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The importin �:� complex is responsible for the nuclear
import of proteins bearing classical nuclear localization
signals. In mammals, several importin � subtypes are
known to exist that are suggested to have individual func-
tions. Importin � 7 was shown to play a crucial role in early
embryonic development in mice. Embryos from importin �
7–depleted females stop at the two-cell stage and show
disturbed zygotic genome activation. As there is evidence
that individual importin � subtypes possess cargo speci-
ficities, we hypothesized that importin � 7 binds a unique
set of intracellular proteins. With the use of a collection of
in vitro and in vivo binding assays, importin � 7 interaction
partners were identified that differed from proteins found
to bind to importin � 2 and 3. One of the proteins prefer-
entially binding importin � 7 was the maternal effect pro-
tein Brg1. However, Brg1 was localized in oocyte nuclei
in importin � 7–deficient embryos, albeit in reduced
amounts, suggesting additional modes of nuclear trans-
location of this factor. An additional SILAC-based screen-
ing approach identified Ash2l, Chd3, Mcm3, and Smarcc1,
whose nuclear import seems to be disturbed in importin
� 7–deficient fibroblasts. Molecular & Cellular Proteomics
13: 10.1074/mcp.M112.026856, 1286–1298, 2014.

The nuclear compartment is spatially separated from the
cytoplasm by the nuclear envelope. The nuclear pores, which
are embedded in the nuclear membrane, are the gateway for
intracellular molecules that must traverse the nuclear enve-
lope to enter or exit the nucleus. Small molecules can pass
through the nuclear pores via passive diffusion; molecules

weighing more than 40 kDa must be transported actively
through the nuclear pore (1). According to the transport di-
rection, carrier proteins that mediate these nuclear trafficking
events are called importins or exportins, known collectively as
karyopherins. Nuclear trafficking mediated by the importin
�:importin � heterodimer is perhaps the best characterized
nuclear import pathway. Here, importin � (or karyopherin �)
serves as an adaptor molecule that binds cargoes containing
classical nuclear localization signals (NLSs)1 in their primary
amino acid sequence. Upon cargo binding, importin � binds
to importin � (karyopherin � 1), forming a trimeric transport
complex that moves through the nuclear pore into the nu-
cleus. In the nucleoplasm, RanGTP binds to importin �, lead-
ing to a conformational change in importin � and to the
dissociation of the transport complex. The cargo is released
to the nucleoplasm and can fulfill its function, whereas im-
portins � and � are recycled back to the cytoplasm, where
they can perform the next round of import (for reviews, see
Refs. 2–4).

There is only one importin � and one importin � protein
present in yeast. However, multiple importin � isoforms, each
transcribed from a different gene, are found in higher eu-
karyotes. Three importin � subtypes have been identified in
Caenorhabditis elegans and Drosophila melanogaster, and up
to seven importin � isoforms have been identified in mammals
(5–7). These importin � isoforms can be grouped into three
subfamilies based on sequence similarity (8). Little is known
as to why multiple importin � isoforms exist in higher eu-
karyotes, but there is evidence that each importin � subtype
has a tissue-specific expression pattern and distinct cargoes
containing classical NLSs (9–12).

We have recently shown that importin � 7 is required for
embryonic development in mice (13). Oocytes from importin �

7 null females ovulate but produce embryos that fail to de-
velop beyond the two-cell stage. To elucidate the molecular
mechanisms behind this phenotype, we were especially inter-
ested in the identification of importin � 7 binding partners.
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Lübeck, Germany; ¶Institut für Physiologie, Universität zu Lübeck,
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Therefore, the aim of this study was to combine in vivo and in
vitro screens to identify an importin � 7 subtype-specific
cargo set. Through GST pull-down and co-immunoprecipita-
tion experiments, we were able to identify a unique set of
importin � 7 interaction partners that are involved in RNA
processing, chromosome organization, and chromatin modi-
fication. Among them we found Brahma-related gene 1 (Brg1),
also known as smarca4 or Baf190a, a known maternal effect
protein required for early development in the mouse (14). An
additional approach utilizing stable isotope labeling by amino
acids in cell culture (SILAC) was used to further narrow down
the list of potential importin � 7 specific cargoes. Hereby, we
identified Ash2l, Chd3, Mcm3, Mcm5, and Smarcc1, whose
nuclear levels were clearly decreased in importin � 7–
deficient fibroblasts.

