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Abstract 
In the last decade, we have gained significant understanding of the mechanism by which vesicular 

stomatitis virus (VSV) specifically kills cancer cells. Dysregulation of translation and defective innate 
immunity are both thought to contribute to VSV oncolysis. Safety and efficacy are important objectives to 
consider in evaluating VSV as a therapy for malignant disease. Ongoing efforts may enable VSV 
virotherapy to be considered in the near future to treat drug鄄  resistant ovarian cancer when other options 
have been exhausted. In this article, we review the development of VSV as a potential therapeutic 
approach for recurrent or drug鄄  resistant ovarian cancer. 
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Review 

Current State of Ovarian Cancer Treat鄄  
ment

Epithelial ovarian cancer is a disease with poor 
prognosis, few useful early diagnostic markers, and 
limited treatment options [1­3] . Chemotherapeutic agents 
based on platinum derivatives have been widely used to 
treat a broad range of cancers including epithelial ovarian 
cancer with some success [4­7] . Generally, platinum 
compounds are DNA damaging agents, and proliferating 
cancer cells are more prone to being killed by these DNA 
damaging compounds [8] . Currently, a platinum­ and 
taxane­based combination regimen remains the standard 
front­line chemotherapy for ovarian cancer [9­14] . In 
advanced disease, the standard treatment following 
diagnosis (in the United States) is maximal surgical 
debulking followed by paclitaxel/carboplatin 
chemotherapy to remove residual cancer. The widely 

adapted protocol is administration of paclitaxel (135 
mg/m 2 , 24 h infusion) plus cisplatin (75 mg/m 2 ) or 
paclitaxel (175 mg/m 2 , 3 h infusion) plus carboplatin [11] . 
These basic regimens can be tailored to many clinical 
studies by adjusting the dose and duration, sequence 
and route of administration, and combination of additional 
agents to maximize the effectiveness of the therapy. 

Unfortunately, intrinsic and acquired resistance to 
cisplatin/taxane has greatly limited the efficacy of this 
therapy [8,9] . New second­line agents under development 
and testing, such as gemcitabine, doxorubicin, and 
topotecan that convey anti­cancer activities via different 
mechanisms, are being evaluated in clinical trials for 
treatment of cisplatin­resistant cancer, and some have 
been adopted for clinical application [8­11] . These new 
agents are often found to have incremental effects on 
improving survival of ovarian cancer patients. The 
mechanism of drug resistance has been an intense 
subject of investigation in ovarian cancer. Progressive 
understanding on this topic has been obtained, and 
strategies to reverse drug­resistance are being tested. 
Nevertheless, current treatment options are still very 
limited. Resistance to cytotoxic chemotherapy remains a 
key problem, and most women ultimately die of ovarian 
cancer. Development of additional chemotherapeutic 
regimens, biological therapeutic agents, and other unique 
approaches for treatment of ovarian cancer is a high 
priority. Certainly, the therapeutic approaches are 
expected to be progressively fine­tuned and improved, 
but no dramatic  advance or alternative approaches that 
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are projected to significantly impact the survival rate of 
ovarian cancer patients are anticipated on the immediate 
horizon. 

A Brief History of Oncolytic Virus 
The idea to use viruses to kill cancer cells may have 

been around for many years, and the notion of using a 
野harmful agent冶 to treat a 野dreadful illness冶 was rooted 
in the thinking of traditional oriental medicine. The first 
well­known, truly scientific attempt in modern times was 
in 1996, when Frank McCormick and colleagues 
conceived the idea of using a mutant adenovirus that 
lacks the E1B gene, which encodes a protein that 
inactivates p53, to treat cancer [15­17] . They hypothesized 
that the Onyx­15 mutant adenovirus would only replicate 
in and kill cancer cells, which generally  lack the p53 
tumor suppressor, and would be attenuated in 
p53­containing non­cancer cells [15­17] . The idea was brilliant, 
but proven incorrect because the mutant virus killed 
tumor cells preferentially regardless of p53 mutation 
status [18] . The work was rapidly advanced to clinical 
application for cancer therapy in subsequent years  [19] . 
However, for financial and regulatory reasons, human 
trials of the Onyx­15 mutant adenovirus (Onyx 
pharmaceuticals) for cancer therapy were aborted before 
going into phase III trial in 2000 [18] . Nevertheless, an 
almost identical virus, H101, was shown to have efficacy 
in the first cancer viral therapy in humans and achieved 
some degree of success in November 2005 in China [20,21] . 
Further studies and trials showed that there are 
substantial limitations of the mutant adenovirus as an 
oncolytic agent, and continuing development and 
improvement of mutant adenovirus for cancer treatment 
persists [18] . 

