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Abstract

We propose a score-type statistic to evaluate heterogeneity in zero-inflated models for count data

in a stratified population, where heterogeneity is defined as instances in which the zero counts are

generated from two sources. Evaluating heterogeneity in this class of models has attracted

considerable attention in the literature, but existing testing procedures have primarily relied on the

constancy assumption under the alternative hypothesis. In this paper, we extend the literature by

describing a score-type test to evaluate homogeneity against general alternatives that do not

neglect the stratification information under the alternative hypothesis. The limiting null

distribution of the proposed test statistic is a mixture of chi-squared distributions which can be

well approximated by a simple parametric bootstrap procedure. Our numerical simulation studies

show that the proposed test can greatly improve efficiency over tests of heterogeneity that ignore

the stratification information. An empirical application to dental caries data in early childhood

further shows the importance and practical utility of the methodology in using the stratification

profile to detect heterogeneity in the population.
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1. Introduction

In many epidemiological and biomedical studies, the primary outcomes of interest take the

form of counts which can be well represented by standard distributions such as the binomial,

negative binomial and Poisson models. In practice, however, some count data exhibit a

higher incidence of zeros which can not be accommodated by these standard distributions.

For such data, it is a common practice to use zero-inflated models to characterize the

population. These are two-component mixture models that combine a degenerate
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distribution at zero with a parametric non-degenerate distribution  known up to a finite

dimensional parameter γ ∈ Γ. Specifically, the mixture distribution is defined as follows,

(1)

where y denotes the random count variable and yi its observed version for the ith

observation, i = 1, …, n, and πi(ω), 0 ≤ πi(ω) ≤ 1, with ω being an unknown parameter,

represents the unknown mixing probability, f (yi; γ), with γ being a π × 1 vector of

unknown parameters, represents the probability mass function of y under the homogeneous

distribution. In essence, the density f(yi; γ) is a positive smooth function that decays rapidly

at infinity with some degree of uniformity. A good example of such functions is the

exponential family density function, for which the associated mixture model has been

extensively studied in statistical research [1, 2, 3, 4]. A non member of the exponential

family such as the two-parameter negative binomial distribution also constitutes an example

of this family [5, 6, 7, 8].

Under the mixture model in (1), zero counts are generated from two sources and the

parameter πi(ω) measures the extent of this heterogeneity in the population. In real life

applications of this mixture model, one is interested in evaluating whether this heterogeneity

is consistent with observed data. This question has been examined by many authors in a

variety of settings [1, 9, 10, 11]. But existing methodologies often rely on restrictive

formulations of the working mixing weight model. One general limitation is that the mixing

weights are often assumed constant under the alternative hypothesis. Although important,

such an approach may fail to reject homogeneity against alternatives that allow the mixing

weight to depend on covariates. In recent papers, Jansakul and Hinde [10] and Todem et al.

[11] have shown, using two-sided alternatives, that incorporating covariates into the mixing

weights can greatly improve the test efficiency. By allowing potentially negative mixing

weights under the alternative, the tests developed by these authors are only valid under the

marginal representation of the mixture model which ignores its hierarchical representation.

This is another limitation as zero-inflated models which maintain their hierarchical

representation are usually fit in practice [12].

In this paper, we suggest an extension of existing homogeneity testing procedures to

covariates with a focus on alternatives that are consistent with real applications of zero-

inflated regression models. Specifically, we consider the situation where the mixing weight

depends on a stratification variable with few strata under the alternative model. A

complication, however, is that the implied hypotheses may not be typical and standard

regularity conditions to conduct the test may not hold. There are hypothesized parameters

under the null that lie on the boundary of the parameter space and one-sided composite

hypotheses under the alternatives. We develop a score-type test of homogeneity that can

accommodate these complications. Technically, the test statistic is similar in spirit to that of

Silvapulle and Silvapulle [13] in detecting general alternatives and has the well known

advantage of only requiring model estimation under the null hypothesis. Using numerical

simulations and a real life example, the test statistic that can detect varying heterogeneity
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under the alternative is found to be relatively more powerful than the test that assumes

constant heterogeneity under alternative, when the underlying heterogeneity varies with the

stratification profile.