EXPERIMENTAL PROCEDURES

Cell Culture—Wild-type and importin � 7 knockout (�/�) murine
embryonic fibroblasts (MEFs) were prepared from embryos harvested
from pregnant females on embryonic day 13.5; cells isolated from
wild-type and importin � 7 �/� mouse (13) embryos were immortal-
ized by repeated passaging. MEFs and NIH3T3 cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Darm-
stadt, Germany) supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin.

Plasmids and Recombinant Proteins—For mammalian expression,
the open reading frames of murine importin � isoforms were inserted
into pcDNA3.1(-) with a 3�-mycHis tag. For bacterial expression, the
open reading frame of murine importin � 7 was inserted into a mod-
ified pQE60 vector with a 3�-GST tag (10). The human importin
�-pQE60 clone was generated as described elsewhere (11). The
Escherichia coli BL21 (DE3) strain containing the importin � 7 expres-
sion vector was cultured at 17¦°C overnight in the presence of 0.05
mM isopropyl 1-thio-�-D-galactopyranoside. Importin � 7-GST and
GST-control proteins were applied to a GST-Trap 4B column and
eluted with 15 mM reduced glutathione. Importin �-His was applied to
a Ni2�-charged His-trap Crude FF column and eluted by 250 mM

imidazole. Further purification of recombinant proteins was done
using a gel filtration 26/60 Superdex 200 prep-grade column. Recom-
binant human importin � proteins were generated as described pre-
viously (15).

GST Pull-down—15 mouse ovaries were homogenized in 0.5 ml of
1� lysis buffer (Cell Signaling, Frankfurt, Germany) supplemented
with protease inhibitor mixture without EDTA (Roche, Mannheim,
Germany) using a FastPrep-24 device (MP Biomedicals, Eschwege,
Germany). 30 �g of importin � 7-GST or GST-control protein was
coupled to 100 �l of glutathione Sepharose (Qiagen, Hilden, Ger-
many) overnight at 4 °C. The next day, beads were washed and
blocked with 2 mg/ml BSA. Afterward, the ovary protein lysate was
mixed with GST beads together with 45 �g of importin �-His and
incubated overnight at 4 °C. Finally, GST beads were washed and
bound proteins were eluted by 1� SDS sample buffer and 5 min of
heating at 95 °C.

Transfection—One day before transfection, 1.5 � 106 NIH3T3 cells
were seeded onto a 10-cm dish and cultivated in DMEM supple-
mented with 10% FBS, without antibiotics. On the next day, cells
were transfected with 20 �g of importin �-pcDNA vector using 60 �l
of lipofectamine LTX and PLUS reagent (Invitrogen, Darmstadt,
Germany).

Co-immunoprecipitation—After 2 days of transfection, cells were
harvested and co-immunoprecipitation of binding partners was per-

formed using the �MACS Epitope Tag Protein Isolation kit from
Miltenyi (Bergisch Gladbach, Germany) according to the manufactu-
rer’s instructions. Before the cell extract was loaded onto the col-
umns, anti-His beads were blocked with 2 mg/ml BSA.

Mass Spectrometry—The eluted proteins from the GST pull-down
experiment were separated on a 10% SDS gel. After staining with
Coomassie Blue, the gel lane was cut into 12 slices. Proteins in each
of the slices were converted to peptides by in-gel digestion with
trypsin (16). The recovered peptides were separated on an in-house-
packed 15-cm reverse-phase column (3-�m beads, Reprosil, Dr.
Maisch HPLC GmbH, Ammerbuch-Entringen, Germany) using a
10%–50% acetonitrile linear gradient on an easy-nLC system
(Proxeon, Dreieich, Germany). The separated peptides were directly
applied to an LTQ-OrbiTrap mass spectrometer (Thermo Scientific,
Dreieich, Germany). The recorded spectra were analyzed using the
MaxQuant software package (version 1.2.2.5) (17) by matching the
data to the IPI mouse database (version 3.84, 59,995 entries) with a
false discovery rate of 1% (peptides and proteins), allowing two
missed cleavages. Mass tolerances were set to default values. The
fixed modifications were carbamidomethylation of cysteines, and the
variable modifications were methionine oxidation and N-terminal pro-
tein acetylation.

Brg1 Binding Assay—Full-length murine Brg1 cDNA was tran-
scribed and translated in vitro in the presence of [35S]-methionine
(TNT Quick Coupled Transcription/Translation Systems, Promega,
Mannheim, Germany) according to the manufacturer’s instructions.
The Brg1 binding assay was done as previously described (18).
Signals were quantified via densitometry.

