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Summary

Phase II clinical trials are often conducted to determine whether a new treatment is sufficiently

promising to warrant a major controlled clinical evaluation against a standard therapy. We

consider single-arm phase II clinical trials with right censored survival time responses where the

ordinary one-sample logrank test is commonly used for testing the treatment efficacy. For

planning such clinical trials this paper presents two-stage designs that are optimal in the sense that

the expected sample size is minimized if the new regimen has low efficacy subject to constraints

of the type I and type II errors. Two-stage designs which minimize the maximal sample size are

also determined. Optimal and minimax designs for a range of design parameters are tabulated

along with examples.
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1 Introduction

The most common primary endpoint in phase II cancer clinical trials is tumor response

which is a binary variable that indicates the size of an index tumor has changed substantially

following treatment. Sometimes, this endpoint is not appropriate. Examples include studies

involving blood cancers and surgical studies with adjuvant chemotherapies where the tumor

is completely resected, so that tumor response is not a meaningful endpoint. Also, tumor

response is not a good endpoint for phase II trials on experimental cytotoxic therapies as

cytotoxic therapies are meant to prevent the growth of tumor rather than shrinking it. In

these cases, a preferred clinical outcome may be the time to disease progression or death.

Because of the loss to follow-up or termination of the study, event times are subject to right

censoring. Following the standard terminology, we will use time-to-event, failure time, and

survival time as synonymous in this paper.
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In this paper, we present optimal and minimax two-stage designs for single-arm phase II

trials with a survival outcome as the primary endpoint. Several articles have already

appeared in the literature which present single-arm multi-stage procedures specifically

developed for phase II trials. Gehan [1] and Fleming [2] developed two-stage designs for

estimating the response rate, and Simon’s [3] optimal design is one of the most commonly

used designs developed for phase II clinical trials. Fleming used normal approximation in

multiple testing procedures, and Simon determined optimal designs by enumeration using

exact binomial probabilities, but both of them considered the case when the primary

response is binomial. Although tumor response is a frequently used endpoint in phase II

clinical trials, we have increasingly observed time-to-event measure primary endpoints in

phase II cancer trials [4]. Thus it is valuable to investigate optimal two-stage designs for

time-to-event endpoints in phase II clinical trials.

Case and Morgan [5] proposed optimal two-stage designs for a two-sample log-rank type

test allowing for an accrual suspension before stage 1 testing. Their method finds the

optimal accrual and follow-up periods for each stage given accrual rate, (α, 1 − β), rejection

and acceptance values at stage 1 and the number of events after each stage. At stage 2, they

use the critical value z1−α of single-stage designs. There are many differences between Case

and Morgan [5] method and ours, but one major difference that the number of events is an

output variable in our method, while it is an input variable in theirs. By specifying the

number of events for each stage, Case and Morgan [5] method just finds an optimal

allocation of the accrual period and follow-up period for each stage, while ours extends the

optimality condition to the balance between stages 1 and 2. Our method can be extended to

allow for an accrual suspension for additional follow-up after stage 1 as in Case and Morgan

[5], but we do not consider this option since it is rarely carried out in real clinical trials.

Section 2 reviews a single-stage procedure for single-arm phase II clinical trials when the

primary outcome is a survival endpoint. In Section 3 we propose two-stage designs and

analysis methods for a continuous survival time outcome in single arm phase II clinical

trials. We describe how to obtain optimal two-stage designs in such trials and present the

required sample sizes and critical values at each of the two stages in Section 4. Simulations

to illustrate empirical size and power for each design are also presented. We conclude this

article with some discussion on the implications of these optimal two-stage designs in

Section 5.

2 Single-Stage Procedure

The one-sample log-rank test has been investigated by many statisticians including Berry [6]

and Finkelstein et al.[7].

2.1 One-Sample Log-Rank Test

Suppose that n patients are treated by the experimental therapy of a single-arm phase II

clinical trial. For patient i(= 1, …, n), let Ti denote the survival time with a survival function

S(t) = P(Ti ≥ t). Because of censoring, we observe {(Xi, δi), i = 1, …, n} instead of the

survival times, where Xi denotes the minimum of survival time Ti and censoring time Ci and
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δi = I(Ti ≤ Ci) denotes the event indicator taking 1 if an event is observed and 0 otherwise.

