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Small insertions/deletions (INDELs) of ≤21 bp comprise 18% of all recorded mutations causing human inherited
disease and are evident in 24% of documented Mendelian diseases. INDELs affect gene function in multiple ways:
forexample,by introducingprematurestopcodonsthateither leadtotheproductionof truncatedproteinsoraffect
transcriptional efficiency. However, the means by which they impact post-transcriptional regulation, including al-
ternative splicing, have not been fully evaluated. In this study, we collate disease-causing INDELs from the Human
Gene Mutation Database (HGMD) and neutral INDELs from the 1000 Genomes Project. The potential of these two
types of INDELs to affect binding-site affinity of RNA-binding proteins (RBPs) was then evaluated. We identified
several sequence features that can distinguish disease-causing INDELs from neutral INDELs. Moreover, we
built a machine-learning predictor called PinPor (predicting pathogenic small insertions and deletions affecting
post-transcriptional regulation, http://watson.compbio.iupui.edu/pinpor/) to ascertain which newly observed
INDELs are likely to be pathogenic. Our results show that disease-causing INDELs are more likely to ablate
RBP-binding sites and tend to affect more RBP-binding sites than neutral INDELs. Additionally, disease-causing
INDELs give rise to greater deviations in binding affinity than neutral INDELs. We also demonstrated that disease-
causing INDELs may be distinguished from neutral INDELs by several sequence features, such as their proximity
tosplice sites andtheir potential effects onRNA secondarystructure. This predictor showed satisfactory perform-
ance in identifying numerous pathogenic INDELs, with a Matthews correlation coefficient (MCC) value of 0.51 and
an accuracy of 0.75.

INTRODUCTION

Micro-insertions and micro-deletions of ≤21 bp (INDELs)
comprise the second largest category of pathogenic genetic var-
iations in the human genome (after single-nucleotide substitu-
tions), accounting for 18% of all documented genomic variants
(1). Similar to single-nucleotide polymorphisms (SNPs) and
large structural variations, INDELs are of significant clinical
interest, owing to their potential to affect gene function and
hence cause disease. Based on the Human Gene Mutation

Database (HGMD) (2), single-nucleotide variations (SNVs) rep-
resent the largest class of genetic variant, responsible for.50%
of known Mendelian diseases, followed by small INDELs,
which are evident in 24% of known Mendelian diseases.

INDELs may affect gene function through multiple mechan-
isms. First, frameshifting INDELs insert/delete a number of
nucleotides that are not divisible by three and therefore result
in the shift of the entire reading frame and an altered protein
sequence after the site of the INDEL; these INDELs often
lead to premature termination of translation (3–10) and/or
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nonsense-mediated decay. Non-frameshifting INDELs, on the
other hand, insert/delete a multiple of three nucleotides and
lead to the addition or removal of amino acid residues at the
INDEL locus, thereby also affecting protein function. In addition
to altering protein amino acid sequences, INDELs within pro-
moter regions have the potential to disrupt existing transcription
factor-binding sites (or alternatively, generate new transcription
factor-binding sites), thereby affecting gene expression (11,12).
For example, an INDEL within the ACE gene promoter has
been reported to be a causative factor for coronary heart
disease (13). Overall, functions of INDELs have been studied
in many types of disease, including inflammatory bowel
disease (14), Alzheimer’s disease (15,16), heart disease
(17,18) and numerous cancers.

In addition to impacting protein function by altering amino acid
sequence, INDELs inexonicand intronic regionscanalsointerfere
withbindingsitesof RNA-bindingproteins (RBPs) andhence may
influence RNA processing, including RNA editing (19), alterna-
tive splicing (20,21), microRNA binding and polyadenylation
(22). Despite pathogenic small INDELs being a frequent cause
of inherited disease, bioinformatics tools for prioritizing
INDELs are not well established, with only a few tools available
that utilize high-throughput sequencing-derived micro-insertion/
micro-deletion data; such tools include PriVar (23), SIFT-INDEL
(24) and DDIG-IN (25). However, all of these tools focus on the
potential roles of INDELs in changing amino acid sequences
(and hence protein structures) and do not attempt to assess their
roles in RNA processing. Therefore, the prioritization of disease-
causing INDELs that interrupt post-transcriptional regulation
remains a little-studied topic and a formidable challenge.