Immunocytochemical Staining—Wild-type and importin � 7 �/�
MEFs were washed two times with PBS, fixed with 4% paraformal-
dehyde for 10 min, washed again, and permeabilized with 0.1%
Triton–PBS for 10 min. Afterward, cells were blocked in 5% normal
donkey serum–PBS for 30 min and incubated with anti-Brg1 antibody
(sc-10768, Santa Cruz, Heidelberg, Germany) 1:50 diluted in 0.1%
Triton–PBS at 4¦°C overnight. Cells were then washed two times with
PBS and incubated with donkey anti-rabbit Cy3 antibody (711–165-
158, Jackson ImmunoResearch, Suffolk, UK) 1:500 diluted in 0.1%
Triton–PBS at room temperature for 1 h. After final washing, cells
were mounted with DAPI mounting medium (Vector, Lörrach, Ger-
many) and analyzed using a Keyence microscope (Biorevo, Berlin,
Germany). Signal quantification was done using the Keyence Analyzer
II Hybrid Cell Count software. An unpaired t test was performed using
GraphPad Prism version 6.00 for Windows (GraphPad Software, La
Jolla, CA).

Immunocytochemical staining of oocytes was performed as previ-
ously described (13).

SILAC-based Screening—In order to label the proteomes of wild-
type and importin � 7 �/� MEFs with heavy and light amino acids,
respectively, cells were cultured in SILAC medium composed of
DMEM high glucose (4.5 g/l) supplemented with 10% dialyzed FCS
(Sigma-Aldrich, Munich, Germany), 1% penicillin/streptomycin
(GIBCO, Darmstadt, Germany), L-glutamine (4 mM), and light (argi-
nine-0, 28 �g/ml; lysine-0, 48 �g/ml) or heavy (arginine-10, 28 �g/ml;
lysine-8, 48 �g/ml) amino acids (Sigma-Aldrich, Munich, Germany).
Cells were cultured for 2 to 3 weeks and were split 1:4 at least two
times per week. Nuclear fractions were analyzed via mass spectrom-
etry. Identified proteins were ranked according to heavy/light signal
intensities. Proteins that were quantified with fewer than three SILAC
counts were excluded.

RESULTS

Importin � 7 Binding Partners from Ovary Are Involved in
RNA Processing, Chromosome Organization, and Chromatin
Modification—A previous study had shown that importin � 7 is
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a maternal effect gene and importin � 7 knockout females are
infertile because of a very early embryonic developmental
arrest (13), so we set out to identify importin � 7 interaction
partners. For this purpose, we performed an importin � 7-GST
pull-down experiment using mouse ovary lysate as a source
of prey proteins. High-resolution mass spectrometry allows a
quantitative analysis of identified proteins from GST pull-
down via label-free quantification (LFQ) (19).

The LFQ intensities of proteins bound to importin � 7-GST
and to the GST-control were determined, and importin � 7
binding partners were ranked according to their relative LFQ
intensity in comparison with the GST-control (log2 LFQ inten-
sity importin � 7/LFQ intensity control). We identified 807
proteins that bound to importin � 7 and not or very weakly to
the GST-control protein (supplemental Table S1).

Candidate importin � 7 binding partners identified in GST
pull-down experiments were further examined according to
their cellular localization and biological processes based on
Gene Ontology terms. A cellular component enrichment anal-
ysis using the ToppGene Suite service (20) revealed signifi-
cant enrichment (p � 0.01) of nuclear and nucleolar proteins
present in the list of importin � 7-GST binding partners (Table
I, “biological process”). Among these, factors involved in RNA
processing, chromosome organization, and chromatin modi-
fication were found to be significantly enriched (p � 0.01;
Table I, “cellular component”).

Identification of Importin � 7 Binding Partners from Fibro-
blast Cells via Co-immunoprecipitation—GST pull-down as-
says are a powerful tool for identifying binding partners in an
in vitro context. To identify proteins that require physiological
conditions in order to form a complex with importin � 7, we
performed another proteomic screen. A mycHis-tagged ver-
sion of importin � 7 was overexpressed in murine fibroblast
cells, and its expression could be detected in the cytoplasm
as well as in the nucleus, as expected (supplemental Fig. S1).
Importin � 7-mycHis-bound proteins were co-immunoprecipi-
tated via the His tag.