Following the studies of mutant adenovirus as 
potential cancer therapy, the idea to use particular types 
of viruses as agents to selectively kill cancer cells firmly 
took root [18,22,23] . These viruses, referred to as oncolytic 
viruses, are capable of replicating in cancer cells but not 
in normal cells [18,24] . A number of viruses that exhibit 
oncolytic activity, including retrovirus, measles, 
Newcastle disease virus, mumps, influenza, and 
vesicular stomatitis virus, are under investigation. 
Various labs and small companies are currently studying 
biology and testing strategies with genetic engineering to 
optimize the recombinant viruses for cancer therapy. 
Some of these oncolytic viruses are currently in phase I 
trials or late preclinical development [22,23] . Certainly, there 
are many obstacles, both technical and logistical, in the 
development of oncolytic viral therapy. The established 
concept and further understanding of biology, along with 
the ongoing research effort will likely bring us one or 
more effective cancer oncolytic therapies. 

As discussed above, the oncolytic virus that is most 
considered and invested in development as a cancer 
therapy in the past decades is adenovirus [18,22,23] . Therapy 
with engineered conditional, replication­competent, 
oncolytic adenovirus was regarded with much 
enthusiasm in preclinical studies [19] . However, clinical 
trials of oncolytic adenovirus encountered several difficult 
barriers including the lack of tumor­specific viral 
targeting/infection and clearance of the virus by the 
immune system [18,25,26] . In humans, weak tumor cell 
targeting by adenovirus is a serious shortcoming. 
Although adenovirus can efficiently infect most 
mammalian cells through specific receptors, the 
infectivity seems to be reduced in neoplastic cells, and 
the majority of adenovirus delivered is sequestered in the 
liver. While oncolytic adenovirus still has promise, 
strategies to modify the basic viral structure will be 
needed to overcome the existing shortcomings. 

Currently, several other viral vectors that appear to 
lack the intrinsic faults associated with adenoviral vectors 
are being studied [22,23] . One such virus, the vesicular 
stomatitis virus (VSV), is emerging as a promising new 
oncolytic vector. With its specificity for transformed cells 
and its ability to target tumors without accumulating in 
other organs, VSV may have great promise as an 
oncolytic agent for treating drug­resistant ovarian cancer. 
We discuss here the potential of VSV as an anti­cancer 
therapeutic agent [27­31] . 

VSV Biology 
VSV is a negative­stranded RNA virus of the 

family, which has more than one hundred 
members with hosts that include plants, invertebrates, 
vertebrates, and mammals [25] . VSV can infect a wide 
spectrum of cell types through an as­yet­unidentified but 
likely ubiquitous cell surface receptor(s). VSV replicates 
in the cytoplasm of infected cells, but the viral genome 
does not integrate into the host genome, nor does it 
have transforming activity [32,33] . Additionally, the VSV 
genome can be manipulated to modify properties and to 
insert and express transgenes, making it suitable to be 
studied and engineered in the laboratory setting [29,34,35] . 

The 11­kb VSV genome encodes 5 proteins: 
nucleocapsid (N), phosphoprotein (P), large polymerase 
(L), matrix (M), and surface glycoprotein (G) [34,35]  (Figure 
1). The negative sense, single­stranded VSV RNA is 
bound by multiple copies of N protein, forming a 
bead­on­a­string helical structure, and is encapsulated in 
a bullet­shaped viral particle approximately 100­400 nm 
long and 45­100 nm in diameter. VSV is an enveloped 
virus coated with multiple copies of trimeric surface 
glycoprotein G, which is embedded in a lipid membrane. 
Within the lipid capsule, trace amounts of P, L, and M 
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proteins are packaged along for the initiation of viral 
replication following entry into cells. 