The rest of this article is organized as follows. In Section 2, we develop a one-sided score

test for homogeneity of zeros against alternatives from the mixture models with stratum

dependent mixing probabilities. In Section 3, we conduct numerical studies to evaluate the

finite sample properties of the proposed testing procedure and illustrate its practical utility

using a real life example in early childhood dental caries research. Some remaining issues

are discussed in Section 4.

2. A score test of homogeneity in a stratified population

Suppose we are interested in evaluating the hypothesis of zero mixing weights against the

alternative that the sample yi, i = 1, · · ·, n, is obtained from model in (1). Under the null

hypothesis H0 : πi(ω) = 0, the mixture model in (1) reduces to the homogeneous model with

probability mass function f(yi; γ). A popular approach for assessing this hypothesis consists

of assuming a constant mixing weight under alternatives to homogeneity [9]. Such an

approach may suffer from reduced power if the underlying true mixing weight depends on

covariates. In this paper, we construct a test statistic that allows the mixing probability πi(ω)

to depend upon a categorical covariate such as a stratification variable under the alternative.

Suppose that the population under study consists of K known distinct strata and that each

stratum k has its own mixing weight ϖk, with 0 = ϖk ≤ 1. Let δik be a non random binary

variable which takes value 1 if subject i belongs to stratum k, 1 ≤ k ≤ K and 0 otherwise,

with . The mixing probability for subject i can be written as 

with ϖk = ωk/(1 + ωk), ωk ≥ 0, and ω = (ω1, ω2, · · ·, ωK)′. In other words, ϖk represents the

proportion of extra zeros in Stratum k, k = 1, · · · K. To evaluate the homogeneity hypothesis,

one is typically interested in the one-sided alternative,

(2)

where  represents the true value of ωk, k = 1, 2, · · · K.

Let δi = {δi1, · · ·, δiK} represent the stratification information for unit i and by xi any

potential covariates observed alongside yi. We assume that observed data  are random

independent copies of y. Given data  and setting θ = (ω′, γ′)′, we denote by

ℓn(θ) the log likelihood function associated with parameter vector θ and by Un(θ) = ∂ℓn(θ)/∂θ
the corresponding first-order derivative with respect to parameter vector θ. Let θ* = (ω*′,

γ*′)′ be the true value of θ with E{Un(θ*)} = 0, to construct the score-based test statistic

we assume the existence of a nonsingular matrix G(θ*) and the following conditions:

A1 All strata share a common subset of θ.

A2 n−1/2Un(θ*) →d N (0, G(θ*)) as n → ∞.
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A3 For any α > 0, sup||η||≤α ||n−1/2{Un(θ* + n−1/2η) − Un(θ*)} + G(θ*)η|| = op(1),

where op(1) represents the convergence to 0 in probability as n → ∞.

The discussion of these conditions and related technical details are provided in the

Appendix. Let θ̂0 = (0′, γ̂′)′, where γ̂ is an estimator of γ* obtained under the null

hypothesis. Because of the one-sided constraints ωk ≥ 0, k = 1, · · ·, K, we consider the

likelihood ratio test statistic for H0 against H1 based on the asymptotic normality of the

‘single’ observation Sn(θ0) = n−1/2Unω(θ̂0) to derive the general score statistic,

(3)

where ω̃ ≥ 0 with ω̃ = (ω̃1, ω̃2, · · ·, ω̃
K)′ is interpreted coordinatewise, that is ω̃

k ≥ 0, for all

k = 1, 2, · · ·, K. In practice, the quadratic function of ω̃ can be easily minimized by using

available optimization subroutines such as optim in the statistical software R. When K = 1, ω
= ω1 ≡ ω is a scalar and the test statistic simply reduces to Tn =

Sn(θ̂0)′Gωω(θ̂0)Sn(θ̂0)I{Sn(θ̂0) > 0}, where I{.} represents the indicator function. The null

hypothesis is then rejected for large values of Tn. Statistic Tn has the limiting distribution

 with  for large

values of n [14]. When K = 1, this limiting distribution is a mixture of chi-squared

distributions  (a degenerate distribution with probability point mass at 0) and , each with

weight 0.5. For K > 1, the large sample distribution of the statistic Tn remains a mixture of

chi-squared distributions but the mixing weights are quite complicated and are often

approximated only through numerical methods [13].