The LFQ intensities of identified proteins were determined,
and importin � 7-mycHis binding partners were ranked ac-
cording to LFQ intensity relative to the mycHis control. 299
proteins bound to importin � 7-mycHis and not or very weakly
to the mycHis control (supplemental Table S2). Again, cellular
component enrichment analysis revealed a significant (p �

0.01) accumulation of nuclear proteins (supplemental Table
S3B), of which most were involved in the same biological
processes identified in the first importin � 7 binding partner
screen from mouse ovary (supplemental Table S3A).

36% of Importin � 7 Binding Partners Identified via Co-
immunoprecipitation from Fibroblast Cells Overlapped with
GST Pull-down Results from the Ovary—Out of 299, 107
proteins identified via importin � 7-mycHis co-immunopre-
cipitation from fibroblast cells also showed up in the list of
potential importin � 7 interaction partners identified via GST
pull-down from ovary (supplemental Table S4). These proteins
seemed to be robust importin � 7 binding partners and thus
interesting candidates for further studies. The top 20 importin
� 7 binding partners overlapping in both screening result lists
are shown in Table II.

Importin � 7 Binding Partners Differ from Importin � 2 and �

3 Substrates—Another important question we wanted to ad-
dress was whether the identified importin � 7 binding partners
differ from those of other importin � subtypes. For this pur-
pose, we performed a co-immunoprecipitation experiment
with importin � 2 and � 3, which belong to different importin
� subfamilies than importin � 7 (5).

Identified proteins were ranked according to their LFQ in-
tensity relative to the mycHis control.

We identified 266 proteins binding to importin � 2 and 276
proteins binding to importin � 3 that did not bind or bound
very weakly to the mycHis control (supplemental Tables S5
and S6). The heat map in Fig. 1 shows an overview of the
different intensities of proteins found to bind to importin � 2,
3, or 7. The Gene Ontology analysis of potential importin � 2
or � 3 cargoes showed again a clear enrichment of nuclear

TABLE I
Top five enriched Gene Ontology terms among importin � 7 binding partners identified via GST pull-down from ovary lysate. 807 proteins were

analyzed using the ToppFun analysis software from the ToppGene Suite. List entries are ranked according to p value; p � 0.01

I.D. Name p value Term in query Term in genome

(A) Biological process

1 GO:0006396 RNA processing 1.54E-31 109 680
2 GO:0051276 Chromosome organization 5.37E-22 100 751
3 GO:0016071 mRNA metabolic process 2.31E-20 88 631
4 GO:0006397 mRNA processing 3.23E-20 70 418
5 GO:0016568 Chromatin modification 2.72E-19 73 468

(B) Cellular component

1 GO:0016585 Chromatin remodeling complex 2.12E-23 42 133
2 GO:0044451 Nucleoplasm part 5.36E-21 107 906
3 GO:0030529 Ribonucleoprotein complex 1.12E-15 75 594
4 GO:0016591 DNA-directed RNA polymerase II, holoenzyme 1.32E-14 28 92
5 GO:0005694 Chromosome 2.81E-14 78 671
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TABLE II
Top 20 overlapping importin � 7 binding partners from ovary and fibroblast cells. Comparison of 807 importin � 7 binding partners identified
via GST pull-down from ovary lysate and 299 proteins identified via co-immunoprecipitation from fibroblast cells. Candidate genes were ranked

according to their LFQ intensity from the importin � 7-GST pull-down experiment using ovary lysate

Information taken from the Nuclear Protein Database. SWI/SNF, switch/sucrose non-fermentable.
a Proteins with known NLS.
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factors, but ribosomal proteins also were abundant (Tables III
and IV). Like those of importin � 7, importin � 2 and � 3
binding partners seem to be involved in RNA processing.
However, the Gene Ontology analysis revealed a significant
strong enrichment of factors that differed according to linked
biological processes from those of importin � 7 binding part-
ners (Tables III and IV).

Approximately 10% overlap was found between importin �

2 or � 3 and � 7 binding partners.
Brg1 Is a Potential Importin � 7 Specific Cargo—Our aim

was to identify cargo proteins that bind importin � 7 more
effectively than other importin � subtypes. Therefore, we
searched for proteins that were more abundant in the importin
� 7 binding partner screen than in the importin � 2 or � 3
screen. For this purpose, importin � 2 and � 3 binders having
a greater LFQ intensity than importin � 7 were excluded from
supplemental Table S2. Potential specific importin � 7 binding
partners were compared with importin � 7 bound proteins

from the ovary. The top 10 preferential importin � 7 binding
partners also found in ovary tissue are displayed in Table V
(for the complete list, see supplemental Table S7).