VSV particles enter cells through surface glycoprotein 
G­mediated binding to the cell surface, endocytosis, and 
membrane fusion [36,37] . Upon entry into the cytoplasm, 
packaged P and L proteins form an RNA­dependent 
RNA polymerase complex with the N protein­bound VSV 
RNA genome and initiate transcription to produce 
capped and polyadenylated  sub­genomic transcripts. 
The VSV mRNA transcripts depend on the host 
translation machinery, Golgi apparatus, and endoplasmic 
reticulum to synthesize and process the viral proteins [38] . 
At some point after sufficient viral proteins are produced, 
the RNA­dependent RNA polymerase complex starts to 
generate full­length viral RNAs, which are then used as 
templates to copy the negative strain viral RNA genome. 
The full­length viral RNA genome is then bound by 
multiple copies of the N protein, and the ribonucleic acid 
complexes are shuttled to plasma membranes. With 
additional assembly and packaging, functional VSV virions 
are budded off and released from the cell surface [39­43] . 
The entire process of viral replication takes place in the 
cytoplasm. 

The M protein plays multiple regulatory roles in viral 
assembly and pathogenesis [39­45] . M protein connects the 

VSV nucleoprotein capsule and cellular plasma 
membrane in the assembly of viral particles [40,42,45]  and 
plays a role in the release of the viral particles by 
budding from the host cells [45] . Mutations in the  gene 
can also produce spherical extracellular viral particles 
instead of the bullet shape of native VSV [46,47] . M protein 
is also important for modulation of host gene expression, 
interaction with host cellular signaling pathways, and 
altering immunosurveillance [44,48,49] . By itself, M protein 
can induce death in mammalian cells [41,44]  and can also 
modulate cellular signaling pathways to affect the 
immune response [49] . M protein is not essential for viral 
replication because M­mutant VSV can still infect and 
replicate in mammalian cells, albeit with reduced 
efficiency [50] . M­mutant VSV can also cause prolonged 
infection of neuronal cells, instead of inducing rapid cell 
death [51] . 

VSV Clearance in Immune鄄  Competent 
Hosts 

VSV can infect essentially all human cells in culture 
and undergo robust replication in certain (often 
cancerous) cells; however, VSV is relatively 
non­pathologic for humans, likely because of the 
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Figure 1. A, the single鄄  strained RNA encodes five viral proteins. The green 
fluorescence protein (GFP) or luciferase transgene can be inserted to monitor viral infection and proliferation. B, the five viral proteins function as 
follows: the glycoprotein (G) catalyzes fusion of viral and cell membranes; the nucleoprotein (N) binds the RNA and forms an RNA鄄  dependent 
RNA鄄  polymerase complex with the phosphoprotein (P) and large polymerase protein (L); and the matrix protein (M) has multiple critical roles in 
viral replication and pathogenesis. 
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induction of strong immune response to suppress viral 
replication and amplification [32,33] . While VSV is largely 
asymptomatic for humans, domestic and farm animals 
can become non­lethally infected, with symptoms such 
as lesions in the mucous membranes of the mouth and 
nose [52,53] . VSV has also been reported to be neuropathic 
in mice, following intranasal inoculation and subsequent 
infection and replication in the central nervous system [54­56] . 
VSV infection can be cleared through activation of both 
the innate and adaptive immune responses [53­56]  (Figure 
2). The interferons (IFN) are critically important in 
antiviral innate immunity and are a family of cytokines 
produced in response to VSV infection [57­60] . Upon VSV 
infection, the initial immune response against the virus is 
the activation of the innate immune system and 
production of interferon beta (IFN­茁  ). The released 
IFN­茁 protein acts in an autocrine or paracrine manner 
and leads to the activation of IFN­stimulated genes, 
up­regulation of antigen processing machinery, and 

activation/maturation of antigen presenting cells (i.e., 
dendritic cells, NK cells, macrophages) [61­63] . Signaling via 
IFN results in suppression of viral gene expression and 
clearance of infected cells by leukocytes [64­67] . Extensive 
studies in mutant mice have identified several key 
pathways and mechanisms involved in clearing VSV. 
For example, mouse embryonic fibroblasts (MEFs) and 
mice deficient in double­stranded RNA­dependent RNA 
kinase (PKR), signal transducer and activator of 
transcritpion 1 (STAT1), nuclear factor associated with 
soluble stranded­RNA (NFAR), or interferon alpha 
receptor (IFNAR) are highly susceptible to infection by 
VSV [68­77] . 