We assume that the survival and censoring times are independent.

Let Λ0(t) denote the cumulative hazard function of a historical control that is chosen for a

new single-arm phase II trial. If the historical control data come from a previous study, Λ0(t)

may be the Nelson-Aalen estimate [8],[9] from the data. Let Λ(t) denote the cumulative

hazard function of an experimental therapy that will be observed from a new phase II trial.

We want to test H0 : Λ(t) = Λ0(t) against H1 : Λ(t) < Λ0(t) for all t > 0.

Let Ni(t) = δiI(Xi ≤ t) and Yi(t) = I(Xi ≥ t) be the event and at-risk processes, respectively.

Under H0 for large n,

is approximately normal with mean 0 and its variance can be consistently estimated by

Hence, we reject H0 with one-sided type I error rate α if Z = W/σ̂ < −z1−α [7]. Here Z1−α
denotes the 100(1 − α) percentile of the standard normal distribution.

Note that the standardized test statistic, W/σ̂ is expressed as

where  denotes the observed number of events and

. Note that, under H0,  uniformly, so

that  is asymptotically identical to

 which is the expected number of events under H0, where S0(t) =

exp{−Λ0(t)} and G(t) = P(Ci ≥ t).

2.2 Sample Size Calculation

We calculate the required sample size n for a specified power under a specific alternative

hypothesis H1 : Λ(t) = Λ1(t)(< Λ0(t)). Under H1,  uniformly converges to

G(t)S1(t), so that σ̂2 converges to

(1)

where S1(t) = exp{−Λ1(t)}.
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On the other hand, we have

so that, under H1, W is approximately normal with mean

Assuming that Λ1(t) and Λ0(t) are close, we calculate its variance by

(2)

where Λ̄(t) = {Λ0(t) + Λ1(t)}/2 and S̄(t) = exp{−Λ̄(t)}.

Hence, we have the power function

By solving this equation and replacing , we obtain the required sample size

(3)

Although the one-sample log-rank test is nonparametric, its sample size calculation requires

specification of survival and censoring distributions. We now derive sample size formulas

under some practical design settings.

Under Uniform Censoring and Exponential Survival Models—For a practical

sample size calculation, we assume that the survival distribution of the experimental therapy

is exponential with hazard rate λ0 under H0 and λ1 under H1. The survival functions are

given as S0(t) = exp(−λ0t) under H0 and S1(t) = exp(−λ1t) under H1. Under exponential

models for survival distributions, we have a proportional hazards model, Δ = λ0/λ1.

Assuming that patients are accrued at a constant rate during period a and followed for an

additional period of b, the censoring distribution is given as U(b, a + b) with a survivor

function G(t) = P(C ≥ t) = 1 if t ≤ b; = (a + b)/a − t/a if b ≤ t ≤ a + b; = 0 otherwise.

Under a uniform censoring and an exponential survival models, it is easy to show that
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and

where Δ = λ0/λ1.

When Accrual Rate is Given—Note that ω = ω(a), , and  are

functions of an accrual period a. So, sample size formula (3) requires specification of an

accrual period as an input variable. However, at the design stage of a clinical trial, we

usually know the expected accrual for the trial, rather than the accrual period. Let r denote

the expected accrual rate. For large n, we have n ≈ a × r, so that, given r, a should be an

output variable of a sample size calculation. In (3), by replacing n with a × r, we obtain an

equation on a,

(4)

We solve this equation using a numerical method, such as the bisection method. Let a*

denote the solution to one of these equations. Then, the required sample size is given as n =

a* × r.

Example 1 Suppose that the progression-free survival (PFS) for a standard therapy

(historical control) has the exponential distribution with a median of θ0 = 1 year. We will be

interested in the experimental therapy if its median PFS is θ1 = 1.5 years or longer (λ0 =

0.693 and λ1 = 0.462). We want to design a study to detect this improvement in PFS by the

experimental therapy with 1 − β = 90% power using the one-sample log-rank test with one-

sided α = 10% (z1−α = z1−β = 1.282). Further, suppose that this trial is expected to accrue

about 2 to 3 patients per month (or r = 30 per year) based on the recent accrual rate of

patients at the study institution. By solving equation (4) with respect to a, we obtain an

accrual period of a* = 1.96 years (or about 24 months), and a required sample size of n = a*

× r = 30 × 1.96 = 59 patients. For a = 1.96 and the given (b, λ0, λ1) values, we have ω =

−0.293,  and .