To investigate the potential impact of INDELs on post-
transcriptional regulation, we systematically evaluated several
RNA-processing-related genomic features of disease-causing
INDELs already documented in the HGMD. We found that patho-
genic INDELs are preferentially located in alternatively spliced
exons and often disrupt binding sites of RBPs. In the current
work, we further performed a comparative study of disease-
causing INDELs and neutral INDELs (documented in the 1000
Genomes Project database) to show how they may be discrimi-
nated in terms of sequence features, stabilization of RNA second-
ary structure and evolutionary conservation. Such characteristics,
together with the effects of INDEL on RBP-binding affinity,
were utilized to build a classifier (‘PinPor’, predicting pathogenic
small insertionsanddeletionsaffectingpost-transcriptional regula-
tion) that can be used to predict the disease relevance/irrelevance
of newly discovered INDELs, in relation to post-transcriptional
regulation.

RESULTS

In this study, we investigated how INDELs affect post-
transcriptional regulation by altering RNA processing, including
the dysregulation of alternative-splicing patterns. In the RNA
sequences flanking INDEL loci, we examined several nucleotide
sequence-specific features that could affect splicing regulation.
We systematically compared the differences between disease-
causing (from the HGMD) and neutral (reported by the 1000
Genomes Project) INDELs. The selection of neutral INDELs
was based on the fact that none of the individuals sequenced in

the 1000 Genomes Project had any overt signs of disease. As
most (96.4%) of the INDELs in the HGMD were located
within gene-coding regions, we removed all examples of
INDELs residing in intergenic, intronic and untranslated
(UTR) regions from further analysis. In summary, our disease-
causing and neutral datasets, respectively, included 27 422 and
1379 (non-UTR, exonic) INDELs.

Disease-causing INDELs tend to alter the binding
affinities of RNA-binding proteins

To establish whether the presence of an INDEL would affect the
binding affinity of an RBP, we evaluated RBP-binding score
changes in the presence and absence of INDELs at the variant-
containing loci; the scores were calculated based on the position-
weight matrix (PWM) of the RBP and the RNA sequence of the
putative RBP-binding site. Briefly, a posterior probability of the
likelihood that an INDEL would change a given RBP-binding
site and the magnitude of that change were calculated for each
INDEL-RBP pair, using a strategy reported previously (see
Materials and methods) (26). Positive and negative magnitude
values indicate gain and loss of RBP binding, respectively. We
focused our analysis on 53 RBPs whose PWMs were derived
from experimental evidence and were documented in the
RBPDB database (27). The PWMs of these RBPs were acquired
using various technologies, including NMR (28,29), EMSA
(30), SELEX (31) and CLIP-Seq (32).

We first examined whether disease-causing INDELs (docu-
mented in the HGMD) were more likely to affect the binding
sites of the RBPs that play regulatory roles in RNA processing.
We found that the disease-causing INDELs gave rise to signifi-
cantly larger binding score deviations, when compared with
the neutral INDELs (in the 1000 Genomes Project). Using the
RBP ELAVL2 (embryonic lethal, abnormal vision and
Drosophila-like 2) binding motif as an example, 811 (2.96%)
and 12 (0.87%) of disease-causing and neutral INDELs, respect-
ively, caused changes in the potentials of protein binding (odds
ratio ¼ 3.34, P-value , 0.01). Overall, among 53 RNA-binding
motifs evaluated, 28 showed significantly higher rates
(P-value , 0.05) of binding changes elicited by disease-causing
versus neutral INDELs (Fig. 1). By contrast, only two RBPs
showed significantly lower rates of binding changes (P-value
, 0.05) caused by disease-causing INDELs than neutral ones.
No significant differences were observed for the other 23 RBPs.

We further examined whether the potential for disease-causing
INDELs to alter RBP binding was consistent among different
disease states. We first identified all the diseases associated with
.50 disease-causing INDELs documented in the HGMD data-
base. For each RBP–disease pair, we calculated the proportion
of disease-causing INDELs that could potentially change the
binding of the specific RBP and further evaluated whether this
proportion was statistically different from the neutral INDELs
in the 1000 Genomes Project. For instance, of 68 INDELs in the
HGMD documented as being associated with paraganglioma,
10 (14.7%) were predicted to change the binding of the RBP
ELAVL2. This proportion was significantly higher than the pro-
portion for neutral INDELs, which was only 0.87% (12 of
1379); the odds ratio for this difference was 19.6. Figure 2 is a
heat map showing the odds ratios for all RBP–disease pairs, in
which red and blue colors indicate higher and lower percentages
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of disease-causing INDELs (when compared with neutral ones)
predicted to change the binding of the specific RBPs. The heat
map clearly shows that, with a few exceptions, disease-causing
INDELs tend to change RBP binding with a higher probability,
when compared with neutral INDELs.