Mice that with components of the innate immune 
system knocked out, such as IFNAR­, PKR­, or 
STAT1­null animals, show lethality around 4­5 days after 
infection because of the virus爷s ability to replicate 
efficiently throughout the mouse [68­77] . For example, PKR 
plays an important role in the initial immune response 
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Figure 2. VSV particles enter host cells by binding to a ubiquitous surface receptor and undergoing 
endocytosis. Upon reaching the cytoplasm, the viral negative鄄  strain RNA genome undergoes transcription and replication, and viral proteins are 
produced and packaged with newly replicated viral genomic RNA to form new VSV particles that are released outside cells. The pattern recognition 
receptors retinoic acid inducible gene I (RIG鄄  1), toll鄄  like receptor (TLR), and melanoma differentiation antigen 5 (MDA鄄  5) recognize viral RNA and 
activate interferon (IFN) response through stimulator of interferon genes (STING) and tank binding kinase 1 (TBK1)-mediated signaling pathways. 
Double鄄  stranded RNA鄄  dependent RNA kinase (PKR) is an IFN鄄  induced gene and is also activated by double鄄  stranded RNA, forming an amplifying 
circuit. In a second phase of immune response, B and T cells are activated to clear viral infection. 
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to VSV infection by restricting translation of viral 
mRNA [70,72,73] . PKR is an IFN­inducible serine/threonine 
protein kinase that becomes autophosphorylated in 
response to double­stranded RNA species. Activated 
PKR phosphorylates eukaryotic translation initiating 
factor 2琢 (eIF2琢  ) and thus inhibits translation [70,77] . This 
is the initial control of infection following induction of IFN 
and IFN­stimulated genes including PKR. However, 
activation of IFN and PKR alone is not sufficient to 
completely clear the VSV infection; the adapted 
secondary immune responses also play critical roles in 
VSV clearance [78] . 

B cell­deficient mice that maintain an otherwise 
intact innate response often show toxicity around 9 or 10 
days post infection because of the lack of endogenous 
circulating antibodies and the production of neutralizing 
antibodies primarily against the N and G proteins by 
plasma cells. Further, T cell­deficient mice died 30 days 
after infection due to their inability to provide B cells help 
and generate memory against the virus [78] . These studies 
indicate that the innate response is a short­term  acute 
maneuver for the initial suppression of VSV  replication, 
and this allows time for subsequent activation of the 
adaptive immune response for complete viral clearance. 

The innate immune system relies on several pattern 
recognition receptors that detect specific pathogen­ 
associated molecular patterns, including non­self nucleic 
acid such as positive and negative sense single­stranded 
RNA, double­stranded RNA and DNA, and CpG DNA, 
and subsequently activates an  antiviral response 
characterized by induction of IFNs [79­82]  (Figure 2). 

Three specific cellular DNA sensing pathways, 
namely the retinoic acid inducible gene I (RIG­I) and 
RIG­I like helicase (RLH), Toll­like receptor (TLR), and 
absent in melanoma 2 (AIM2) and stimulator of 
interferon genes (STING) pathways, are responsible for 
indentifying viral infection and activating an antiviral 
response [80­83] . Activation of the RLH cascade to produce 
IFN­琢 and ­茁 relies on two DExD/H helicases, RIG­I and 
melanoma differentiation antigen 5 (MDA­5) [84,85] . RIG­I 
recognizes 5'­triphosphates on viral RNA, such as 
double­stranded RNA intermediates produced during viral 
replication and those encoded by negative­stranded 
viruses like VSV [84,85] . MDA­5 recognizes longer RNAs 
(>1 kb) that are encoded by positive­stranded viruses 
such as the picornavirus encephalomyocarditis virus [85] . 

The recently identified STING and AIM2 (absent in 
melanoma 2) pathway is particularly interesting in that 
the STING pathway is activated by cellular DNA but not 
RNA species [86­88] . Nevertheless, STING is important in 
response to the single­stranded RNA VSV, likely because 
it mediates the translocation of tank binding kinase 1 
(TBK1) and interacts with the RIG­I pathways [83,88,89] . The 
NF­资  B pathway is also important in  activating the 
anti­viral interferon response [90] . 