When  is known such as in simulation experiments for the study of the test empirical size,

 the limiting null distribution of Tn can be approximated by generating for example one

million points from a centered multivariate normal distribution with covariance matrix

. However, when  is unknown such as in real data analysis and simulation

studies for the study of the test empirical power, a simple parametric bootstrap procedure

can be used to approximate the distribution of . The bootstrap resampling method was

introduced by Efron [15] and has become a routine method for approximating distributions

that are difficult to obtain analytically. Its validity follows automatically from arguments

given in Efron and Tibshirani [16]. From a parametric point of view, the bootstrap

methodology consists of three simple steps: i) an estimation step under which the parameters

of the null model are estimated from observed data, ii) a Monte Carlo step to generate B

pseudo-data sets from the fitted model and calculate the associated test statistics; and finally

iii) construction of the bootstrap distribution for a sufficiently large value of B. We give

below the details of this procedure to obtain the large sample distribution of the proposed

score test Tn.

1. Estimation step: Given observed data , compute the estimator γ̂ of γ*̇

under the null model with probability mass function f(yi; γ).
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2. Monte Carlo step: For each b, generate the Monte Carlo sample  from the

null model with γ fixed at γ̂ and assign the generated data point  to δi and xi.

For each Monte Carlo sample { , δi, xi}, i = 1, · · ·, n, calculate the statistic

where  with γ̂(b) being an estimate of γ̂ under the null hypothesis

using the pseudo data { , δi, xi}, i = 1, · · ·, n.

3. Repeat Step 2 for b = 1, 2, · · ·, B.

By the Glivenko-Cantelli Theorem, when B is large, an approximate p-value of the test is

, the proportion of these artificial statistics which exceed tn, the

observed value of Tn. In our numerical applications, B is set to 1000.

3. Numerical Studies

We illustrate the use of the proposed score-type statistic to evaluate homogeneity against

heterogeneity for the class of zero-inflated models for stratified discrete data. For the real

data analysis, the zero-inflated negative binomial model will be used. The zero-inflated

Poisson regression model will be utilized for the numerical experiment to reduce the

computational burden. These two popular models verify all the smoothness and regularity

conditions A2 and A3. Condition A1, however, will be discussed in regard to each working

model specification. Derivations of the basic quantities required to construct the proposed

test statistics for these models are relegated to the Appendix.

3.1. Dental Caries Data

Our motivating example comes from a longitudinal (three-wave) study designed to collect

oral health information on inner-city low-income African American populations of Detroit,

Michigan. Targeted participants were African American children under the age of 6 and

their main caregivers of at least 14 years of age living in Detroit households with income

below 250% of the 2000 federal poverty level. Study participants (index children and their

caregivers) were randomly selected according to a two-stage probability sample design. At

the first stage, census blocks were sampled with probabilities proportional to their size.

Housing units were sampled at the second stage with probabilities inversely proportional to

their size. From this sampling scheme, 1,021 families (children and their caregivers) were

drawn and eventually examined. For selected participants, the oral examinations involved

assessments of dental caries, periodontal disease, oral cancer and oral hygiene status. A set

of questionnaires about demographics, social factors of oral health behaviors and practices

including social support and depressive symptoms (measured by the Center of

Epidemiologic Studies Scale CESD) among others, and biological characteristics was also

administered. A food frequency questionnaire was administered to caregivers to collect
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information (such as the amount of sugar intake) on their own dietary practices and those of

the child.

In this paper, we focus on a mouth-level index which represents the overall experience of

dental caries for each surveyed child. This index counts the number of decayed surfaces (ds)

which are surfaces with signs of clinically detectable enamel lesions comprising both

noncavitated and cavitated lesions. Although this type of mouth-level indices has well

documented limitations regarding its ability to measure dental caries, it continues to be

instrumental in evaluating and comparing the risks of dental caries across population groups.