Among candidate proteins, Brg1 (also known as smarca4 or
Baf190a) was identified as an importin � 7 interacting protein
in both the GST pull-down from ovary and the co-immuno-
precipitation experiments (Table II). Furthermore, Brg1 did not
seem to bind importin � 2, and not only was it much more
abundant in the importin � 7 binding partner screen than in
that of importin � 3 (Fig. 1, panel 4; here annotated as
Baf190a), but it also belonged to the 10 most abundant bind-
ing partners of importin � 7 in ovary lysate (Table V). Like
importin � 7, Brg1 is reported to be a maternal effect gene
whose depletion leads to a two-cell arrest in murine embryos
with disturbed zygotic genome activation (14). Therefore, we
selected Brg1 for further analysis.

Brg1 Is Still Imported into Nuclei of Importin � 7 �/�
MEFs—In order to determine the requirements of importin � 7

1 2 3 4 5
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FIG. 1. Comparative overview of importin � 2, 3, and 7 interactomes in fibroblast cells. Binding partners of importin � 2–, 3–, and
7–mycHis found via co-immunopreciptation in NIH3T3 cells were identified via mass spectrometry. The heat map shows the abundance of
interaction partners based on their relative LFQ intensities (log10 LFQ intensity importin �/LFQ intensity control) found in the individual samples.
The blue shading represents the LFQ intensity of a detected protein: the lighter the blue, the greater the LFQ intensity of the binding partner.
Gray means no protein binding was detected. Binding partners are displayed by gene name and UniProt I.D.
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for Brg1 nuclear import, we examined the intracellular local-
ization of Brg1 in importin � 7 �/� MEFs. For this purpose,
MEFs were prepared from importin � 7 �/� embryos, and the
absence of importin � 7 expression was verified via PCR
(supplemental Fig. S2). In wild-type MEFs, immunocyto-
chemical staining of Brg1 was exclusively nuclear. However,
the nuclei of importin � 7 �/� MEFs also showed strong
Brg1 staining (Fig. 2A). Surprisingly, quantification of the
nuclear–cytoplasmic ratio revealed a 13% higher nuclear
Brg1 signal in importin � 7 �/� MEFs relative to control
cells (Fig. 2B).

Normal Brg1 Nuclear Localization in Importin � 7 �/�
Oocytes—In murine oocytes and zygotes, only certain impor-
tin � subtypes are expressed (importin � 1, 2, 4, and 7) (6, 13).
Based on the developmental phenotype of embryos from
importin � 7 �/� mice, we considered an importin �

7–dependent nuclear import of Brg1 in pre-implantation em-
bryos. Therefore, the subcellular localization of Brg1 in unfer-

tilized germinal vesicle (GV) oocytes was examined via immu-
nocytochemistry. However, in GV oocytes from importin � 7
null females, Brg1 staining was clearly detected in the nucleus
(Fig. 3A). Quantification of the nuclear–cytoplasmic ratio re-
vealed that importin � 7 �/� oocytes showed �14% less
Brg1 in the nucleus than wild-type oocytes (Fig. 3B).

Brg1 Does Bind Importin � 7 in Vitro, but Not the Other
Maternally Expressed Importin � Subtypes—Besides importin
� 7, importin � 1, 2, and 4 have been shown to be expressed
in oocytes and zygotes (6, 13). To figure out whether one of
the other maternally expressed importin � subtypes can bind
to Brg1 as well, we performed an in vitro binding assay. The
analysis showed high amounts of Brg1 binding to importin �

7-GST (set to 100%), and only low levels binding to importin
� 1-GST (10.9%) or � 4-GST (11.5%) (Fig. 4).

Decreased Nuclear Levels of Ash2l, Chd3, Mcm3, Mcm5,
and Smarcc1 in Importin � 7 �/� MEFs—In order to narrow
down the number of potential importin � 7 specific cargoes,

TABLE III
Top five enriched Gene Ontology terms among importin � 2–mycHis binding partners identified via co-immunoprecipitation from NIH3T3 cells.
266 proteins were analyzed using the ToppFun analysis software from the ToppGene Suite. List entries are ranked according to p value;

p � 0.01

I.D. Name p value Term in query Term in genome

(A) Biological process

1 GO:0016071 mRNA metabolic process 9.94E-41 68 631
2 GO:0006396 RNA processing 2.19E-34 64 680
3 GO:0006397 mRNA processing 1.69E-26 46 418
4 GO:0006413 Translational initiation 2.39E-25 32 166
5 GO:0022613 Ribonucleoprotein complex biogenesis 1.32E-21 34 254

