Skip to main content
. 2014 May 15;959(100):62–70. doi: 10.1016/j.jchromb.2014.04.006

Table 2.

Detection (nd) and quantification (nq) incidences of the compounds under study, together with their concentration ranges in Nalophan bags and calculated emission rates. Compounds are divided into chemical classes and ordered with respect to decreasing incidence.

Class
VOC
Incidence nd(nq)
Concentration range (median) [ppb]
Emission rate range (median) [fmol × cm−2 × min−1]
Reported also by:
Tentative origin
[%] [–]
Aldehydes Acetaldehyde 100(100) 31(31) 27.8–688 (43) 164–3989 (244) A, B, C, D, O (a) Ethanol metabolism [59]
(b) Oxidative degradation of linolenic acid [45,46]
2-Propenal 100(100) 31(31) 1.36–7.45 (3.44) 6.37–45 (19.5) (a) Smoking [47]
Butanal, 3-methyl- 100(100) 31(31) 1.19–6.45 (2.45) 6.09–26.9 (13.4)
Butanal, 2-methyl- 100(100) 31(31) 0.92–5.43 (2.47) 5.3–24.8 (14) E
n-Propanal 97(97) 30(30) 0.56–20.8 (2.3) 3.44–112 (12.4) B, C, D, E, F (a) Oxidative degradation of linolenic acid and oleic acid [45,46]
2-Propenal, 2-methyl- 97(97) 30(30) 1.08–12.3 (3.35) 6.42–55.9 (17.4) (a) OH-initiated degradation of isoprene [60]
Propanal, 2-methyl- 97(97) 30(30) 0.90–4 (2.23) 5.48–17.7 (11.7) E
n-Hexanal 97(97) 30(30) 3.43–32.5 (7.56) 16.8–168 (41.9) F, G, H, N (a) Oxidative degradation of linoleic acid, palmitoleic acid and vaccenic acid, [24,45,46]
n-Nonanal 94(94) 29(29) 3.26–19.2 (11.4) 18.1–119 (58.9) E, F, G, H, I, J, K, L, M, N (a) Oxidative degradation of oleic acid [24,45,46]
n-Octanal 87(87) 27(27) 4.29–25.9 (6.17) 22.5–150 (33.1) E, F, G, H, I, J, K, M (a) Oxidative degradation of oleic acid [45,46]
n-Heptanal 81(77) 25(24) 2.34–11.2 (4.81) 12–60 (27.6) D, E, F, H, M (a) Oxidative degradation of palmitoleic acid, vaccenic acid [24]
2-Butenal, (E)- 71(71) 22(22) 0.12–5.48 (0.6) 0.62–30.2 (3.06) D (a) Oxidative degradation of linolenic acid [45]
n-Pentanal 71(71) 22(22) 0.79–3.13 (1.62) 3.74–14.9 (8.59) D, F (a) Oxidative degradation of linoleic acid [46]
Benzaldehyde 71(71) 22(22) 12.7–42.5 (29.1) 62–238 (147) E, I, J, K, M, N, O
n-Butanal 48(48) 15(15) 0.98–53.8 (2.1) 4.6–311 (12) F (a) Oxidative degradation of linolenic acid [45]
2-Hexenal, (E)- 48(35) 15(11) 0.7–1.72 (1.06) 3.29–9.51 (6.29)
2-Butenal, 3-methyl- 39(39) 12(12) 2.36–15.1 (5.28) 13.5–68.7 (28.3) K
Butanal, 2-ethyl- 6(6) 2(2) 1.37–3.99 (2.68) 6.33–26.6 (16.5)