Disease-causing INDELs are enriched in alternatively
spliced exons

In both the disease-causing (HGMD) and neutral (from 1000
Genomes Project) datasets, we calculated the proportion of
INDELs that were located within alternatively spliced exons (in-
cluding upstream and downstream flanking exons, Table 1). We
found disease-causing (HGMD) INDELs to be significantly
enriched in those exons documented in the alternative-splicing
database (33). Among 27 422 disease-causing INDELs listed in
the HGMD, 6131 (22.4%) were found to reside within cassette
exons (including flanking exons) derived from RefSeq,
Ensembl, UCSC or other databases (34–36). By contrast,
only 176 (12.8%) of the 1379 neutral INDELs in the 1000
Genomes Project dataset were located in these regions
(P-value , 2.2 × 10216). Similarly, disease-causing INDELs
also displayed significant enrichment in gene regions, subject to
alternative 5′ and 3′ splicing events (Fig. 3).

INDELs in close proximity to splice sites tend to be
disease-causing

The spatial relationship between RBP-binding-site positions and
splice sites can provide important mechanistic insights to mo-
lecular function. It is reported that many RBPs, including
SFRS1 and NOVA-2, tend to bind close to splice sites (37,38).

In addition, we (38) and Pfarr et al. (39) have previously reported
that disease-causing single-nucleotide substitutions tend to
disrupt the RBP sites that are in close proximity to splicing junc-
tions. Therefore, we examined whether the distances between
splice sites and INDEL loci follow a different distribution
between disease-causing and neutral INDELs. Based on a com-
parison between 27 422 and 1379 non-UTR, exonic INDELs in
the HGMD and 1000 Genomes Project databases, we clearly
observed that disease-causing INDELs tend to locate in closer
proximity to splice sites than neutral INDELs, and this trend is
consistent for both 5′ and 3′ splice sites (Fig. 4). The median dis-
tance (in nucleotides) between the variant loci and the 3′ end of
the exons was 89 and 123 nt for HGMD and 1000 Genomes
Project INDELs, respectively. Similarly, the median distance
to the 5′ end of exons was 91 and 143 nt for HGMD and 1000
Genomes Project INDELs. This result is consistent with previ-
ous observations that disease-causing single-nucleotide variants
(SNVs) locate closer to splice sites, when compared with
non-disease-causing SNVs (39,40).

GC content of flanking sequences

GC content influences pre-mRNA local structure and displays a
positive correlation with structural stability, as measured by se-
quence minimum free energy (41). Consequently, the GC
content difference of exons and adjacent introns may influence
mRNA splicing, and INDELs located within the pre-mRNA
coding regions with differing GC contents may elicit different
splicing outcomes (42). For each INDEL, we calculated the
GC content of +50-bp sequence flanking the site of mutation.
We observed clear differences in the GC content between the
regions harboring HGMD INDELs, when compared with those
harboring 1000 Genomes Project INDELs (Fig. 5), with disease-
causing INDELs more prone to reside within regions with low
GC content (0.35–0.5).

Disease-causing INDELs tend to affect pre-mRNA
secondary structure

Pre-mRNA structure conformational changes can influence the
utilization of both splicing signals (5′ SS, 3′ SS, branch point)
and cis-regulatory elements (exonic/intronic splice enhancers,
and exonic/intronic splice silencers) (43–45). To evaluate the
changes in pre-mRNA structure caused by INDELs, we compared
the structural distance scores between the reference sequence and
the mutated sequence using the RNADistance program in Vienna
RNA package using default parameters (46). Structural distance is
measured as the edit distance (the number of operations required
to convert one structure into another) between two aligned RNA
secondary structures.The RNA secondary structure was predicted
using the RNAfold program (V2.0) in Vienna RNA package with
default parameters (46). Similar to the evaluation of the GC
content difference, 100-bp pre-mRNA sequences flanking the
INDEL loci were extracted, with 50-bp on both the 5′ and 3′

sides. As shown in Figure 6, disease-causing INDELs tend to
give rise to greater changes in RNA secondary structure.

Sequence conservation

Nucleotideconservation is higher inconstitutiveexons than that in
alternatively spliced exons (47–50). It is almost axiomatic that