Most importantly, it remains popular in dental caries research because it enables one to

conduct historical comparisons in population-based studies [17]. A more detailed description

of the study can be found elsewhere [18, 19, 20].

Our numerical computations ignore aspects of the multi-stage sampling design and are based

on cross-sectional data obtained in the first wave of examinations and interviews completed

between 2002–2003. Covariates considered in our analysis include the child’s age group (0

year ≤ Age ≤ 2 years; 2 years < Age ≤ 4 years; and Age > 4 years) and the child’s sugar

intake or consumption (SI) measured in grams per day, variables that have been shown to be

associated with dental caries [21, 22]. The children’s age group serves as the stratification

variable in this paper (0 year ≤ Age ≤ 2 years for Stratum 1; 2 years < Age ≤ 4 years for

Stratum 2; and Age > 4 years for Stratum 3). As a preliminary analysis, bar chart plots of

relative frequencies for the overall sample and for each age-specific stratum are constructed

and presented in Figure 1. From these plots, a sizeable proportion (about 50%) of children in

the sample do not have dental caries. More importantly, zeros frequencies are more

prominent in the youngest age group, with about 80% of these children having no tooth

surfaces with signs of clinically detectable enamel lesions. This result is consistent with the

fact that younger children do not have all their teeth erupted and therefore are less likely to

have dental caries.

Following earlier analyses of dental caries indices in these African American children, a

negative binomial model is used to accommodate overdispersion due to sizeable frequencies

of children with large caries counts [11]. Specifically, we consider a negative binomial

regression model with mean  and an overdispersion

parameter κ > 0. All parameters of the mean λi are stratum-specific but the overdispersion

parameter κ is common across all strata to ensure that condition A1 is satisfied. This

condition will be evaluated against data in a subsequent analysis. For this homogeneous

model, parameter vector γ = (β′, κ)′ with β = (β01, β11, · · ·, β03, β13)′, and variable δik

represents the binary indicator for Stratum k, k = 1, 2, 3. This basic starting model is then

evaluated against the associated zero-inflated model with a constant mixing probability

πi(ω) = ω/(1 + ω) ≡ ϖ1 = ϖ2 = ϖ3, ω ≥ 0. For the caries index considered, the

homogeneity hypothesis ω* = 0 (no need for zero-inflation) fails to be rejected at 5%

significance level against the zero-inflated model that neglects the mixing weight

stratification (observed statistic = 0.158 with a p-value of 0.346 or 0.401, using respectively

a mixture of  and  distributions, each with weight 0.5 and the proposed parametric

bootstrap resampling scheme).
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We then consider the proposed test that accommodates the stratification of mixing weights

under the alternative hypothesis. Specifically, we assume a working zero-inflated negative

binomial model with mixing probability , where ϖk = ωk/(1 + ωk), ωk ≥

0, represents the proportion of extra zeros in Stratum k, k = 1, 2, 3, and ω = (ω1, ω2, ω3)′.

Under this working model, the homogeneity hypothesis is clearly rejected at 10−3

significance level (observed statistic tn = 101.304, p-value < 0.001 obtained from a

parametric bootstrap resampling scheme), therefore providing a strong evidence of

heterogeneity in this population. Table 1 gives the parameter estimates and their standard

errors, and summary statistics of the homogeneous (null) model and the heterogeneous

models with a constant mixing weight and stratum-specific mixing weights. The AIC and

BIC statistics provide another evidence that the zero-inflated negative binomial model

coupled with stratum-specific mixing weights provides a better fit to these data compared to

the homogeneous model and the zero-inflated negative binomial model with a constant

mixing weight. Results from fitting the stratum-specific mixing weight model indicate that

there is no inflation of zeros in Stratum 3 representing the oldest age group (ϖ̃
3 = 0.0478,

se(ϖ̃
3) = 0.0358) in contrast to the two younger age groups (ϖ̃

1 = 0.7667, se(ϖ̃
1) = 0.0243,

and ϖ̃
2 = 0.2119, se(ϖ̃

2) = 0.0329). Hence by averaging over the strata information, the test

statistic based on the constant mixing weight approach loses power in detecting

heterogeneity in these data. This example clearly illustrates the importance of formulating

less restrictive alternative hypotheses when evaluating a null model. Given that the true

underlying parametric model that provides the best representation of the data is often

unknown, entertaining less restrictive formulations appears to be the most conservative

strategy.

