evaluate this center’s mortality comparing to that expected at the

national level), they are less useful in the work of external evaluation (e.g., for surgeons and

patients to compare center-specific results in the same region), since comparisons of center-
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specific results would play at least some role. We provide additional commentary on the

SMR in Section 5.

Above, we note limitations in the SMR approaches. Naturally, this technique has its role in

analysis contrasting centers. However, Noting room for improvement, we propose

semiparametric version of direct standardization useful for survival analysis of centers.

Direct standardization is also a commonly used approach in comparisons of mortality,

usually through a measure termed the Standardized Rate Ratio (SRR) or Comparative

Mortality Figure (CMF). One can express the SRR as the ratio of expected to observed

numbers of deaths in the whole study population; the numerator of the SRR represents the

expected number of deaths if all patients were treated at the given center, while the

denominator equals the total observed number of deaths in the study population. [3, 4]

compared the SRR with SMR in the framework of person-year methods. In particular, the

main drawback of SMR (with respect to comparisons across centers) is not inherent to the

SRR, since the same standard population is applied to all centers. Hence, center-specific

SRRs are directly comparable.

The SRR has a long history in fields such as epidemiology, and there are many settings in

which direct standardization is appropriate. The Cox model has dominated applications

involving regression analysis of censored data since its development. Thus, the use of Cox

regression to estimate directly standardized center effects is a natural choice. The main

contribution of this report is to formalize procedures for the Cox regression-based SRR;

including rigorous derivation of asymptotic properties, simulation studies and detailed

comparisons to alternative approaches.

2. METHODS

First, we provide the notation to be used in this article. Let Ti and Ci represent the survival

and censoring time, respectively, for the i’th patient, where i = 1, …, n. Let J be the number

of centers. The total number of subjects is denoted by , where nj is the number

of subjects in center j. Observation times are denoted by Xi = Ti ∧ Ci, with at-risk indicator

Yi(t) = I(Xi ≥ t), where a ∧ b = min{a, b} and I(A) is an indicator function taking the value 1

when condition A holds and 0 otherwise. The observed death indicators are denoted by Δi =

I(Ti ≤ Ci), and the death counting process is defined as Ni(t) = ΔiI(Xi ≤ t). Let Gi denote the

center for subject i and set Gij = I(Gi = j). Correspondingly, we set Yij(t) = Yi(t)Gij and Nij(t)

= Ni(t)Gij. The observed data consist of n independent vectors, (Xi, Δi, Gi, Zi), where Zi is a

vector of adjustment covariates.

The assumed center-stratified Cox model can be formulated as,

(1)

where λ0j(t) is an unspecified center-specific baseline hazard function and β0 is a parameter

vector. The partial likelihood estimator [11] of β0 is denoted by β̂ and is given by the

solution to U(β) = 0 where
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with  and  for d

= 0, 1, 2. The Breslow estimator [12] of  is then given by Λ̂0j(t; β),

where

2.1. Indirect Standardization: Standardized Mortality Ratio (SMR)

We begin by introducing an alternative to the proposed measure. The standardized mortality

ratio for center j is calculated as the ratio of observed to expected numbers of events,

(2)

where the numerator is given by  and the expected number of events is

computed as

with Λ̂0(t; β̂) representing an estimator of the average cumulative baseline hazard,

(3)

and β̂ is based on model (1). The estimator given in (2) was developed in [13], where part of

the innovation was the proposed use of the center-stratified model to estimate β0. Intuition

would suggest computing Ej(t) using an unstratified model. However, estimation of β0 in the

absence of adjustment for center effects may produce a substantially biased estimate of due

to confounding by center; or merely due to center affecting the hazard function, with or

without confounding (i.e., due to the non-linear link function).