From 10,000 simulations under the design setting with n = 59, we observed an empirical

type I error of 9.3% and power of 89%.

3 Two-Stage Procedure

We consider an interim analysis only for futility testing as in most traditional single-arm

phase II trials, but the cases with efficacy only or with both futility and efficacy can be

easily derived.
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3.1 Two-Stage One-Sample Log-Rank Test

Suppose that n1 is the number of patients treated by the experimental therapy during the first

stage and n2 is the additional number of patients treated by the experimental therapy during

the second stage. Let n = n1 + n2 denote the maximal sample size. We conduct an interim

analysis at time τ which may be determined in terms of number of events or by calendar

time. In order to avoid treating too many patients when the experimental therapy is shown to

be inefficacious, we may assume that τ is smaller than the planned accrual period a.

For subject i = 1, …, n, let Ti denote the survival time with survival distribution Sh(t) and

cumulative hazard function Λh(t) under Hh, h = 0, 1, and ei ∈ [0, a] denote the entering time

in the trial. Let Ci denote the censoring time of patient i at the end of stage 2 with survivor

function G(t) = P(Ci ≥ t) that is defined by the accrual trend and additional follow-up period.

The censoring time at the interim analysis is denoted as C1i = max{min(τ − ei, Ci), 0}. If

patient i enters the study during stage 1, i.e. ei < τ, then the censoring variable at the interim

analysis has a survivor function G1(t) = P{min(τ − ei, Ci) ≥ t}.

The observed survival data are expressed as (X1i, δ1i) at the interim analysis and (Xi, δi) at

the final analysis, where X1i = min(Ti, C1i), δ1i = I(Ti ≤ C1i), Xi = min(Ti, Ci), and δi = I(Ti ≤

Ci). We define at-risk processes Y1i(t) = I(X1i ≥ t) and Yi(t) = I(Xi ≥ t), and event processes

N1i(t) = δ1iI(X1i ≤ t) and Ni(t) = δiI(Xi ≤ t).

The test statistics at the interim and final analyses are expressed as

and

respectively. For large n1 and n, the distribution of (W1, W) under H0 is approximately

bivariate normal with means 0, variances and covariance that can be approximated by

and , respectively, see Tsiatis [10]. So, the correlation coefficient between

W1 and W is given as ρ̂ = σ̂
1/σ̂.

Note that n1 denotes the number of patients who have entered to the study before the interim

analysis time τ, i.e. . At the interim analysis, the patients who have not

entered to the study yet, i.e. ei > τ, have their survival times censored at time 0, i.e. X1i = 0
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and δ1i = 0, so that they make no contributions to W1 and . A two-stage trial using the one-

sample log-rank test is conducted as follows.

At the design stage, we specify Λ0(t) and α, together with an interim analysis time and an

early stopping value c1. After the first stage of the trial, we reject the experimental therapy

and stop the trial if W1/σ̂
1 ≥ c1. Otherwise, we continue to accrue and treat patients for the

second stage. After the second stage, we accept the experimental therapy if W/σ̂ < c. Here,

critical value c satisfies

(8)

If (X, Y) is a bivariate normal random vector with means, μx and μy, variances  and , and

correlation coefficient, ρ, then it is well known that the conditional distribution of X given Y

= y is normal with mean μx + (ρσx/σy)(y − μy) and variance . This result simplifies

the calculation of type I error probability and power in our paper.

Let Z1 = W1/σ̂
1 and Z = W/σ̂. Noting that, conditioning on Z = z, Z1 is approximately normal

with mean ρ̂z and variance 1 − ρ̂2, we approximate equation (8) by

(9)

where ρ̂ = σ̂1/σ̂, and ϕ(·) and Φ(·) are the probability density and cumulative distribution

functions of N(0, 1) distribution, respectively.

3.2 P-value Calculation for Two-Stage Designs

Our testing rule just gives us the decision to accept the experimental therapy or not.