Figure 1. Disease-causing INDELs tend to alter the binding sites of RBPs to a
greater extent than neutral INDELs. The X-axis plots the proportion of disease-
causing INDELs (derived from the HGMD) that change the RBP-binding affinity
with a posterior probability of .0.5. The Y-axis plots the proportion of neutral
INDELs (from 1000 Genomes Project data) that change the RBP-binding affinity
with a posterior probability of .0.5. Each dot represents one RBP and is plotted
against the proportion of disease-causing INDELs and neutral INDELs that have
the potential to change RBP binding. Among the 53 RBPs, 28 were affected at a sig-
nificantly (P-value , 0.05) higher rate by INDELs from HGMD than neutral ones
(filled ellipses under the 45 degree line). Additionally, only two RBPs showed a sig-
nificantly lower affection rate by INDELs from HGMD than neutral ones
(P-value , 0.05). The open ellipses indicate RBPs with an insignificant ratio.
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evolutionarily conserved DNA/RNA sequences are more likely to
be of functional significance, because mutations in highly con-
served regions are eliminated through natural selection. To
examine this feature, phyloP (51) scores, which evaluate evolu-
tionary conservation across 46 vertebrates, were downloaded
from the UCSC Genome Browser conservation (phyloP46way-
Primates) track. For each INDEL, the average phyloP score for
the nucleotides comprising the deletion site, or the average of
the two nucleotides flanking the insertion site, was calculated.
Positive or negative phyloP scores indicate that the site is evolu-
tionarily conserved or fast-evolving, respectively. Our results in-
dicate that HGMD INDELs tend to be disproportionately located
at evolutionarily conserved sites, when compared with neutral
INDELs from the 1000 Genomes Project (P-value , 2.2e–16,
Fisher’sExact test,Fig.7).This result stronglysuggests thatpatho-
genic INDELs tend to disrupt functional regulatory elements.

Prioritizing INDELs with a role in inherited disease

In order to predict whether a newly discovered INDEL could be
disease-causing, we constructed a machine-learning predictor,
PinPor, based on the various genomic features that potentially
affect RNA processing. The disease-causing and neutral INDEL
datasets were, respectively, compiled from the HGMD and
1000 Genomes Project databases. When compiling these datasets,
we aimed to remove all INDELs deemed likely to impact protein
function through other known mechanisms. For instance,
frameshifting INDELs may either change the protein sequence
downstream of the INDEL or induce nonsense-mediated decay.
Similarly, INDELs located in regions lacking stable tertiary struc-
ture (disordered region) are less likely to affect protein function,
whereas INDELs within regions of very specific tertiary structure
(structured regions) more likely affect protein function, by

Figure 2. Heat map of the relative proportion of INDELs that change RBP binding between disease-causing INDELs and neutral INDELs. Each dot, corresponding to
one disease–RBP pair, represents the log2-transformed ratio of the proportion of disease-causing INDELs that change RBP-binding affinity, and the proportion of
neutral INDELs. Only significant (P , 0.05) disease–RBP pairs are plotted. Red dots indicate significantly higher proportions of disease-causing INDELs potentially
changing RBP binding than neutral INDELs, and blue dots indicate lower proportions.
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disrupting protein structures. Such INDELs were removed from
the training dataset. Overall, of 27 422 exonic INDELs listed in
the HGMD database, 3342 were non-frameshifting, and 624 of
these were located in regions that were deemed unlikely to form
structural proteins (with disorder score of .0.4). For the 1000
Genomes Project data, 685 of the 1379 exonic INDELs were non-
frameshifting, whereas 531 located within disordered protein
regions. These INDELs were further used as a ‘gold standard’
for training the predictors.

Features

The following genomic features that best discriminate between
disease-causing and neutral INDELs were used for training the
predictor: (1) distance to the splice donor sites (i.e. the 3′ end of
an exon); (2) distance to the splice acceptor sites (the 5′ end of
an exon); (3) GC content of the flanking sequence in the reference

form (GCraw); (4) GC content of the flanking sequence in the
mutated form(GCmut); (5) disruption of the RNA secondary struc-
ture, i.e. the edit distance of the flanking sequences in the reference
and mutated forms (a higher edit distance indicates larger differ-
ences on RNA secondary structure in two forms); (6) conservation
score, i.e. the phyloP scores (51) of the deleted nucleotides or the
two nucleotides flanking the inserted sequences; (7) alt-event in-
dicator, i.e. whether or not a given INDEL is located within an
annotated alternative-splicing event; (8) maximal magnitude of
RBP binding changes by an INDEL.This measurement represents
the largest magnitude of potential change in binding [as defined in
Eq. (5)] by an INDEL among 53 RBPs. (9) the number of RBPs
whose binding could be potentially altered by the INDEL, as
evaluated in Eq. (6).

To develop a computational model capable of predicting
INDEL disease relevance, we evaluated five machine-learning
and statistical classification algorithms available in the Weka

Figure 3. Proportion of INDELs located in a portion of the gene that is involved in alternative processing events, comparing disease-causing INDELs and neutral
INDELs. Each gray bar represents 1 of 15 diseases studied, whereas the dashed line represents neutral INDELs. The height of each bar and the dashed line represent
the proportion of associated INDELs of a particular gene that is involved in one specific type of alternative processing event: (A) Cassette exon, including upstream and
downstream flanking exons, (B) alternative 3′ splicing site (A3SS) and (C) alternative 5′ splicing site (A5SS).