Mechanistic Basis of VSV Oncolytic 
Selectivity 

VSV infection occurs through a ubiquitous, 
undetermined receptor, and thus, VSV has the unique 
ability to target many different cell types and 
malignancies and is a promising vector for oncolytic 
therapy [91,92] . In humans or experimental animals, VSV 
may initially enter and infect cells it encounters, but the 
activation of both innate and adapted immunity will 
suppress viral replication and ultimately clear infected 
cells. Thus, the sensitivity of malignant cells to VSV 
may be caused by their increased sensitivity to apoptosis 
or, more likely, their intrinsic defects in innate immune 
signaling pathways that allow the unchecked viral 
replication. 

Significant progress has been made in understanding 
the mechanisms of VSV oncolytic activity and 
selectivity [90­92] . Cancer cells generally have defective 
immune signaling [93,94] , which may be crucial for 
proliferation and escape from the tumor suppression 
mechanism of host immunosurveillance. In addition, the 
defective immune regulatory system, which includes 
dysregulation of interferon induction and response, is an 
important factor in regulating VSV replication in cancer 
cells [30,69] . Cancer cells have the ability to proliferate 
continuously because of translation dysregulation, which 
allows high levels of viral protein production and 
replication within malignant cells and leads to cell 
death [70,95,96] . A defective PKR­mediated innate immune 
signaling pathway, which results in the inability to 
suppress viral protein translational in cancer cells, is 
another key factor for VSV replication and oncolytic 
activity [95,96] . Other defects in innate immune signaling 
pathways in cancer cells include alternative splicing of 
IRF3 or MyD88, CpG methylation of IRF7, mutations of 
CYLD, reduced phosphorylation of STAT1, suppressed 
transcription of IFN­stimulated genes, and mutations in 
JAKs and TRAF­3 [97­100] . Thus, oncolytic viruses can likely 
kill transformed cells preferentially over normal cells 
because of defects in both the innate signaling pathways 
and the translational control systems. 

The robust production of VSV proteins in cancer 
cells likely leads to the killing of the malignant cells. M 
protein produced in cancer cells can bind the nuclear 
pore, suppress cell cycle progression [101] , and induce 
apoptosis [42,102] . Moreover, the released VSV particles 
can then infect and kill adjacent cancer cells in the 
tumor, leading to additional activation of host immune 
response for tumor elimination. 

The Potential of Recombinant VSV in 
Ovarian Cancer Treatment 

VSV爷s ability to selectively replicate in and kill 
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malignant but not normal cells has been well established 
in cultured cells and mouse xenografts of human cancer 
cells [95,103­113] . VSV has oncolytic activity in a large  range 
of cancer types [95,103­113] , including ovarian cancer cells [114] . 
Mechanistic studies indicate that  tumor cells transformed 
by oncogenic  ,  , or  inactivation are 
susceptible to killing by VSV [103] . The differential 
susceptibility of normal and ovarian cancer cells to VSV 
oncolytic activity is unequivocal. When VSV was added 
to culture cells, only a small fraction of primary ovarian 
surface epithelial cells were observed to express a low 
level of VSV­encoded proteins, indicating VSV infection 
and proliferation. Normal ovarian surface epithelial cells 
maintained a normal growth pattern up to 3 weeks 
following exposure to VSV. In contrast, all of the ovarian 
cancer cell lines tested were sensitive to VSV, and the 
cells died within 3 days of adding VSV to the cultures [114] . 

While the efficacy of VSV for cancer therapy has 
been established in preclinical studies, further studies in 
immune­competent model organisms, rigorous 
evaluation of safety, and careful documentation of 
potential toxic side effects may move VSV oncolytic 
therapy to the next step, a clinical trial in human cancer 
patients. To that end, targeting of ovarian tumors by 
VSV was evaluated in an immune­competent Wv (white 
spotting variant) mouse model that develops ovarian 
epithelial tumors spontaneously [114­116] . Wv mice are 
deficient in ovarian germ cells and initially develop 
benign ovarian epithelial tumors known as tubular 
adenomas, which can acquire increasingly neoplastic 
features in older mice [116] . The  ovarian 
tumor­bearing mice are anatomically correct and more 
accurately reflect the accessibility of VSV to tumor cells 
and the potential toxic side effects of oncolytic therapy. 
This study demonstrated that VSV delivered through 
various routes in immune­competent mice explicitly 
targeted ovarian tumors without significantly affecting any 
other organs or showing observable toxicity. VSV 
treatment was very effective in eliminating the epithelial 
component of tumors, leaving only tumor­free ovarian 
stroma after treatment [114] . 