(B) Cellular component

1 GO:0030529 Ribonucleoprotein complex 6.51E-43 67 594
2 GO:0005681 Spliceosomal complex 1.61E-17 24 149
3 GO:0022626 Cytosolic ribosome 1.35E-15 19 93
4 GO:0071013 Catalytic step 2 spliceosome 1.66E-15 18 80
5 GO:0044391 Ribosomal subunit 5.65E-14 21 148

TABLE IV
Top five enriched Gene Ontology terms among importin � 3–mycHis binding partners identified via co-immunoprecipitation from NIH3T3 cells.
276 proteins were analyzed using the ToppFun analysis software from the ToppGene Suite. List entries are ranked according to p value;

p � 0.01

I.D. Name p value Term in query Term in genome

(A) Biological process

1 GO:0006412 Translation 1.37E-06 28 532
2 GO:0043933 Macromolecular complex subunit organization 5.58E-06 45 1299
3 GO:0065003 Macromolecular complex assembly 2.67E-05 40 1128
4 GO:0034622 Cellular macromolecular complex assembly 2.51E-04 26 594
5 GO:0006396 RNA processing 9.81E-04 27 680

(B) Cellular component

1 GO:0030529 Ribonucleoprotein complex 4.14E-11 35 594
2 GO:0005840 Ribosome 3.61E-09 20 215
3 GO:0016581 NuRD complex 7.68E-09 8 17
4 GO:0000118 Histone deacetylase complex 8.37E-06 9 51
5 GO:0016585 Chromatin remodeling complex 9.85E-06 13 133
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an additional SILAC-based screen was performed. The ob-
jective of this screen was to find importin � 7 binding partners
from ovary and cells that are less abundant in the nuclei of
importin � 7–depleted MEFs, suggesting disturbed importin �

7–dependent nuclear import. Thus, we identified five candi-
date proteins, Ash2l, Chd3, Mcm3, Mcm5, and Smarcc1,
whose nuclear levels are decreased in importin � 7 �/� MEFs
and which had been characterized as binding partners of
importin � 7 in GST pull-down and co-immunoprecipitation
experiments (Table V, rows 4 and 7; supplemental Table S7,
rows 38, 44, and 46). Western blot analysis confirmed these

findings and showed significantly lower nuclear levels for all
five proteins (Fig. 5). Cytoplasmic levels of Ash2l, Chd3, and
Mcm3 were not significantly changed (Figs. 5A–5C). Smarcc1
and Mcm5 were not detectable via Western blotting in cyto-
plasmic fractions (data not shown). Real-time PCR analysis of
wild-type and importin � 7 �/� MEFs did not show any
significant changes in mRNA levels of Ash2l, Chd3, Mcm3,
and Smarcc1 (supplemental Fig. S3). The mRNA expression
of Mcm5, however, was down-regulated, suggesting lower
overall Mcm5 protein expression in importin � 7 �/� MEFs
(supplemental Fig. S3D).

FIG. 2. Subcellular localization of Brg1 in importin � 7 �/� MEFs. A, wild-type and importin � 7 �/� MEFs were probed with anti-Brg1
antibody (upper panel). DAPI served as a nuclear marker (middle panel). The lower panel shows an overlay of the Brg1-Cy3, DAPI, and bright
field. For the secondary antibody control (2nd Ab control), no primary antibody was used (20� magnification; scale bar, 50 �m). B, the nuclear
Brg1 level was measured by dividing the nuclear (n) by the nuclear plus cytoplasmic (n�c) ratio of the Cy3 fluorescence signal. The bar chart
shows the mean of 17 cells.
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DISCUSSION

Substrate specificities among importin � subtypes have
been postulated to allow the cell more flexible control over
nuclear cargo import in response to different environmental
stimuli (21).

Although most importin � isoforms are ubiquitously ex-
pressed in different organs, their expression levels differ, and
the expression of some importin � subtypes is restricted to
specific tissues (5, 6) and particular time points of develop-
ment (22). It is therefore likely that importin � subtypes import
individual cargoes. However, the identities of these cargoes

remain largely unknown. The first evidence of cargo prefer-
ences for individual importin � isoforms in vivo came from a
cell culture assay showing that importin � 3 mediates the
nuclear import of the Ran guanine nucleotide exchange factor
RCC1 (12). Furthermore, cargo specificities may become ob-
vious only under special conditions. For example, in the
mTOR signaling pathway, latent STAT1 depends on importin
� 5 for nuclear import under conditions of reduced mitogen or
nutrition levels (23).