The calculation of  involves two stages. A stratified Cox model (Model 1) is fitted

in the first stage, with the population average cumulative baseline hazard, Λ̂0(t; β̂), then

computed in the second stage (e.g., through a unstratified Cox model with no covariates)

using β̂′Zi as an offset. At the second stage, Oj(t), Ej(t) are calculated.
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2.2. Direct Standardization: Standardized Rate Ratio (SRR)

Based on a form of indirect standardization, the SMR described in Section 2.1 can be

viewed as a weighted ratio of center-specific cumulative hazards, with weight functions

based on center-specific . These weight functions have an obvious disadvantage:

they involve center-specific censoring and covariate distributions, which can differ

considerably across centers. To rule out the possibility that differences among centers are

due merely to different censoring and/or covariate distributions, the weight function should

be specified such that differences among centers with respect to the resulting measure are a

function only of corresponding differences in center-specific hazards. Motivated by such

considerations, we propose an alternative method, referred to as the Standardized Rate Ratio

(SRR), which can be interpreted as a semiparametric version of direct standardization. The

proposed SRR is computed, for center j, as

(4)

with  being the total observed number of deaths across all centers, and

(5)

representing the expected number of total deaths if all centers had mortality hazard equal to

that of center j. Similar to the SMR, the SRR is easily interpreted and is well understood by

clinical investigators. The SRR also involves a ratio of observed and expected numbers of

deaths. However, the ‘expected’ component is in the SRR’s numerator, while the ‘observed’

count is in the denominator. With respect to interpretation, SRRj > 1 indicates that center j

has a greater mortality rate than the overall average. Note that, although SRRj(t) also

involves the censoring and covariate distributions, the same weight function is applied

across all centers; thus factoring out the impact of imbalances in center-specific censoring

and covariate distributions. The proposed measures are desirable in this light, since their

center-specific limiting values would differ only due to corresponding differences in center-

specific hazards.

2.3. Asymptotic Properties

We summarize the asymptotic properties of the proposed SRR with the following theorem;

we outline the proof in Appendix A.

THEOREM 1—Under the regularity conditions listed in Appendix A,  converges in

probability to SRRj(t) uniformly in t ∈ [0, τ], where
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and  converges weakly to a zero-mean Gaussian process with

variance function σj(t) = E[ξij(t; β0)2], where

(6)

(7)

(8)

with

The variance function can be consistently estimated by , with

ξ̂ij(t; β̂) obtained by replacing limiting values in ξij(t; β) with their empirical counterparts.

With respect to this variance formula, a potentially time-saving strategy it is to treat the

estimators of β0 as constants, and hence ignore their variability. A justification for such

simplification applies when the total study population is very large, such that β̂ has little

variability. The resulting variance estimator is given by

(9)

(10)

obtained by removing the line (8) in the formula of ξij(t; β). The quantity  is obtained

by replacing limiting values in  with their empirical counterparts.
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3. SIMULATION

We evaluate the finite-sample properties of the estimators described in Section 2 through a

series of simulation studies. Death times were generated from the Weibull model, λij(t) =

αjγjtγj−1 exp(βT Zi) for i = 1, …, nj and j = 1, …, 10, where Zi = (Zi1, Zi2, Zi3)T. We set

. There are J = 10 centers. The number of subjects within

each center varied under different scenarios. Censoring times were generated from either a

Uniform distribution or an exponential distribution. In order to compare direct

standardization with indirect standardization in the framework of semiparametric models,

SMR and SRR were calculated at t = 1, t = 2 and t = 3. Each data configuration was

replicated 1000 times.

3.1. Setting 1: Center-independent hazards

The first simulation setting considered the case where the hazard functions are equal across

centers for all t ∈ [0, τ]. The censoring and covariate distributions were chosen to be center-

independent. Specifically, censoring times were generated from an Uniform (0.5, 10)

distribution; Zi1 followed a Bernoulli (0.5) distribution; Zi2 followed a logistic distribution

with probability dependent on Zi1, and Zi3 came from a Normal distribution with constant

variance 25 and mean dependent on Zi1 and Zi2 (e.g., E[Zi3|Zi1, Zi2] = 50 + 0.2 Zi1 − 0.5 Zi2).