However, often we may want to know how significant the evidence will be against H0 : Λ(t)

= Λ0(t). We obtain this information by calculating a p-value. An unbiased p-value should

reflect the two-stage procedure of our testing. If a study is stopped early after observing z1 =

w1/σ̂
1(> c1), then we obtain a p-value by

If a study is continued to the second stage and observes z = w/σ̂, then by modifying (9) we

obtain a p-value by

where (Z1, Z) is a bivariate normal random vector with marginal means of 0 and variances of

1, and a correlation coefficient of ρ̂ = σ̂
1/σ̂. Note that the testing decision based on this p-

value coincides with that based on the critical value as described in Section 3.1.
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3.3 Sample Size Calculation for Two-Stage Design

At first, we derive a power function given τ and c1 together with accrual period a, follow up

period b, Λh(t) for h = 0, 1 and (α, 1 − β). The interim analysis time τ may be determined in

terms of calendar time or number of events observed, but at the design stage we should

specify it as a calendar time. If we want to specify it in terms of number of events at the

design stage, we can convert it to a calendar time based on the expected accrual rate and the

specified survival distribution.

The power function is given as

Before deriving a power function, we have to calculate c for a specified type I error rate α,

i.e.

So, for a power calculation, we need to derive the limits of  and σ̂2 under H0 and H1, and

ω1 = EH1 (W1), ω = EH1(W), varH1(W1) and varH1(W) under H1.

Under H0, we have EH0(W1) = EH0(W) = 0, and  and σ2̂ converge to

and

respectively. Note that varH0(W1) = υ1 and varH0(W) = υ under H0. By independent

increment of the one-sample log-rank statistic, corr(W1, W) is given as .

Under H1, we have  and , where

and
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Furthermore,  and σ̂2 converge to

and

respectively. The variances of W1 and W are approximated by

and

respectively under H1. By independent increment of the one-sample log-rank statistic,

corr(W1, W) is given as ρ1 = σ11/σ1.

If the interim analysis time τ and the stopping value c1 are reasonably chosen, the power of

a two-stage design is not much lower than that of the corresponding single-stage design. So,

when searching for the required accrual period (or sample size) of a two-stage design, we

may start from the accrual period for the single-stage design. Assuming an accrual pattern

with a uniform rate, the design procedure of two-stage designs can be summarized as

follows.

• Given (α, 1 − β, r, b, Λ0(t), Λ1(t)), calculate the sample size n and accrual period

a* required for a single-stage design.

• Determine an interim analysis time τ during the accrual period a* of the chosen

single-stage design, i.e. τ < a*, and the stopping value c1 at the interim analysis.

• The accrual period required for a two-stage design is obtained around a* as

follows: At a = a* (note that n1 ≈ rτ and n ≈ ra*),

a. Obtain c by solving equation

b. Given (n1, n, c1, c, α), calculate
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where

• If the power is smaller than 1 − β, increase a slightly, and repeat above procedure

until the power is close enough to 1 − β.

For a candidate design (n, τ, c1, c), the probability of early termination (PET) under H0,

P(W1/σ̂
1 > c1|H0), is approximated by PET = Φ̄(c1), where Φ̄(·) = 1 − Φ(·). Let n2 = n − n1

denote the number of patients who are accrued after the interim analysis. Note that, given

the maximal accrual period a, we have n2 = {(a − τ) ∨ 0}r. So, the expected sample size

(EN) under H0 is given as

Under Uniform Accrual and Exponential Survival Models—Suppose that the

survival distribution is exponential with hazard rate λ0 under H0 and λ1 under H1. If

patients are accrued at a constant rate during period a and followed for an additional period

of b, and the interim analysis is taken place before completion of patient accrual (i.e. τ < a),

then the censoring distribution at the interim analysis is U(0, τ) and that at final analysis is

U(b, a + b), for which the survivor functions are given as

and

respectively. Note that we assume administrative censoring only. If loss to follow up is

expected, then we may incorporate it in the calculation if its distribution can be modeled or

we may increase the final sample size by the expected proportion of loss to follow up.

Under these assumptions, we can show that
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Example 2: We consider the design parameter values of Example 1, (α, λ0, λ1, r, b) = (0.1,

0.693, 0.462, 30, 1). Then, we can show that the two-stage design defined by (τ, c1, c, n) =

(1.27, 0.610, −1.275, 60) has 90% power like the single-stage of Example 1. This two-stage

has PET = 0.27 and EN = 54.0. By accruing only one more patient in maximum, the two-

stage design saves 6 patients in expectation compared to the size of the single-stage design.