Figure 4. Comparison of proximity to splice site between disease-causing INDELs and neutral INDELs. The solid line represents the proximity distribution of disease-
causing INDELs, whereas the dashed line represents the proximity distribution of neutral INDELs. (A) Distributions of proximity to 5′ end boundary of exon (acceptor
site). (B) Distributions of proximity to 3′ end boundary of exon (donor site).
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software package (52), including Bayesian Network (BN) (53),
Multilayer Perceptron (54), Naı̈ve Bayes (55), Random Forest
(56) and Logistic Regression (57). Each model was trained and
tested based on the extracted genomic features using default
parameters. To evaluate the performance of each classifier,
10-fold cross-validation was employed. Briefly, in each iter-
ation, 9 of 10 of the gold standard (624 disease-causing and
531 neutral INDELs) dataset were used to train the model, and
the remaining 1 of the 10 dataset was used to evaluate the
model performance. The performance of each model was evalu-
ated by several metrics, including Matthews correlation

coefficient (MCC) (58); accuracy, the percentage of correctly
classified samples; and area under curve (AUC) of the receiver
operating characteristic (ROC) curve. Those measurements
were averaged across all 10 iterations to determine the overall
performance. Based on the testing results, as shown in
Figure 8A, BN achieved the best performance of all five predic-
tors, with MCC of 0.51, accuracy of 0.75 and AUC of 0.83.

To identify the most discriminative subset of features, we
evaluated the performance of each subset of the nine features
based on a BN classifier. In total, there were combinations of
511 (29 2 1) subset of features. For each of them, the same

Figure 5. Comparison of GC content of 100-bp fragments surrounding gene loci harboring disease-causing INDELs and neutral INDELs. The solid line represents the
GC content for disease-causing INDELs, whereas the dashed line represents the GC content for neutral INDELs. (A) Distributions of GC content calculated from
mutant form fragment. (B) Distributions of GC content calculated from reference form fragment.

Figure 6. Comparison of INDEL effect to local RNA secondary structure
between disease-causing INDELs and neutral INDELs. The solid line plots the
distance distribution for disease-causing INDELs. The dashed line represents
the distance distribution for neutral INDELs. When the edit distance between
the RNA secondary structure of the mutation and reference forms is .20, the pro-
portion of disease-causing INDELs is higher than that of neutral INDELs.

Figure 7. Comparison of conservation score of deleted nucleotides (or two adja-
cent nucleotides) to inserted nucleotides. The solid line plots the phyloPscore dis-
tribution for disease-causing INDELs. The dashed line plots the phyloP score
distribution for neutral INDELs. Disease-causing INDELs exhibit a higher rate
of occurrence at evolutionarily conserved regions than neutral INDELs.
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10-fold cross-validation strategy was employed to evaluate its
predicting power as an MCC value. The subset of features that
achieved the best prediction performance (MCC as 0.51 and ac-
curacy as 0.75) was composed of the following seven features:
(1) distance to splice donor site, (2) distance to splice acceptor
site, (3) GC content of mutated sequences, (4) disruption of the
RNA secondary structure, (5) conservation score, (6) maximal
magnitude of RBPs binding changes by an INDEL and (7) the
number of RBPs whose binding could potentially be altered by
the INDEL. We also divided the selected features into two
subcategories: splicing-related features (i.e. disruption of RNA
secondary structure, maximal magnitude of RBPs binding
changes by an INDEL and number of RBPs whose binding can
be potentially altered by the INDEL) and sequence composition
features (i.e. 5′ end proximity, 3′ end proximity, GCmut and
conservation score). The performance of each subcategory of
features was tested separately using BN through 10-fold cross-
validation. The subcategory of splicing-related features outper-
formed sequence composition features. The MCC values of
using splicing-related features and sequence composition fea-
tures alone were 0.448 and 0.246, respectively (Fig. 8B).

We further evaluated the contribution of each feature by the
following steps: for each iteration, one feature was removed
and the remaining features were used to train the BN predictor
using the same 10-fold cross-validation strategy. Thus, larger
decreases in MCC value caused by excluding that feature indi-
cated a greater contribution. Among all the features tested, ‘dis-
ruption of RNA secondary structure’ was the most important
feature, followed by ‘maximal magnitude of RBP binding
changes by an INDEL’ and ‘3′ end proximity’ (Table 2).