Under this setting, the hazard functions are equal across centers, such that the limiting

values of SRR equal 1 for each center. Results at time t = 3 are displayed in Table 1. For all

centers, the average estimated SRR was very close to 1. The average asymptotic standard

errors (ASE) were generally close to the empirical standard deviations (ESD), while the

empirical coverage probabilities (CP) were generally consistent with the nominal value. This

held for both the variance estimator derived in Theorem 1 (with corresponding asymptotic

expansion given by (6), (7) and (8) and its approximation given by (9) and (10). In fact, the

two sets of ASEs are virtually indistinguishable. Results were generally consistent across the

observation time distribution (data not shown).

It is worth noting that whether or not the covariate or censoring distributions were center-

dependent has no influence on the results in this setting. Correspondingly, similar results

were found for the case of center-dependent covariate and censoring distribution.

3.2. Setting 2: Center-dependent hazards; Center-independent covariate and censoring
distributions

For the second set of simulations, different values of αj and γj were used, such that the

hazard functions increased with increasing center number (j = 1, …, 10). The covariate

distributions were chosen to be center-independent, and were generated from the same

distributions from Setting 1. Results are provided in Table 2 for various sample sizes and

censoring percentages. The proposed SRR appears to be approximately unbiased, with

coverage probability close to 0.95 for both the standard error based on Theorem 1 and that

based on the approximation. When the center-specific sample size is small (e.g., 25), the

empirical CPs were slightly underestimated. Such results suggest that center-specific sample

sizes play an important role in the proposed methods. In particular, the minimum sample

size (across centers) needs to be reasonably large. Given this concern, centers of size less
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than 20 were eliminated from the real data analysis in Section 4. Collectively, simulation

results from Setting 1 and Setting 2 indicate that the proposed method is quite accurate at

and away from the null.

3.3. Setting 3: Center-dependent hazards, Center-dependent censoring distribution

As mentioned previously, estimators based on indirect standardization may be misleading if

either the censoring or covariate distributions are center-dependent. To illustrate this point,

we performed simulations with the following three conditions: (i) the hazard functions were

center-dependent, while center 2j − 1 had exactly the same hazard function as that of center

2j for j = 1, ···, 5; (ii) the censoring distributions for center 2j − 1 and 2j were substantially

different. For center 2j − 1, the censoring times were generated from a uniform distribution

such that the censoring mainly occurred in the later stages, while for center 2j the censoring

times were generated from a uniform distribution for which the censoring tended to occur in

the early stages; (iii) the covariate distributions (reused from Setting 2) were center-

independent.

We compared the SRR and SMR in Table 3 for Setting 3. With respect to the true values,

the limiting values of  and  are equal, as one would hope. This is not

the case for  and , the differences being due to differences in the

censoring distributions. With respect to the estimators themselves, both  and

 are approximately unbiased. Note that the bias of  was calculated as the

difference between it and its own limiting value.

3.4. Setting 4: Center-dependent hazards; Center-dependent covariate distributions

We also performed simulations under a setting in which the distribution of the covariate

vector differed by center. The set up for hazard functions and censoring distribution were the

same as in Setting 2, while center 2j and 2j − 1 had substantially different covariate

distributions. In center 2j − 1, the covariate Zi1 followed a Bernoulli (0.2) distribution, Zi2

followed a Bernoulli (0.8) distribution and Zi3 came from a Normal distribution with mean

30 and standard deviation 10. In center 2j, Zi1 followed a Bernoulli (0.8) distribution, Zi2

followed a Bernoulli (0.2) distribution, and Zi3 was derived from a Normal distribution with

mean 50 and standard deviation 10.

Results based on Setting 4 are given in Table 4. Trends are similar to those from Setting 3,

but much more pronounced. The limiting values of  are equal to those of

, as one would expect. Conversely, the true values of  and 

are different; with the differences being quite pronounced for j = 3, j = 4 and j = 5.