As a final analysis, the non-separability condition A1 was examined by evaluating whether

the overdispersion parameter κ was constant across all strata in the zero-inflated negative

binomial model with stratum-specific mixing weights. A two degrees of freedom Wald test

performed to this effect yielded an observed value of 0.88 (p-value=0.6461), suggesting no

evidence from data to reject the constancy of the overdispersion parameter κ over the strata.

This result was also consistent with the likelihood ratio test (observed statistic=1.30 and p-

value=0.4780) and other summary statistics such as the AIC and the BIC (see Table 2). We

noticed however that even when the overdispersion parameter is allowed to depend on the

stratification variable, the constant mixing weight test remains insensitive in detecting the

varying heterogeneity of the mixing weight under the alternative, in contrast to the proposed

test.

3.2. Simulations

In this section, we conduct a numerical study to evaluate the finite sample performances of

the proposed score test statistic Tn which are in turn compared to those of the constant

mixing weight score test statistic. Similarly to the real data example, we consider a stratified

population made of three strata. But to keep the simulation scheme simple, we restrict the

true non-degenerate model  to a Poisson process with covariate-dependent mean

, where covariate vi is generated from a uniform random

variable on the interval [0, 1] and the membership indicators δi1, δi2 and δi3 are generated
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from a multinomial distribution with membership probabilities p1 = 0.3, p2 = 0.3, p3 = 0.4,

respectively. The stratum-specific intercept term, represented by the vector ( ),

takes values in the set {(−0.05, −0.10, −0.15), (0.05, 0.10, 0.15)} and the slope  associated

with vi is set to 0.5. In this simulation study, these intercept terms are used to capture the

separation between the mean of the true homogeneous model  and 0. Indeed, large values

of , k = 1, 2, 3, shift the mean of the true non-degenerate model further away from 0,

therefore making the two components of the mixture model easily detectable. For data

generated under the associated zero-inflated model, the true mixing weight is

, with  being the true mixing weight in stratum k, k = 1,

2, 3 and .

Throughout the simulations, we assume the working mixing weight model

 with ϖk= ωk/(1 + ωk) under the alternative hypothesis. Conversely under

the constant mixing weight alternative, the working mixing weight model is πi(ω) = ω/(1 +

ω). The maximum likelihood estimate γ̂ of  under the null are obtained

from the homogeneous Poisson model with the working mean model

. Note here that the parameter γ4 is constant across all strata in

this working model to ensure that condition A1 is satisfied. Finally, all simulations were

replicated 1,000 times and for sample sizes n from 50 to 400.

To investigate the empirical type I error rate of the proposed tests, we generate data from the

homogeneous Poisson model ( , k = 1, 2, 3) with the true mean  specified above. In

Figure 2, as expected, the constant mixing weight and the proposed test statistics maintain

their sizes at 5% nominal level regardless of the degree of separation between the

homogeneous model and the degenerate distribution. We further investigate the empirical

power of the tests when the true mixing weight is constant across the three strata by setting

, where  takes values from the set {(0.1, 0.1, 0.1), (0.2, 0.2, 0.2)}. Overall, larger

sample sizes and increasing values of , k = 1, 2, 3, improve the power of detecting the

alternatives under consideration for the two tests. Moreover, the power also increases with

increasing values of the intercept . The constant mixing weight test appears to perform

slightly better than the stratum-adjusted test when the true mixing weight is constant. But

this loss of power of the stratum-adjusted test appears to be minimal.