DISCUSSION

In addition to their potential roles in disrupting protein structure
and function, disease-causing genomic variants in exonic
regions can also influence transcriptional and post-transcriptional
regulation by changing the interaction between cis-acting RNA
elements and trans-acting regulatory proteins. It is known, for
example, that many diseases are caused by the dysregulation of

splicing (59), with 15–50% of human disease mutations affecting
splice site selection (60,61). It has been hypothesized that genetic
variants can give rise to phenotypic differences by interferingwith
the splicing code (61), and we recently found that synonymous
single-nucleotide variations (SNVs) residing in alternatively
spliced exons have minor allele frequencies (MAFs) similar to
non-synonymous SNVs, but lower than neutral SNVs (62). This

Figure 8. ROC curves of each individual classifiers and subcategories of features. (A) Performance comparison of different classification models evaluated using
10-fold cross-validation. BN, Bayesian Network; LG, Logistic Regression; MLP, Multilayer Perceptron; NB, Naı̈ve Bayes; RF, Random Forest. Each ROC curve
represents one model. The numbers in parentheses indicate the AUC of each ROC. The BN outperformed all other predictors. (B) ROC curves for using subcategory
of features to classify disease-causing INDELs and neutral INDELs. Blue curve is the ROC curve generated by using all seven selected features. The red curve is
generated by using only splicing-related features (i.e. change in RNA secondary structure, maximal magnitude of RBP binding changes by an INDEL and the
number of RBPs whose binding is altered by the INDEL). The black curve is generated by using only sequence features (5′ end proximity, 3′ end proximity, GCmut and
conservation score). The numbers in parentheses are the AUC. The dotted line is the 45 degree line.

Table 1. Proportion of INDELs in alternative-splicing events and
non-alternative-splicing events

Alt-event HGMD
(disease-causing) (%)

1000 Genomes
Project (neutral) (%)

3′ SS 2.21 2.47
5′ SS 2.52 1.52
Upper exon 8.77 3.77
Central exon 4.80 2.76
Down exon 8.78 6.24
Other(non-alternative) 72.92 83.24

3′ SS, alternative 3′ splicing site; 5′ SS, alternative 5′ splicing site; upper exon, the
exon which is located immediately upstream of a cassette exons; central exon, the
cassette exon; down exon, the exon located immediately downstream of a
cassette exon.

Table 2. Feature selection based on accuracy decrease, using BN

Feature MCC FPR TPR ACC

RNA secondary structure 0.375 0.281 0.659 0.687
Maximal magnitude of RBPs binding

changes by an INDEL
0.463 0.435 0.873 0.732

3′ end proximity 0.479 0.328 0.803 0.743
Number of RBPs whose binding was

altered by the INDEL
0.486 0.412 0.875 0.743

Conservation score 0.493 0.299 0.791 0.750
5′ end proximity 0.495 0.207 0.705 0.745
GC_mut 0.503 0.254 0.760 0.753
Use all features 0.506 0.250 0.760 0.755

MCC, Matthews correlation coefficient; FPR, false positive rate; TPR, true
positive rate; ACC, accuracy.
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finding suggests that dysfunctional RNA regulation is a major
consequence of disease-causing SNVs, and it is reasonable to
assume that INDELs can cause similar, if not greater, disruption
of RNA regulation.

In this study, we systematically evaluated nucleotide sequence
features that served to discriminate disease-causing from neutral
INDELs, based on their potentials to disrupt interactions with
RBPs. These features differ between disease-causing INDELs
(cataloged in the HGMD database) and neutral INDELs (gener-
ated by the 1000 Genomes Project), indicating that these features
have the potential to be used to predict disease-causing INDELs
that disrupt post-transcriptional regulation.

Our analysis clearly showed significant differences between
the neutral and disease-causing INDELs in terms of their poten-
tial to change the binding affinities of RBPs, based on the pos-
ition–weight matrices of 53 RBPs documented in the RBPDB
database (27). We found that disease-causing INDELs asso-
ciated with significantly larger binding score deviations than
neutral INDELs. Further analysis confirmed that this trend
held true for most of the diseases studied, clearly suggesting
that INDELs can give rise to new phenotypes by interacting
with RBP-binding sites, consistent with previous findings on
SNVs (26,62).

In addition to the potential for the direct disruption of RBP
binding, we also found marked differences in other genomic fea-
tures between disease-causing and neutral INDELs. For
example, we noted that disease-causing INDELs tend to occur
closer to splice sites (both 5′ donor and 3′ acceptor sites), when
compared with neutral INDELs (Fig. 4A and B). The genomic
loci harboring disease-causing INDELs tend to be more evolu-
tionarily conserved (Fig. 7) and tend to be located within
exons for which there is evidence for alternative splicing
(Fig. 3). We also evaluated the GC content and potential disrup-
tion of RNA secondary structures of the nucleotide sequences
adjacent to the INDEL sites (50 nt upstream and downstream);
both features showed significant differences between disease-
causing and neutral INDELs. Moreover, the DNA sequence sur-
rounding disease-causing INDELs was generally found to be
more prevalent in low-GC-content region than those DNA
sequences flanking neutral INDELs (Fig. 5). We further
observed that disease-causing INDELs tend to disrupt RNA sec-
ondary structure to a greater extent than neutral INDELs, as pre-
dicted by the RNADistance (46) program (Fig. 6). The ability of
these features to clearly distinguish disease-causing from neutral
INDELs confirms the importance of using RNA-based features
for INDEL discrimination. All these measures indicate that
INDELs significantly impact the regulation of RNA processing.