HCs 1-Heptene 100(100) 31(31) 0.04–0.72 (0.29) 0.17–3.28 (1.79)
n-Heptane 100(100) 31(31) 0.30–1.73 (0.6) 1.41–7.89 (2.94) D, E (a) Oxidative degradation of oleic acid [45]
n-Octane 100(100) 31(31) 0.28–3.66 (1.37) 1.75–16.9 (7.14) E (a) Oxidative degradation of oleic acid [45]
Isoprene 97(97) 30(30) 0.16–3.89 (0.82) 0.99–17.7 (4.6) (a) Endogenous cholesterol synthesis [61,62]
(b) Peroxidation of squalene [54]
(c) Cutaneous synthesis of squalene [63]
n-Nonane 97(97) 30(30) 0.80–8.84 (2.42) 4.84–40.3 (12.1) E, M, N
1-Octene 94(94) 29(29) 0.18–1.16 (0.51) 0.74–7.76 (2.9) D, H
1-Nonene 90(90) 28(28) 0.07–1.72 (0.67) 0.35–8.1 (3.75)
2-Pentene, 2-methyl- 87(87) 27(27) 0.17–11.8 (1.96) 1.05–54 (9.34) (a) Peroxidation of squalene [54]
1,3-Pentadiene, 2-methyl-, (Z)- 81(81) 25(25) 0.12–1.66 (0.31) 0.62–8.19 (1.7)
1,3-Pentadiene, 2-methyl-, (E)- 81(77) 25(24) 0.10–0.93 (0.23) 0.51–4.44 (1.24)
Propene 65(61) 20(19) 1.21–4.96 (2.56) 4.97–29.3 (13.13) (a) Peroxidation of squalene [54]
1-Pentene 48(48) 15(15) 0.26–0.68 (0.35) 1.24–3.81 (2.1)
n-Pentane 39(39) 12(12) 0.49–2.86 (0.99) 2.69–13.1 (5.19) D (a) Oxidative degradation of linoleic acid [45]
2-Butene, (E)- 26(26) 8(8) 0.05–0.9 (0.12) 0.30–4.17 (0.57)
2-Heptene 23(23) 7(7) 0.15–0.35 (0.21) 0.75–2.01 (1.29)
2-Butene, (Z)- 10(10) 3(3) 0.11–0.76 (0.36) 0.52–4.42 (1.93)
2-Butene, 2,3-dimethyl- 6(6) 2(2) 2.98–9.12 (6.05) 13.7–43.1 (28.4)



Ketones Acetone 100(100) 31(31) 86–808 (206) 493–3680 (1100) A, D, E, G, J, L, O (a) Endogenous decarboxylation of Acetyl–CoA [50]
(b) Oxidative degradation of squalene [28,55]
2-Butanone 100(100) 31(31) 0.59–3.64 (1.17) 3.7–16.6 (6.4) D, E
2-Pentanone 100(100) 31(31) 0.18–1.66 (0.36) 0.85–7.56 (1.94) E (a) Diet [64]
(b) 2-Pentanol metabolism [65]
5-Hepten-2-one, 6-methyl- 97(97) 30(30) 2.63–167 (24.8) 14–918 (133) E, G, H, J, K, L, M, N (a) Oxidative degradation of squalene [28,55]
3-Buten-2-one 87(87) 27(27) 0.75–3.23 (1.54) 4.12–19.5 (8.31) (a) OH-initiated degradation of isoprene [60]
3-Penten-2-one, 4-methyl- 10(6) 3(2) 3.81–42.63 (23.3) 20.6–247 (133)
2-Hexanone 6(6) 2(2) 0.34–0.53 (0.43) 1.74–3.55 (2.65) E
2-Heptanone 6(6) 2(2) 1.59–1.66 (1.62) 9.02–10.3 (9.66)



Heterocycles Furan, 3-methyl- 97(97) 30(30) 0.08–0.75 (0.17) 0.44–4.15 (0.9) E (a) OH-initiated degradation of isoprene [60]
(b) Produced by skin microbiota (Penicillium sp., Aspergillus flavus) [66]
Furan, 2-pentyl- 94(94) 29(29) 0.23–1.03 (0.36) 1.17–5.42 (1.94) (a) Oxidative degradation of linolenic acid [67]
(b) Produced by skin microbiota (Fusarium sp. and Aspergillus flavus) [68]
Furan, 2-methyl- 87(87) 27(27) 0.13–1.01 (0.33) 0.6–4.6 (1.8) E (a) Smoking [47]
1,3-Dioxolane, 2-methyl- 77(77) 24(24) 0.11–3.15 (0.57) 0.63–16 (3.07)
Furan, 2,5-dimethyl- 39(39) 12(12) 0.07–1.38 (0.09) 0.37–8.28 (0.55) (a) Smoking [47]
1,3-Dioxolane 32(32) 10(10) 2.81–21.85 (18.1) 16.4–124 (99)