We finally conduct a study to evaluate the performances of Tn when the constancy

assumption under heterogeneity is violated. Figure 2 also presents the results of this study

for , where  takes values from the set {(0, 0.1, 0.25), (0, 0.1, 0.5)}. As expected,

larger sample sizes and increasing values of one component of ω* while maintaining the

remaining components fixed, improve the power of detecting the alternatives under

consideration for all tests. Moreover, the power also increases when the two components of

the mixture distribution are well separated, occurring when , k = 1, 2, 3, are large. The

stratum-adjusted test clearly outperforms the constant mixing weight test. And the maximum

gain of efficiency of the stratum-adjusted test is achieved when one stratum-specific mixing
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probability is large while the remaining ones are negligible. Thus by averaging over the

stratification variable, the stratum-unadjusted test may have weaker power to capture

heterogeneity in the population. Findings from the dental caries data analysis are very

consistent to this simulation conjecture. Indeed, the estimates from the alternative model

show heterogeneous mixing weights across the three age groups, with the youngest children

exhibiting a significantly higher mixing weight. This heterogeneity of mixing weights across

the three age groups adversely affects power of the test statistic based on the constant

mixing weight in detecting zero-inflation. Our simulations and real data analysis are

reassuring and lend credence to the need to formulate more elaborate zero-inflated

parametric models under alternative in evaluating zero-inflation.

4. Discussion

Whenever the inference for the mixing weight in zero-inflated regression models is of

interest, existing testing methodologies have relied essentially on restrictive assumptions

under heterogeneity. Typically, score tests that restrict the mixing weights to be constant

under alternatives to homogeneity are often advocated. Our real life example and simulation

studies have shown that testing procedures that rely on such restrictions may adversely

affect statistical power in detecting heterogeneity. Using the general theory from Silvapulle

and Silvapulle [13], we have extended the literature by developing a testing procedure to

evaluate homogeneity in two-component mixture models, which explicitly takes into

account the presence of stratification under heterogeneity. This procedure is shown to have

satisfactory statistical power even when the true mixing weight is constant under

heterogeneity.

One may argue that the test of zero inflation that assumes constancy of the mixing

probability under the alternative can simply be performed within each stratum. This

approach is in principle feasible but not necessarily optimal. Indeed, if there are parameters

that are shared by some strata, a joint estimation requiring information across all these strata

is unavoidable. In the dental caries example, the working regression model for the mean of

the non-degenerate distribution is stratum specific but the three strata share the same

overdispersion parameter κ. Likewise in our numerical studies, although the intercept of the

working mean model of the non-degenerate distribution is stratum specific, the slope of the

covariate vi is stratum-independent and therefore requires information across all strata for its

estimation.

To perform the test in practice, a parametric bootstrap is proposed to approximate the

limiting distribution of the test statistic Tn under the null hypothesis. This parametric

bootstrap requires the null model to be fitted for each simulated Monte Carlo sample, which

can be computationally very cumbersome in some practical settings. Alternatively, a more

efficient resampling procedure that perturbs the influence function using normal random

variates to approximate the true distribution of the test statistics Tn can be used. This

technique requires the null model to be fitted only once and has been extensively used in the

literature when the desired limiting distribution is difficult or even impossible to derive

analytically [23, 24, 25, 26].
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The proposed test can be extended to refine the model specification. For example when the

null hypothesis is rejected, it may be of interest to identify subgroups of the population that

have nonzero mixing probabilities. We did not discuss how to identify these components,

but our results can be used for this purpose. Inference regarding significance of each stratum

mixing weight can be conducted taking into account that multiple tests are performed, which

necessitates an adjustment of the type I error. Our testing procedure also assumes that the

mixing weight under heterogeneity depends only on the stratification variable, which is

essentially a categorical variable. In practice however, a two-component mixing weight

model with a more general specification of the mixing weight is often considered. A good

and popular example is the situation where the mixing weight under heterogeneity is also

related to some continuous covariates in addition to the stratification variable. For such

working mixing weight models, it is unclear how to construct a test of homogeneity against

heterogeneity. These issues and other generalizations of the methodology are out of the

scope of this work and are the subject of further research.
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Appendix

Appendix 1. The technical details of regularity conditions

Condition A1 is the non-separability criterion that requires all strata to share a common

subset of θ. It prevents the test of zero-inflation that assumes constancy of the mixing

probability under the alternative to be simply performed within each stratum. Although our

methodology remains valid even when the distributions of data across strata do not have

some parameters in common, its efficiency however can be compromised. Conditions A2
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and A3 essentially ensure that the asymptotic normality, the smoothness and regularity

requirements of the score function are met.