Of the five different machine-learning predictors tested, BN
achieved the overall best performance. Using a greedy feature
selection strategy, we identified the most informative subsets
of features: RNA secondary structure, maximal magnitude
of RBP binding changes by an INDEL, 3′ end proximity to
splice junctions, number of RBPs whose binding could potential-
ly be altered by the INDEL, conservation score, 5′ end proximity
to splicing junction and GC content for the variant form.

We further ranked the seven most informative features based on
their relative contribution to the overall performance measured by
MCC value. Disruption of pre-mRNA secondary structure was
shown to be the single most informative genomic feature. This
is consistent with previous reports that RBPs recognize their

target RNA not only by the sequence features of RBP-binding
sites but also through target siteaccessibility,which is inpart regu-
latedbyRNA secondaryor tertiarystructureconformation (43). In
fact, several bioinformatics tools have used this as a major feature
to study protein–RNA interactions (63–65). Our findings further
confirm those observations and show that INDELs can disrupt
RNA processing both by changing the structural conformation
(rank no. 1) and by interrupting splicing factor assembly around
the boundary of exons (donor/acceptor splice site) (rank nos. 3
and 6). Our model also demonstrated that the evolutionary conser-
vationscoreof the locusharboringthe INDELisamajordetermin-
ant for predicting INDEL pathological relevance (ranked no. 5
among all the features tested). Evolutionary conservation is
widely regarded as one of major indicators of the biological func-
tionality of a DNA sequence element. Indeed, many studies have
reported that RBPs tend to bind to sites that are evolutionarily con-
served (66–68). Thus, similar to RNA secondary structure, evolu-
tionary conservation levels have been widely used as predictors of
protein–RNA interactions (69,70).

The accuracy of the current model is limited by our current
knowledge of RBP-binding motifs. Our current study was
based on only 53 RBP-binding sites, and as this number only
represents a small proportion of all RBPs, the current model is
inevitably limited in terms of its general predictive potential.
With rapid developments in high-throughput genomic technolo-
gies and supporting biological assays, our ability to identify
RBP-binding sites should increase dramatically. Such informa-
tion, once available, will help to increase the accuracy of model
prediction and thus provide a better understanding of these very
important elements (INDELs).

MATERIALS AND METHODS

INDEL lists from the 1000 genomes project and the human
gene mutation database

The Human Gene Mutation Database (HGMD, http://www.hgmd.
org/) contains 28,223 INDELs (micro-insertions/micro-deletions,
HGMD professional release 2012.2) causing or associated with
human inherited disease; 27,422 (97.15%) of these are located in
non-UTR exons. The 1000 Genomes Project catalogs 1,443,514
small INDELs (version 3 of release 20101123, http://www.
1000genomes.org/). We excluded those INDELs located in
introns and UTR regions (3′ UTR and 5′ UTR), yielding a total
of 1379 (0.096%) INDELs located in non-UTR exonic regions
for further analysis.

Estimating the probability of an INDEL changing
the binding affinity of an RNA-binding protein

Our analysis focused on 53 RBP-binding motifs cataloged in the
RBPDB (27) database; these 53 RBP-binding domains represent
the binding sites of 30 unique RBPs. For each of the 53 RBP-
binding motifs, a PWM was derived from multiple sequence align-
ments of the experimentally determined RBP-binding sites. A
PWM is a matrix of values that gives the count of each nucleotide
at each locus of the binding site. The binding affinity between the
n-nt DNA sequence and the PWM is described by a matching

Human Molecular Genetics, 2014, Vol. 23, No. 11 3031



score S as follow:

S =
∑k

i=1

∑
j[{A,T,G,C}

log2

(ni,j + ci,j)/(N +
∑4

j=1 ci,j)
dj

, (1)

where ni,j is the count of the jth nucleotide on the ith position in the
PWM, k is the width of the binding site and ci,j is the pseudocount
for the jth nucleotide on the ith position in the PWM. N is the total
number of experimentally validated binding sites for each RBP. dj

is the prior base frequency for the jth nucleotide (dj¼ 0.25 for j ¼
A, T, G, C). Similar strategies have been used previously (71).