Terpenes DL-Limonene 97(90) 30(28) 0.18–60.64 (1.64) 0.88–377 (8.76) I, N (a) Diet (flavoring) [64]
(b) Cosmetics, solvents
p-Cymene 94(52) 29(16) 0.31–2.45 (0.46) 1.43–15.3 (2.68) J (a) Diet [64]
γ-Butyrolactone 74(74) 23(23) 0.97–18.90 (4.84) 5.65–104.5 (26.6) (a) Produced by skin microbiota (Malassezia)[69]
β-Pinene 13(13) 4(4) 0.28–2.81 (0.7) 1.59–18.8 (4.25) M (a) Perfumes, cosmetics
Styrene, p,α-dimethyl- 10(10) 3(3) 0.76–10.17 (1.38) 4.63–63.2 (8)
Eucalyptol 10(10) 3(3) 1.85–14.24 (2.21) 9.07–86 (10.1) (a) Cosmetics
(b) Diet (beverages, meat) [64]
(c) Insecticide component [70]



Esters Ethyl Acetate 10(10) 3(3) 3.74–81.05 (33.6) 21.7–469 (182) N (a) Cosmetics
Isopropyl acetate 6(6) 2(2) 23.87–43.78 (33.8) 138–237 (187) (a) Cosmetics
Isobutyl acetate 6(6) 2(2) 11.63–15.52 (13.6) 63–90 (76) (a) Cosmetics
n-Butyl acetate 10(10) 3(3) 130.20–1409 (885) 659–8140 (4790) (a) Cosmetics



Alcohols Ethanol 19(10) 6(3) 109–7377(329.2) 683–42773 (2005) A, D (a) Oxidative degradation of linoleic acid [45]
(b) Diet
2-Propanol 6(3) 2(1) 87.6 506 D (a) Disinfectants, cosmetics



Sulphurs Dimethyl sulfide 81(77) 25(24) 0.13–1.12 (0.48) 0.60–6.06 (2.52) E (a) Endogenous metabolism of sulfur-containing amino acids [71]
(b) Bacterial decomposition of sulfur-containing amino acids acids [71]
Sulfide, allyl methyl 19(19) 6(6) 0.06–0.5 (0.36) 0.28–3.13 (1.73) (b) Diet, garlic consumption [72]



Other Acetonitrile 90(90) 28(28) 0.47–89 (1.14) 2.39–407 (6.31) D (a) Smoking [47]

Legend: A – Turner, C., et al., Rapid Commun Mass Spectrom, 2008, 22(4), 536; B – Moeskops, B.W., et al., Physiol Meas, 2006, 27(11), 1187; C – Steeghs, M.M.L., et al., Int. J. Mass Spectrom., 2006, 253, 58; D – Ellin, R.I., et al.,. J. Chromatogr, 1974, 100(1), 137; E – Bernier, U.R., et al., Anal Chem, 2000, 72(4), 747; F – Luo, X.P., et al., Anal Biochem, 1995, 228(2), 294; G – Wisthaler, A. and C.J. Weschler, Proc Natl Acad Sci U S A, 2010, 107(15), 6568; H – Haze, S., et al., J Invest Dermatol, 2001, 116(4), 520; I – Zhang, Z.M., et al., J Chromatogr B, 2005, 822(1–2), 244; J – Gallagher, M., et al., Br J Dermatol, 2008, 159(4), 780; K – Ruzsanyi, V., et al., J Chromatogr B, 2012, 911, 84; L – Fruekilde, P., et al., Atmospheric Environment, 1998, 32(11), 1893., M – Curran, A.M., et al., J Chromatogr, 2007, 846, 86, N – Dormont, L., et al., J. Exp. Bol., 2013, 216, 2783, O – Sekine Y., et al., J Chromatogr B, 2007, 859, 201.