We partition Un as  to conform with the partition (ω′, γ′)′ of θ and we

denote by Gωω (θ), Gωγ (θ), and Gγγ (θ) the corresponding blocks in G(θ). The estimator γ̂

is consistent for γ* only when the null hypothesis is true. However, when the null is not true,

γ̂ converges to γ̇*, which is not necessarily γ*. In other words, θ̂0 = (0′, γ̂′)′ converges to

 with θ*–probability 1, where  satisfies the null hypothesis. Conditions A2

and A3 ensure that n−1/2Unω (θ̂0) under H0 converges in distribution to a centered normal

model with asymptotic variance-covariance matrix

.

Appendix 2. Detailed calculations for the zero-inflated negative model

Consider the zero-inflated negative binomial (ZINB) model for which the probability mass

function of the homogeneous distribution is,

where λi and κ > 0 represent the mean and the overdispersion parameter, respectively. We

consider the working mean model  where β is a regression parameter vector of

dimension (p − 1) × 1 associated with covariate xi = (x1i, · · ·, xp−1i), i = 1, 2, · · ·, n. For this

model, θ = (ω′, γ′)′ with ω = (ω1, ω2, · · ·, ωK) and γ = (β′, κ)′. Let β̂ and κ̂ be the

maximum likelihood estimates of β̇* and κ̇*, the values of β and κ under the null hypothesis

that satisfy the condition , where  with γ̇* = (β̇*′, κ̇*′)′.

The score vector for the ZINB model evaluated at θ = θ̂0 is  with

where .

Matrices  and  are given as follows:
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with

and

and  with

and

where ddg (·) and dtg (·) are di-gamma and tri-gamma functions respectively.

Appendix 3. Detailed calculations for the zero-inflated Poisson model

Consider the zero-inflated Poisson (ZIP) model for which the probability mass function of

the homogeneous distribution is,
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where λi represents the mean parameter. We consider the working mean model

 where β is a regression parameter vector of dimension p × 1 associated with

covariate xi = (x1i, · · ·, xpi), i = 1, 2, · · ·, n. For this model, γ = β. Let β̂ be the maximum

likelihood estimate of β̇*, the true value of β under the null hypothesis.

The score vector for the ZIP model evaluated at θ = θ̂0  with

where .

Matrices  and  are given as follows:

with

with

and

with
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Figure 1.
Observed proportions of the number of decayed surfaces (ds) for the overall sample and for each age group.
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Figure 2.
Empirical size and power of constant mixing weight and stratum-specific mixing weight tests at 5% significance level,

homogeneous model is Poisson. The black lines represent the data generated under the null model ( ). The red and

blue lines represent the data generated under the constant ( ) and the stratum-specific ( ) mixing weight model,

respectively:

True mixing weight is zero (size): ——— stratum-specific mixing weight test; – – – constant mixing weight test

True mixing weight is constant (power):  stratum-specific mixing weight test;  constant mixing weight test

True mixing weight is stratum-specific (power):  stratum-specific mixing weight test;  constant mixing weight

test.
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Table 2

Summary statistics comparing models that assume constant and stratum-specific overdispersion parameters

Summary Statistics Constant overdispersion parameter κ Stratum-dependent overdispersion parameter κ

AIC 3811.4 3816.7

BIC 3859.4 3874.3

−2LogLik.§ 3791.4 3792.7

§
−2LogLik.= −2×Log-Likelihood value at θ̃, where θ̃ is the maximum likelihood estimate of θ*. Δ(−2LogLik.) = 1.3 is the difference in −2×Log-

Likelihood values between the constant and the stratum-dependent overdispersion parameter models. The p-value associated with Δ(−2LogLik.) is

0.4780 which is computed from a  distribution.
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