Moreover, it appears that SMR7(t) > SMR10(t), which is misleading in the sense that SRR7(t)

< SRR10(t).

4. APPLICATION

We applied the proposed methods to investigate the performance of transplant centers with

respect to post kidney transplant survival. Data were obtained from the Scientific Registry of
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Transplant Recipients (SRTR) and submitted by members of the Organ Procurement and

Transplantation Network (OPTN). The SRTR database contains information on all wait-

listed candidates, transplant recipients and organ donors in the United States. Included in the

analysis were adult patients (≥ 18 years of age at transplant) who underwent deceased donor

kidney transplantation between January 2000 and December 2008. Adjustment covariates in

this study included age, race, gender, diagnosis, donation after cardiac death (DCD),

Expanded Criteria Donor (ECD), BMI, dialysis time, indicator of previous kidney transplant

and cold ischemia time. These variables have face validity from a clinical perspective and

are based on a list of covariates used in SRTR. Transplant centers with sample size ≤ 20 and

patients who received a living-donor transplant were eliminated from additional analysis.

The final sample size was then n = 74, 088 from J = 217 centers across the United States.

Failure time (recorded in years) was defined as the time from transplantation to graft failure

or death, whichever occurred first. Graft failure was considered to occur when the

transplanted kidney ceased to function.

Stratified Cox regression was employed to model the hazard function. The indirectly

standardized estimator, , was calculated using SAS PROC PHREG with an offset. The

proposed directly standardized estimator, , was computed using SAS IML. Figure 1a

represents the pairwise comparisons of the SMRs and SRRs. Figure 1b shows the standard

error of these two measures. Figure 1c compares the orders of centers based on SRRs and

SMRs. As shown, there are some discrepancies between these two measures. We applied

bootstrapped techniques to evaluate whether the change in center-specific orderings (SMR

versus SRR) exceeded that attributable to only sampling variation. Specially, we calculated

the distribution of center-specific SMR orderings from 100 bootstrapped samples. We then

calculated the 95% confidence intervals (CI) of these orders. Based on the bootstrapped

resamples, for 20 out of 217 centers, the 95% confidence intervals (CI) based on SMR does

not cover the order based on SRR from the original dataset. Among these 20 centers, 10 had

SRR significantly different from the national average.

Using the asymptotic normality of the proposed estimators, we constructed the point-wise

confidence intervals for SRR at t = 5 years (Figure 2). Center numbers are re-ordered by

values of SRR. A total of 38 centers had observed number of events significantly lower than

the expected calculating based on the national average hazards, while 28 centers were

significantly above the expected. It is clear that the hazard functions varied among centers.

Tables 5 presents the pairwise comparison of the numbers and percentages of “outlier”

centers identified by p-values corresponding to their SMRs and SRRs (using tests of H0:

SMRj = 1 and H0: SRRj = 1, respectively). A total of 6 centers changed “memberships”

based on these two measures. Specifically, 2 centers were flagged to be significant based on

SMR but flagged to be normal based on SRR; on the other hand, 4 centers were flagged to

be significant based on SRR but flagged to be normal based on SMR. Through fitting a

sequence of logistic regression models (rotating the center indicators as the response

variates), it was revealed that, for these 6 centers, approximately half of the adjustment

covariates had distributions significantly different from the remaining centers. In addition,

through fitting a Cox model using censored as the event, 3 of the 6 centers in question were

significantly predictive of the censoring hazard. In summary, we do observe some
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differences when comparing center effects estimated through direct versus indirect

standardization, and the strongest examples of such discrepancies appear to be due to

differences in the center-specific covariate and censoring distributions; consistent with the

concepts described earlier in this report.

5. DISCUSSION

We propose semiparametric methods for estimating standardized rate ratios, as a means of

evaluating center-specific mortality through direct standardization. Large-sample properties

are derived and shown through simulation to be appropriate in finite samples. A

computationally faster variance estimator is proposed for the SRR, and is shown to work

practically as well as the full version. Application of the methods demonstrates several

significant differences among kidney transplant centers in the United States.