In Eq. (1), a high or low matching score indicates that the pu-
tative sequence has, respectively, a high or low likelihood to be a
potential binding site. Each position of a binding site is assumed
to be independent of the other. The matching score distributions
for binding and non-binding events are both estimated based on
the position-specific scoring matrix (PSSM) of an individual
RBP. The PSSM is derived from the PWM, with each value at
the ith column and the jth row defined as:

si,j = log2

(ni,j + ci,j)/(N +
∑4

j=1 ci,j)
dj

, (2)

where ni,j, ci,j, N and dj are the same as in the definition in Eq. (1).
The mean and variance of the binding scores for specific

RBP-binding events are defined as:

Ms =
∑k

i=1

∑
j[(A,T,G,C)

fi,j × si,j, (3)

Vs =
∑k

i=1

∑
j[{A, T ,G,C}

fi,j × s2
i,j − ( fi,j × si,j)2, (4)

where si,j is equivalent to the value of the ith column and the jth
row in the PSSM and fi,j is the approximation of the true fre-
quency of each nucleotide at each binding locus. For binding
events,

fi,j =
2si,j

4
,

and for non-binding events, fi,j ¼ 0.25.

Evaluating the magnitude of the change in RBP binding

As defined in our previous work (26), the magnitude M of an
INDEL affecting the binding of an RBP is defined as a likelihood
ratio of the INDEL loci being a binding event as opposed to it
being a non-binding event in reference and alternative forms,
respectively,

M = log2

P(SA|B)/P(SA|NB)
P(SR|B)/P(SR|NB) = log2

�SA

−1

1������
2pVS
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d(x)/ 1 −
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,

where M ′
S and V ′

S are, respectively, the mean and variance of the
matching score for non-binding events. R and A indicate the refer-
ence and mutated sites, respectively, whereas B and NB denote
binding and non-binding events, respectively. SR and SA each rep-
resent the matching scores of the reference and mutated sites. A
positive score indicates a gain of an RBP-binding site, whereas
a negative score indicates the loss of an RBP-binding site.

Bayesian posterior probability of RBP-binding-site gain/loss

We further calculate a Bayesian-based posterior probability for
RBP-binding-site gain/loss, defined as the probability that a
genetic locus could switch between binding and non-binding,
with and without the INDEL variant:

P=P(R=B,A=NB|SR,SA)+ P(R=NB,A=B|SR,SA)

=
∫1

0

[P(B)(1−P(B))(P(SR|R=B)P(SA|A=NB)

+P(SR|R=NB)P(SA|A=B)/P(SA)P(SR)]d(B),

(6)

where P(B) is the prior probability that a specific locus is a
RBP-binding event. Here, we assign P(B) to be a beta distribu-
tion with a mode value as 1/2MS, where MS is effectively equal
to information content of specific motif. The terms P(R ¼ B,
A ¼ NB|SR, SA) and P(R ¼ NB, A ¼ B|SR, SA) represent the
probability density function (pdf) denoting loss or gain, respect-
ively, of a RBP-binding site caused by an INDEL.

RNA secondary structure prediction

The effects on local RNA secondary structure with the presence
of INDEL was evaluated using the programs RNAfold and
RNADistance from the Vienna RNA package (46). The frag-
ment flanking the locus of one INDEL with 50 bp on each side
was extracted for both the reference form and the mutated
form of the DNA sequence. First, the minimum free energy
structure was calculated by the RNAfold program for each frag-
ment. Then, the two structures were aligned and compared by
means of the RNADistance program to calculate the edit dis-
tance between them.

Protein disorder score calculation

We used the program SPINE-D (72) to determine the disordered
(or unstructured) region of each protein which overlapped an
INDEL. Disordered regions are more flexible in three-
dimensional structure than structured regions. Each amino acid

(5)
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was assigned a probability (disorder score) indicating whether it
was located in a disordered region or not. The higher the disorder
score, the more likely the amino acid was to be located in an un-
structured region. One INDEL was taken as not affecting protein
structure if it was located in a disordered region; these regions
were defined as the average disorder scores of the corresponding
amino acids of .0.4.

Evaluation of classifier performance

The performance of each classifier was evaluated by accuracy,
MCC and the cumulative area under the ROC curve (AUC,
which is often used for model comparison). The accuracy was
defined as INDELs correctly classified out of all INDELs in
the dataset. In other words, accuracy ¼ (TP + TN)/(TP +
TN + FP + FN), where TP denotes true positives (correctly
classified non-frameshifting HGMD INDELs), TN denotes
true negatives (correctly classified non-frameshifting neutral
INDELs), FP denotes false positives (non-frameshifting
neutral INDELs predicted to be disease-causing) and FN
denotes false negatives (non-frameshifting disease-causing
INDELs predicted to be neutral). Consequently,

MCC = (TP × TN − FP

× FN)/
�����������������������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√
,

and MCC values range from 21 to +1, where 21 indicates all
samples are incorrectly classified, +1 indicates all are correctly
classified and 0 represents random prediction.
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