From 10,000 simulations on the design setting, the two-stage design is shown to have an

empirical type I error of 9.3% and a power of 88%.

4 Optimal Two-Stage Designs

In this section, we propose some optimal two-stage designs for given (α, 1−β, r, b, Λ0(t),

Λ1(t)). Given (r, b), a candidate two-stage design specified by (n, τ, c1, c) has a type I error

rate of α for λ(t) = λ0(t) and a power no smaller than 1 − β for λ(t) = λ1(t). We consider

two optimality criteria, one to minimize the expected sample size under H0 and the other to

minimize the expected study period under H0. By specifying an accrual rate r, we assume a

uniform accrual trend, but we can extend the following results to any accrual pattern.

4.1 Optimal Designs

Among the candidate two-stage designs, we define the optimal design as the one minimizing

the expected sample size, or the expected accrual period (EA), given as EA = a − {(a − τ)∨
0} × PET, under H0. We also define the minimax design as the one minimizing the maximal

sample size n, or equivalently the maximal accrual period a. For a given n, there may be

multiple two-stage designs satisfying the (α, 1 − β) condition. The minimax design has the

smallest EA among them.

Through our experience from numerical studies, we have found that the maximal accrual

period of the minimax design is not very different from the accrual period of the

corresponding single-stage design, a reasonable interim analysis should be conducted when

the survival data are somewhat matured, and the rejection value of stage 1, c1, is not very

different from 0. Given (α, 1 − β, r, b, Λ0(t), Λ1(t)), let a* denote the accrual period of the

single-stage design. An efficient computational procedure to identify the minimax and

optimal designs can be summarized as follows.
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Search for Optimal Designs

A. Specify (α, 1 − β, r, b, Λ0(t), Λ1(t)).

B. Find the accrual period a* for the single-stage design requiring the smallest sample

size.

C. Changing the values of a, τ and c1, calculate c and power. As reasonable range and

increment for these design parameters, we chose a ∈ [0.80a*, 1.5a*] and τ ∈
[0.20a*, 1.2a*] with an increment of 1/r for each of them, and c1 = [−0.2, 1] with

an increment of 0.005.

i. If the power is smaller than 1 − β, then go to the next combination of (a, τ,

c1).

ii. If the power is larger than or equal to 1 − β, then calculate PET and EA.

- If EA is smaller than the minimum of the expected

accrual periods among the all candidate designs we have

gone through, then save the current (a, τ, c1, c, EA, PET,

power).

- Otherwise, go to the next combination of (a, τ, c1).

D. Among the designs saved during procedure (C), the one with the smallest a is the

minimax design and the one with the smallest EA is the optimal design.

Table 1 shows single-stage design and minimax and optimal two-stage designs for various

settings defined by the design parameter values. We consider an annual accrual rate of r =

30 or 60 patients, a follow-up period of b = 1 year and an exponential survival distribution

with an annual hazard rate λ0 = 0.7 under H0, corresponding to a median survival of about

one year. Under H1, we assume a hazard rate of Δ = λ0/λ1 = 1.4, 1.5, 1.6 or 1.7. We also

consider (α, 1 − β) = (0.05, 0.9), (0.1, 0.9) or (0.05, 0.85). Under each design setting, we

report the sample size for the single-stage design n*. For the minimax and the optimal two-

stage designs, we report expected sample size n1, analysis time τ and rejection value c1 at

the first stage, maximal sample size n, maximal accrual period a, second stage rejection

value c, expected sample size under H0 EN, and probability of early termination under H0

PET. For example, under (r, λ0, Δ, α, 1 − β) = (30, 0.7, 1.4, 0.05, 0.9), the optimal design

will conduct an interim analysis at τ = 1.9 years when about n1 = 57 patients are expected to

be entered, to reject the experimental treatment and terminate the study early if W1/σ̂
1 is

larger than c1 = −0.130. Otherwise, the trial will continue to accrue a total of 107 patients.

The expected sample size is 79.2 and the probability of early termination is 0.55 under H0.