There is some judgement required in deciding when to use indirect standardization and when

to use direct standardization. Indirectly standardized estimators, such as SMR, provides a

valid approach to evaluate how does a center’s mortality compare to that predicted at the

population level for the kinds of patients at this center. However, it is important to

emphasize that center-specific SMRs should not be compared with one another (a caution

that applies to all indirectly standardized rates). The SRR, a directly standardized measure,

does not share this drawback. The SRRs for two given centers will be unequal only because

the center-specific mortality hazards differ; direct standardization accounts for imbalance

with respect to center-specific covariate and censoring distributions. The proposed SRR

shares the SMR’s ease of interpretation, but rectifies its key disadvantages and, hence, is a

more appropriate choice in settings where mortality comparisons across centers are an

objective.

The degree to which the SMR and SRR are different will depend on the application. In some

settings, the two may not agree well, while in others they may be quite similar. The only

way to know with certainty if SMR and SRR are equal would be to calculate both measures,

which would not be a desirable option in many cases. In settings where, for a particular

center, the SMR and SRR were unequal, it would be very difficult to claim that the SMR

was correct; for the several reasons documented previously. Given the high stakes of

evaluations by regulatory bodies, and the fact that the credibility of such organizations

depends in part on the accuracy of their evaluations, it would appear the preferred analysis is

the one that is most likely to be accurate.

The proposed SRR is computed using a stratified Cox model, which makes no assumptions

about the functional form of the impact of center on the hazard function. The stratification

by center plays a major role. For instance, the expected number of deaths considers each

patient’s covariate vector, such that the regression parameter must be estimated consistently.

Unless the death hazard is conditionally independent of center given the covariates,

covariate effect estimates will generally be biased if based on a model with a non-linear link

function and no accounting for center. This is an issue for the SMR as well, particularly

since the Cox version of the SMR has historically been computed using a common-baseline

(i.e., unstratified) model. He [13] proposed modifying the SMR through stratification,

He and Schaubel Page 10

Stat Med. Author manuscript; available in PMC 2015 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



leading to the quantity we denoted by SMR and used in simulations (Section 3) for

comparisons with the SRR. Such properties were demonstrated empirically by [13]; the

magnitude of the bias (in the case of unstratified Cox models) increases when covariates are

also center-dependent.

Random effects models are an option for contrasting centers. Moreover, a Bayesian

formulation may be an attractive approach for center effect studies. The advantage for

random effects model is that this approach would allow for the inclusion of even very small

centers. In contrast, when the number of events for a center is small, the estimated center

parameter from a fixed effect model may be unstable. However, Kalbfleish and Wolfe [14]

compared the properties of a fixed effect model (FEM) and a random effect model (REM)

for the purpose of profiling kidney dialysis facilities under various conditions. Essentially,

the REM estimates are shrunk toward overall mean, and hence reduce the reported variation

of facility performance. Second, the FEM method has the highest statistical power to

identify exceptional facilities, for a given false positive rate; and identifying such extreme

facilities is usually a main objective of center evaluations. Another issue for REM is the

potential confounding effects when the patient risks are correlated with center effects. These

findings suggest that a simple REM method may not be good enough and more sophisticated

approaches are necessary. Further discussion of such issues is provided by Ohlssen et al.

[15], who develop a more flexible random effects model using Bayesian nonparametric

methods, in order to remedy the influence of outlying centers to which basic random effects

models are susceptible.

The direct standardization methods derived in this report could be extended in several useful

directions. Perhaps most notably, it is often of interest to evaluate center effects in settings

where the event of interest is recurrent (e.g., hospitalizations, infections). Furthermore, it

would also be useful to develop methods based on direct standardization that can

accommodate competing risks or dependent censoring. Direct standardization could also be

applied to compare center-specific survival probability and restricted mean lifetime.