Interestingly, the specific use of single importin � subtypes
has also been described for viruses, such as the influenza

FIG. 3. Nuclear Brg1 staining in importin � 7 �/� germinal vesicle (GV) oocytes. GV oocytes from wild-type and importin � 7 �/�
embryos were probed with anti-Brg1 antibody (upper panel). DAPI staining served as a nuclear marker (middle panel). The lower panel shows
an overlay of the Brg1-Cy3 and DAPI. The contours of GV oocytes are displayed by a dashed line that was generated by overexposure of the
Cy3 signal. For the secondary antibody control (2nd Ab control), no primary antibody was used (scale bar: 50 �m). B, the nuclear Brg1 level
was measured by dividing the nuclear (n) by the nuclear plus cytoplasmic (n�c) ratio of the Cy3 fluorescence signal. The bar chart shows the
mean of four cells.
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virus, whose polymerase subunit PB2 and nucleoprotein are
specifically imported to the nucleus by importin � 7, offering
novel opportunities for antiviral therapies (24).

The phenotype of importin � 7–deficient mice strongly sup-
ports the hypothesis that importin � isoforms transport unique
subsets of intracellular cargoes in higher eukaryotic organ-
isms. Embryos derived from female mice lacking importin � 7
show developmental arrest at the two-cell stage (13) despite
the presence of other � importins, so there may be intracel-
lular cargoes that rely on this particular adapter protein for
nuclear import. Therefore, we set out to use GST pull-down
and co-immunoprecipitation approaches to screen for possi-
ble importin � 7 specific binding partners.

In GST pull-down experiments, we identified importin � 7
binding partners from murine ovary lysate that might shed
light on the role of importin � 7–mediated trafficking during
oocyte and embryo development. As expected for a nuclear
transport receptor, Gene Ontology analysis regarding cellular
localization of identified importin � 7 binders revealed a high
proportion of nuclear proteins. Interestingly, the majority of
these nuclear proteins appeared to be involved in RNA pro-
cessing, chromosome organization, and chromatin modifica-
tion; such processes are known to be dynamically regulated
during early embryo development and during zygotic genome
activation.

To get a more comprehensive picture of importin � 7 car-
goes, we searched for importin � 7 binding partners from a
cultured murine cell line using a co-immunoprecipitation
screening approach. 36% of identified proteins matched the
list of importin � 7-GST interaction partners from ovary lysate.
Given that both screening approaches can cover only a sub-

set of proteins present in a cell or tissue, 36% overlapping
proteins is a relatively high degree of congruency. Almost all
overlapping proteins are known to localize to the nucleus.
Moreover, approximately half of these factors carry an NLS
and are therefore likely to be imported by importin � 7. Among
NLS cargoes, nuclear membrane components such as Lmnb1
or Lmn1 also appeared. These proteins are supposed to be
targeted to the inner nuclear membrane via the classical nu-
clear protein import pathway (25, 26). Furthermore, the im-
portin � 7 binding partner list contained Npap60, which is
known to support cargo release from importin � (27–29).

Like importin � 7 binding partners, importin � 2 and � 3
binding partners seem to be involved in RNA processing.
However, we found strong enrichment of factors that differed
according to linked biological processes among importin � 2
and � 3 binders relative to importin � 7 binding partners,
highlighting the uniqueness of importin � 7 transported
cargoes.

In a recent study, importin � 5 binding partners were iden-
tified from mouse brain (30). Out of 48 proteins binding to
importin � 5, only 3 proteins also showed up in our importin �

7 screens (FUBP1, HnrpK, and Nup50). The low degree of
congruence between the importin � 5 and � 7 binding partner
lists may be explained by the different tissues used as a
source of prey proteins. However, this finding also supports
the idea of importin � subtype-specific cargo sets.