On the other hand, the required numbers at the first and the second stages of the minimax

design are 62 patients and 98 patients, respectively. The sample size increases in 1 − β and r,

and decreases in α and Δ. Although not covered by our numerical study, it is easy to show

that sample size decreases in b and increases in λ0. We observe that the maximal sample

size n of the minimax two-stage design is identical to the sample size n* of the single-stage

design under most of the design settings. In order to minimize the maximal sample size n,

the minimax designs are similar to the corresponding single-stage designs in the sense that
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n1 is close to n and PET is low. Compared to the minimax designs, however, the optimal

designs conduct interim analyses earlier with a larger PET to minimize EN.

When Δ = 1.5 and the accrual rate is 30 patients per year, the sample size savings are as

large as 33% and 38% for the minimax and the optimal designs respectively compared to the

corresponding single-stage design if we stop the trial at the interim analysis. However, we

only need 1% and 10% more patients for the minimax and the optimal designs when we

continue and finish the trial at the second stage. With accrual rate 60 patients per year, the

sample size savings are as large as 32% and 38% for the minimax and the optimal designs

respectively compared to the corresponding single-stage designs if we stop the trial at the

interim analysis, whereas we need as little as 1% and 7% more patients of the single-stage

design for the minimax and the optimal designs when we continue and finish the trial at the

second stage.

4.2 Implementation of Optimal Two-Stage Designs

The minimax and optimal two-stage designs are based on the accrual rate expected at the

design stage. Once the study is open, however, the realized accrual pattern may be different

from that specified at the design. In this case, the analysis times and the variances of W1 and

W and their correlation coefficient may be different from those specified at the design stage.

Noting that the power of the log-rank test depends on the number of events, rather than the

number of patients or calendar time, we propose to choose the interim and the final analysis

times when we have the expected numbers of events by the chosen two-stage design. Let D1

and D denote the expected number of events under H1 at the interim and final analysis times

based on the design parameters, respectively, i.e.

and

where n1 = r min(τ, a). If λ0 ≈ λ1, the asymptotic distribution of (W1/σ̂
1, W/σ̂) is a bivariate

normal with means 0, variances 1 and correlation coefficient .

Hence, as far as the real accrual trend is close to the expected one at the design, so that n1

patients are entered at τ and a total of n patients are entered during the expected accrual

period a, the two-stage design specified by (α, λ0, c1, τ, r, b) will be identical to that

specified by (α, λ0, c1, D1, D). Recall that c1 is fixed by the design, but c is recalculated for

a type I error rate of α reflecting the realized accrual trend. So, τ, c, a and b will be used as

just references during the trial.

In summary we propose to conduct a study with a two-stage design as follows.

• Specify (λ0, λ1, α, 1 − β).

• Choose a two-stage design (n1, n, τ, c1, c, a, b).
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• Calculate D1 and D based on the selected two-stage design.

• Accrue n patients and follow them until D events are observed unless the study is

stopped early by the stage 1 analysis.

Stage 1: When D1 events are observed, conduct the stage 1 analysis by calculating

W1 and , and stop the trial rejecting the study therapy if W1/σ̂
1 > c1. Otherwise,

proceed to stage 2.

Stage 2: Conduct the final analysis when D events are observed by calculating W,

σ̂2 and critical value c′ based on ρ̂ = σ̂
1/σ̂. We reject the study therapy if W/σ̂ > c′.

4.3 Simulation Study

The one-sample log-rank test is based on large sample approximation. To demonstrate the

small sample performance of our two-stage design, we conducted simulations under the

minimax and the optimal two-stage designs listed in Table 1. Given (λh, r, b), we generated

10,000 simulation samples of size n, and conduct two-stage analysis defined by (τ, c1). By

calculating the p-value for testing, we did not have to calculate c for each simulation sample.

We calculated the empirical size (for h = 0) and power (for h = 1) by the proportion of

simulation samples rejecting H0 (i.e. those with p-value< α) among 10,000 samples. In our

simulations, the stage 1 sample size may not be exactly n1 for each simulation sample since

the interim test is conducted at τ regardless of the sample size. And, n patients are accrued

during an accrual period of a and the final test is conducted at a + b.

Table 2 reports the empirical size and power of the single-stage and minimax and optimal

two-stage designs that are listed in Table 1. The one-sample log-rank test seems to be

slightly conservative under H0 and the designs are slightly underpowered under H1.

However, the empirical size and power are very close to their nominal levels overall.