Acknowledgments

This work was supported in part by National Institutes of Health grant 5R01-DK070869 and a grant from the
Michigan Institute for Clinical and Health Research (MICHR). The authors thank the Scientific Registry of
Transplant Recipients (SRTR) for access to the organ failure database.

References

1. Cox DR. Regression models and life tables (with Discussion). Journal of the Royal Statistical
Society, Series B. 1972; 34:187–200.

2. Berry G. The analysis of mortality by the subject-years method. Biometrics. 1983; 39:173–184.
[PubMed: 6871346]

3. Breslow, NE.; Day, NE. The standardized mortality ratio. In: Sen, PK., editor. Biostatistics:
Statistics in Biomedical, Public Health and Environmental Sciences. Vol. The Bernard G.
Greenberg. 1985. p. 55-74.

4. Hazel, I. Encyclopedia of Biostatistics. 2. Vol. 7. Wiley; 2005. Standardization methods; p.
5151-5163.

He and Schaubel Page 11

Stat Med. Author manuscript; available in PMC 2015 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



5. Logan BR, Nelson GO, Klein JP. Analyzying center specific outcomes in hematopietic cell
transplantation. Lifetime Data Analysis. 2008; 14:389–404.10.1007/s10985-008-9100-6 [PubMed:
18836830]

6. Spiegelhalter D, Johnson CS, Bardsley M, Blunt I, Wood C, Grigg O. Statistical methods for
healthcare regulation: rating, screening and surveillance. Journal of the Royal Statistical Society,
Series A. 2012; 175:1–47.10.1111/j.1467-985X.2011.01010.x

7. Keiding N. The method of expected number of deaths, 1786-1886-1986. International Statistical
Review. 1987; 55:1–20. [PubMed: 12179583]

8. Wolfe RA, Gaylin DS, Port FK, Held PJ, Wood CL. Using USRDS generated mortality tables to
compare local ESRD mortality rates to national rates. Kidney International. 1992; 42:991–996.
[PubMed: 1453592]

9. Wolfe RA. The standardized morality ratio revisited: improvements, innovations, and limitations.
American Journal of Kidney Diseases. 1994; 24:290–297. [PubMed: 8048436]

10. Dickinson DM, Shearon TH, O’Keefe J, Wong HH, Berg CL, Rosendale JD, Delmonico FL, Webb
RL, Wolfe RA. SRTR center-specific reporting tools: posttransplant outcomes. American Journal
of Transplantation. 2006; 6:1198–1211.10.1111/j.1600-6143.2006.01275.x [PubMed: 16613596]

11. Cox DR. Partial likelihood. Biometrika. 1975; 62:269–276.

12. Breslow NE. Contribution to the discussion on the paper bt D. R. Cox, regression and life table.
Journal of the Royal Statistical Society, Series B. 1972; 34:216–217.

13. He, K. PhD Thesis. University of Michigan, Department of Biostatistics; Ann Arbor: 2012. Semi-
parametric and Parametric Methods for the Analysis of Multi-center Survival Data.

14. Kalbfleish JD, Wolfe RA. On monitoring outcomes of medical provider. Statistics in the
Bioscience. 2013; 5(2):286–302.

15. Ohlssen DI, Sharples LD, Spiegelhalter DJ. Flexible random-effects models using Bayesian semi-
parametric models: application to institutional comparisons. Statistics in Medicine. 2007; 26(9):
2088–2112.10.1002/sim.2666 [PubMed: 16906554]

16. van der Vaart, AW.; Wellner, JA. Weak Convergence and Empirical Processes. Springer; New
York: 1996.

17. Kosorok, MR. Springer Series in Statistics. 2008. Introduction to Empirical Processes and
Semiparametric Inference.

18. Andersen, PK.; Borgan, Ø.; Gill, RD.; Keiding, N. Statistical Models Based on Counting
Processes. New York: 1993. Springer Series in Statistics

19. van der Vaart, AW. Asymptotic Statistics. Cambridge: 1998.