Brg1 was found in both the GST pull-down and the co-
immunoprecipitation screen as a protein that interacted with
importin � 7. Interestingly, Brg1 is one of the first identified
maternal effect genes in mice and part of the chromatin-
remodeling switch/sucrose non-fermentable complex. Like
embryos from importin � 7 knockout females, zygotes from
Brg1-depleted females display a two-cell arrest (14). Further-
more, it has been shown that Brg1 regulates zygotic genome
activation and controls the expression of genes involved in
transcription, RNA processing, and cell cycle regulation.
Thus, we decided to analyze Brg1 in more detail to determine
whether the depletion of importin � 7 perturbs the intracellular
localization of endogenous Brg1. However, nuclear detection
of Brg1 in importin � 7–depleted MEFs showed that Brg1 was
not solely dependent on nuclear import by this particular
transport receptor. Against our expectations, the nuclear Brg1
level seemed to be slightly higher in importin � 7 �/� MEFs
than in control cells. The biological reasons for this finding are
unclear. Furthermore, although murine oocytes and zygotes
lack at least some of the importin �–dependent pathways,
Brg1 can enter the nucleus in GV oocytes. Nevertheless,
nuclear Brg1 levels were slightly but significantly decreased in
importin � 7 knockout oocytes. This finding fits with the
observed binding preference of Brg1 for importin � 7. How-
ever, we assume that this marginal decline in brg1 protein
level has no biological relevance in importin � 7 knockout
oocytes. Despite the almost negligible in vitro binding of Brg1
to the remaining maternally expressed importin � subtypes,

FIG. 4. Importin �-GST in vitro binding assay. In vitro transcribed
and translated Brg1 was incubated with human recombinant importin
�-GST proteins immobilized on glutathione Sepharose beads. Murine
importin � 7 (m7) was examined as well. Detection of bound radio-
actively labeled Brg1 (Brg1-[35S-met]) was performed via autoradiog-
raphy. Only maternally expressed importin � subtypes were analyzed.
Recombinant GST served as a negative control.
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FIG. 5. Nuclear and cytoplasmic lev-
els of Ash2l, Chd3, Mcm3, Mcm5, and
Smarcc1 in importin � 7 �/� MEFs.
Three independent nuclear and cyto-
plasmic fractions were prepared from
wild-type (wt) and importin � 7 �/�
(a7KO) MEFs and analyzed via Western
blotting. Quantification of signals was
performed with Odyssey System soft-
ware (LiCor, Bad Homburg, Germany),
and statistics were analyzed using
GraphPad Prism 6 software. Nuclear
protein signals were normalized to the
nuclear marker protein p84, and cyto-
plasmic signals to the cytoplasmic
marker protein GAPDH. The bar dia-
grams show the mean of three different
sample preparations, setting the mean
wild-type value as 100%.
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we cannot rule out the possibility that Brg1 nuclear import can
also partially be taken over by other importin � proteins in
pre-implantation embryos. Moreover, Brg1 may enter the nu-
cleus in a complex with other NLS-bearing importin � sub-
strates, or Brg1 could be transported by an alternative nuclear
import receptor. Nevertheless, we cannot rule out a role for
importin � 7 in regulating the amount of Brg1 that enters the
nucleus at critical times in development, or the possibility that
individual splice variants of Brg1 are trafficked specifically by
importin � 7 in vivo.

By using an additional SILAC-based screening approach,
we identified five importin � 7 binding partners from ovary and
fibroblasts whose nuclear levels were significantly reduced in
importin � 7–deficient MEFs: Ash2l, Chd3, Mcm3, Mcm5, and
Smarcc1. Cytoplasmic levels of Ash2l, Chd3, and Mcm3 were
not increased in importin � 7 knockout MEFs, suggesting a
compensatory degradation mechanism that protects the cell
from abnormally high cytoplasmic amounts of these proteins.
As expected for mainly nuclear proteins, Smarcc1 and Mcm5
were not detected in cytoplasmic fractions in Western blots.
Because mRNA levels were not significantly changed, we
conclude that the reduced nuclear amount of Ash2l, Chd3,
Mcm3, and Smarcc1 is the consequence of disturbed nuclear
import in importin � 7–deficient MEFs. In contrast, Mcm5
mRNA was down-regulated, suggesting transcriptional im-
pairment of Mcm5 expression in importin � 7 �/� MEFs.

In summary, this study demonstrates that binding specific-
ities of importin � subtypes can be reproduced using pro-
teomic approaches. The finding that different �-importins may
serve proteins associated with distinct biological processes
suggests that they may be key components regulating differ-
ent parts of the cellular signaling network. To confirm this
idea, further studies will be required to compare binding part-
ners from all importin � subtypes. Moreover, the newly iden-
tified importin � 7 cargoes Ash2l, Chd3, Mcm3, and Smarcc1
will be analyzed in more detail according to their roles in the
phenotype of importin � 7–deficient mice (13) in the near
future.

Acknowledgments—We thank Dr. Anja Schütz from the Protein
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