5 Discussion

While a phase I trial of a new anticancer drug aims to gain information about the maximum

tolerated dose of a therapy by treating only three to six patients per dose level, the purpose

of a phase II trial is to determine whether the drug has sufficient activity against a specified

type of tumor to warrant its further development. Further development may mean combining

the drug with other drugs, evaluation in patients with less advanced disease, or initiation of

randomized controlled phase III studies in which a larger number of patients are treated and

followed for longer period of time. Oftentimes, a phase II study of a cancer treatment is

uncontrolled for obtaining an initial estimate of the degree of antitumor effect of the

treatment. In this paper, we have considered single-arm phase II clinical trials where right

censored failure time is the primary endpoint. We restricted our attention to two-stage

designs because in a multi-institution setting more than two stages are difficult to manage in

practice with no additional gain.

We have tabulated minimax and optimal phase II designs for (α, β) = (0.05,0.1), (0.1,0.1),

and (0.05,0.15) with a variety of hazard rates for alternative hypothesis, and through

simulations showed that they maintain the type I error rate and power closely to their

Kwak and Jung Page 14

Stat Med. Author manuscript; available in PMC 2014 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



nominal levels. In a phase II clinical trial of efficacy of a new treatment α is a less serious

error from a drug discovery viewpoint, but it is serious from a cost perspective since it leads

to unnecessary follow-up of a futile drug. The optimal designs achieve reductions in EN by

having a smaller first stage sample size than the minimax designs with a higher probability

early stopping when the study treatment is not efficacious A smaller first stage exposes

relatively fewer patients to the new treatment if it turns out to be inactive. However, the

minimax design may be more attractive than the optimal design when the difference in

expected sample size is small and the patient accrual rate is low.

The proposed two-stage designs are not only to save the sample size, but also to save the

study period. If the observed accrual of a study is much faster that expected, then we already

may have n patients accrued at the planned interim analysis time τ. In this case, we do not

save any patients by the chosen two-stage design, so that we may consider changing it to a

single-stage design by skipping the planned interim test. In this case, however, the required

follow-up period for the final analysis may be too long. As such, we may want to conduct an

interim analysis during the follow-up period, so that we can stop the study early and save the

valuable resources when we do not observe any promising evidence from the experimental

therapy. On the other hand, if the accrual of a study is too slow, then we may also want to

stop the trial early if the experimental therapy is not very efficacious compared to a

historical control, rather than dragging the study to complete the target accrual. Whatever is

the case, the maximal sample size n of a minimax design is very similar to that of the

corresponding single-stage design, so that we do not lose much by conducting an interim

analysis while saving sample size and study time.

Owzar and Jung [11] proposed to use the survival probability at a fixed time point in phase

II trials. The binary endpoints are to control the type I error rate exactly by using the

binomial distributions. However, by dichotomizing the survival data at a fixed time point,

we lose too much of efficiency. For example, suppose that a historical control therapy has a

one year PFS rate of p0 = 50% and we will be interested in the experimental therapy if its

one year PFS is p1 = 65% or higher. For (α, 1 − β) = (0.05, 0.9), by Simon [3], two-stage

design based on the binary outcome requires (n1, n) = (57, 93) with EN = 75.0 by the

minimax design and (n1, n) = (42, 105) with EN = 62.3 by the optimal design. Assuming

exponential PFS models, the corresponding hazard rates are λ0 = 0.693 and λ1 = 0.438.

Assuming an annual accrual rate of 60 patients and an additional follow-up period of one

year, two-stage one-sample logrank test requires (n1, n) = (50, 72) with EN = 67 for the

minimax design and (n1, n) = (44, 76) with EN = 65 for the optimal design. Note that the

two-stage one-sample log-rank test requires much smaller sample size than the two-stage

binary test. Furthermore, if there are censored observations before the cutoff time point, then

the binary test will have to exclude them in analysis while the one-sample log-rank test can

include them.

We note that large sample tests and sample size formula tend to be conservative and

underpowered with small sample sizes. When we used the exact variance formulas

 and , simulation results seemed to be

underpowered. After trying various approximations, we found that the formulas given in

Section 3.3 give the best performance.
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Fortran programs to search for minimax and optimal designs and simulations for a specific

two-stage designs are provided in the Web Supplementary Materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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