Likely, expression and replication of VSV proteins 
induces apoptosis in the infected tumor cells, and the 
progeny VSV particles released will infect and kill 
surrounding tumor cells in a manner of amplification. 
Additionally, tumor antigens that are released from cell 
lysis may be recognized and processed by immune 
cells. Ultimately, the tumor cell antigens are 
cross­presented to na觙  ve T cells, triggering a 
tumor­specific T cell response that potentially induces 
immunologic memory against the tumor [117­119] . Indeed, 
replication­incompetent VSV (VSV­△G) prompted both 
antiviral and anti­tumor immune responses [120] , thereby 
demonstrating the contribution of anti­tumor immune 
response after VSV exposure. 

Recurrent and drug­resistant ovarian epithelial 
cancer appears to be a very suitable setting for 
treatment with oncolytic virus administered into the 
peritoneal cavity. These ovarian tumors present as 
numerous small nodules seeded throughout the 
peritoneum and on the surface of organs. VSV particles 
infused into the abdomen will likely be able to access, 
infect, and kill all tumor cells in each small nodule. 

Naturally, VSV is not a human pathogen, hence 
deliberate inoculation of high dose viral particles to 
humans in therapy will be a safety concern. One 
advantage of using VSV for cancer therapy is the 
widespread tropism to readily infect cells. Unlike 
adenovirus, which is largely sequestered in the liver, 
VSV can infect most organ and cell types and only 
proliferate in the susceptible cancer cells upon injection 
into experimental animals. Also, VSV has a low 
incidence in the human population and is mostly na觙  ve 
for the human adaptive immune system, which is 
another advantage over adenovirus, a flu­like virus that 
humans have often encountered and developed immune 
recognition. Thus, injection of VSV for cancer treatment 
will not cause an immediate immune response to clear 
the virus, a major limitation of using adenovirus. 

Barriers to VSV as A Cancer Therapy 
The oncolytic activity and efficacy of VSV as a 

cancer therapy are well demonstrated in mouse models, 
and the important remaining issues are the safety and 
selectivity [121] . One risk factor associated with VSV is its 
ability to infect the central nervous system and thereby 
cause potential neuropathology. VSV infection in 
neurons may lead to immediate morbidity or even 
mortality in humans, or it may cause a persistent 
non­lethal infection as seen in other mammals, 
presenting as sores on the feet or mucus membranes of 
the mouth and nose [52,53] . One idea for improving the 
safety of VSV oncolytic therapy is to design recombinant 
VSV that has reduced virulence in the neuronal system 
and/or has altered tropism to be selective for tumor 
cells [122­127] . Strategies include engineering VSV surface 
protein to bind tumor antigens and including transgenes 
or manipulating the viral genome to modulate virulence 
in neuronal cells. Many of these strategies are currently 
being actively investigated. 

Another obstacle is the human adaptive immune 
response. Upon challenge by high­dose VSV in therapy, 
the patient may experience a possibly massive immune 
response and inflammatory reaction that may be very 
harmful or lethal. Thus, host immune and inflammatory 
responses need to be carefully monitored and modulated 
during treatment to prevent inflammatory injury. The 
immune response may also clear VSV before tumor 
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killing is completed. If the immune system kills the virus 
faster than viral replication and tumor cell killing,  one 
possible solution is to administer drugs to suppress B 
cells during VSV oncolytic therapy. 

Remarks 

Preclinical studies have established the possibility of 
using VSV to treat ovarian cancer. While safety is a 
concern, continuing studies to create and test better VSV 
strains for safety, efficacy, and selectivity are ongoing [128] . 
Thus, VSV oncolytic therapy may be a very promising 
approach, especially for recurrent and drug­resistant 
ovarian cancer for which treatment options have been 
exhausted. 

Additional studies of the biology of VSV, its oncolytic 
activity, and its regulation in benign and malignant cells, 
as well as rigorous testing in additional ovarian cancer 
animal models for safety and efficacy may bring VSV 
oncolytic therapy closer for treatment of drug­resistant 

ovarian cancer patients. 
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