APPENDIX A

To derive the large-sample properties for the SRR, we impose the following regularity

conditions under the stratified Cox model:

a. (Xi, Δi, Gi, Zi) are independent and identically distributed random vectors.

b. P(Xi ≥ τ) > 0 where τ is a pre-specified time point.

c. Zik have bounded total variation, i.e., |Zik| < κ for all i = 1, …n and k = 1, …, p,

where κ is a constant and Zik is the kth component of Zi.

d. .

e. Continuity of the following functions:
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and , where  is the limiting value of  for d = 0, 1, 2, with

 and  bounded and  bounded away from 0 for t ∈ [0, τ].

f. Positive-definiteness of the matrix Ωj(β):

where  is the limiting value of Z̄j(t; β).

g. P(Gij = 1|Zi) > 0.

Condition (a) is employed in the derivation of the weak convergence. Condition (b) is a

standard identifiability requirement. Condition (c) leads to the boundedness of several

quantities and is applicable in most practical applications. Conditions (d) and (e) are not

essential but simplify our proofs. With respect to condition (g), the selection probability

given covariates is non-zero for all centers. This condition guarantees that the sample size nj

of each center goes to ∞ as the total sample size n goes to ∞.

We first show that  uniformly for t ∈ [0, τ]. The triangle inequality

leads to

(A.

1)

(A.2)

To show that  uniformly in t, recall that

, where  is the

empirical measure; i.e., . The

collection of all cells, [t, ∞), in the real line is a VC class of index 2 and, hence, satisfies the

entropy conditions for the Glivenko-Cantelli Theorem [16]. The boundedness conditions

ensures that {I(X ≥ t)I(G = ℓ)exp(βTZ), t ∈ [0, τ]} belong to some Glivenko-Cantelli class;

i.e.,  uniformly in t ∈ [0, τ]. Next, for β, such that  (e.g, [17,

18]), the bounded condition of {Λ̂0(t), t ∈ [0, τ]} and an application of the Dominant

Convergence Theorem entails that  uniformly in t. Similarly, 

uniformly in t. We already demonstrate that 

uniformly for t ∈ [0, τ]. Similarly,  uniformly

for t ∈ [0, τ]. The monotonicity and boundedness conditions ensure that
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 uniformly for t ∈ [0, τ]. Therefore,

we have that  uniformly for t ∈ [0, τ].

To prove weak convergence, we use the following decomposition,

(A.

3)

(A.4)

First, we have that

where w(t; β) and rj(u; β) are defined in Section 2. Note that the second equality of the

argument above is obtained through the Functional Delta Method and Lemma 19.24 of [19].

Based on previously established empirical process theory for the Cox model (e.g., [17]), we

have that

where the op(1) is uniform in t and  is the empirical process defined by

 . Through the Functional Delta Method,

Combining (A.3) and (A.4),
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Since the VC classes with finite index satisfy the entropy conditions for the Donsker

theorem [16], {I(X ≥ t), t ∈ [0, τ]} and {I(X ≤ t), t ∈ [0, τ]} belong to some Donsker classes.

The same holds for the bounded monotone stochastic process {N(t), t ∈ [0, τ]}. Finally, the

class of functions of Lipschitz transformations of Donsker classes is Donsker. Therefore,

with the various bounded conditions and apply the Donsker theorem, Theorem 1 follows.
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Figure 1.
Evaluation of J=217 kidney transplant centers
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Figure 2.

Evaluation of J=217 kidney transplant centers: Point estimates and 95% confidence interval of  at t = 5 years.
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Table 5

Number and percentage of centers giving significant results under SMR and SRR

SMR

SRR

Non-significant Significant Row-sum

Non-significant 147 (67.8%) 4 (1.8%) 151 (69.6%)

Significant 2 (0.9%) 64 (29.5%) 66 (30.4 %)

Column-sum 149 (68.7%) 68 (31.3%) 217 (100%)
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