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Normalization is an important step in the analysis of quan-
titative proteomics data. If this step is ignored, systematic
biases can lead to incorrect assumptions about regula-
tion. Most statistical procedures for normalizing proteo-
mics data have been borrowed from genomics where
their development has focused on the removal of so-
called ‘batch effects.’ In general, a typical normalization
step in proteomics works under the assumption that most
peptides/proteins do not change; scaling is then used to
give a median log-ratio of 0. The focus of this work was to
identify other factors, derived from knowledge of the vari-
ables in proteomics, which might be used to improve
normalization. Here we have examined the multi-labora-
tory data sets from Phase I of the NCI’s CPTAC program.
Surprisingly, the most important bias variables affecting
peptide intensities within labs were retention time and
charge state. The magnitude of these observations was
exaggerated in samples of unequal concentrations or
“spike-in” levels, presumably because the average pre-
cursor charge for peptides with higher charge state po-
tentials is lower at higher relative sample concentrations.
These effects are consistent with reduced protonation
during electrospray and demonstrate that the physical
properties of the peptides themselves can serve as good
reporters of systematic biases. Between labs, retention
time, precursor m/z, and peptide length were most com-
monly the top-ranked bias variables, over the standardly
used average intensity (A). A larger set of variables was
then used to develop a stepwise normalization procedure.
This statistical model was found to perform as well or
better on the CPTAC mock biomarker data than other
commonly used methods. Furthermore, the method de-
scribed here does not require a priori knowledge of the

systematic biases in a given data set. These improve-
ments can be attributed to the inclusion of variables other
than average intensity during normalization. Molecular
& Cellular Proteomics 13: 10.1074/mcp.M113.030593,
1341–1351, 2014.

The number of laboratories using MS as a quantitative tool
for protein profiling continues to grow, propelling the field
forward past simple qualitative measurements (i.e. catalog-
ing), with the aim of establishing itself as a robust method for
detecting proteomic differences. By analogy, semiquantitative
proteomic profiling by MS can be compared with measure-
ment of relative gene expression by genomics technologies
such as microarrays or, newer, RNAseq measurements. While
proteomics is disadvantaged by the lack of a molecular am-
plification system for proteins, successful reports from dis-
covery experiments are numerous in the literature and are
increasing with advances in instrument resolution and
sensitivity.

In general, methods for performing relative quantitation
can be broadly divided into two categories: those employing
labels (e.g. iTRAQ, TMT, and SILAC (1)) and so-called “la-
bel-free” techniques. Labeling methods involve adding
some form of isobaric or isotopic label(s) to the proteins or
peptides prior to liquid chromatography-tandem MS (LC-
MS/MS) analysis. Chemical labels are typically applied dur-
ing sample processing, and isotopic labels are commonly
added during cell culture (i.e. metabolic labeling). One ad-
vantage of label-based methods is that the two (or more)
differently-labeled samples can be mixed and run in single
LC-MS analyses. This is in contrast to label-free methods
which require the samples to be run independently and the
data aligned post-acquisition.

Many labs employ label-free methods because they are
applicable to a wider range of samples and require fewer
sample processing steps. Moreover, data from qualitative
experiments can sometimes be re-analyzed using label-free
software tools to provide semiquantitative data. Advances in
these software tools have been extensively reviewed (2).
While analysis of label-based data primarily uses full MS scan
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(MS1)1 or tandem MS scan (MS2) ion current measurements,
analysis of label-free data can employ simple counts of con-
fidently identified tandem mass spectra (3). So-called spectral
counting makes the assumption that the number of times a
peptide is identified is proportional to its concentration. These
values are sometimes summed across all peptides for a given
protein and scaled by protein length. Relative abundance can
then be calculated for any peptide or protein of interest. While
this approach may be easy to perform, its usefulness is par-
ticularly limited in smaller data sets and/or when counts are
low.

This report focuses only on the use of ion current measure-
ments in label-free data sets, specifically those calculated
from extracted MS1 ion chromatograms (XICs). In general
terms, raw intensity values (i.e. ion counts in arbitrary units)
cannot be used for quantitation in the absence of cognate
internal standards because individual ion intensities depend
on a response factor, related to the chemical properties of the
molecule. Intensities are instead almost always reserved for
relative determinations. Furthermore, retention times are
sometimes used to align the chromatograms between runs to
ensure higher confidence prior to calculating relative intensi-
ties. This step is crucial for methods without corresponding
identity information, particularly for experiments performed on
low-resolution instruments. To support a label-free workflow,
peptide identifications are commonly made from tandem
mass spectra (MS/MS) acquired along with direct electro-
spray signal (MS1). Or, in alternative workflows seeking
deeper coverage, interesting MS1 components can be tar-
geted for identification by MS/MS in follow-up runs (4).

“Rolling up” the peptide ion information to the peptide and
protein level is also done in different ways in different labs. In
most cases, “peptide intensity” or “peptide abundance” is the
summed or averaged value of the identified peptide ions. How
the peptide information is transferred to the protein level
differs between methods but typically involves summing one
or more peptide intensities, following parsimony analysis. One
such solution is the “Top 3” method developed by Silva and
co-workers (5).

Because peptides in label-free methods lack labeled ana-
logs and require separate runs, they are more susceptible to
analytical noise and systematic variations. Sources of these
obscuring variations can come from many sources, including
sample preparation, operator error, chromatography, electro-
spray, and even from the data analysis itself. While analytical

noise (e.g. chemical interference) is difficult to selectively
reject, systematic biases can often be removed by statistical
preprocessing. The goal of these procedures is to normalize
the data prior to calculations of relative abundance. Failure
to resolve these issues is the common origin of batch ef-
fects, previously described for genomics data, which can
severely limit meaningful interpretation of experimental data
(6, 7).

These effects have also been recently explored in proteom-
ics data (8). Methods used to normalize proteomics data have
been largely borrowed from the microarray community, or are
based on a simple mean/median intensity ratio correction.
Methods applied on microarray and/or gene chip and used on
proteomics data include scaling, linear regression, nonlinear
regression, and quantile normalizations (9). Moreover, work
has also been done to improve normalization by subselecting
a peptide basis (10). Other work suggests that linear regres-
sion, followed by run order analysis, works better than other
methods tested (11). Key to this last method is the incorpo-
ration of a variable other than intensity during normalization. It
is also important to note that little work has been done to-
wards identifying the underlying sources of these variations in
proteomics data. Although cause-and-effect is often difficult
to determine, understanding these relationships will undoubt-
edly help remove and avoid the major underlying sources of
systematic variations.

In this report, we have attempted to combine our efforts
focused on understanding variability with the work initiated by
others for normalizing ion current-based label-free proteom-
ics data. We have identified several major variables commonly
affecting peptide ion intensities both within and between labs.
As test data, we used a subset of raw data acquired during
Phase I of the National Cancer Institute’s (NCI) Clinical Pro-
teomics Technology Assessment for Cancer (CPTAC) pro-
gram. With these data, we were able to develop a statistical
model to rank bias variables and normalize the intensities
using stepwise, semiparametric regression. The data analysis
methods have been implemented within the National Institute
of Standards and Technology (NIST) MS quality control
(MSQC) pipeline. Finally, we have developed R code for re-
moving systematic biases and have tested it using a reference
standard spiked into a complex biological matrix (i.e. yeast
cell lysate).

EXPERIMENTAL PROCEDURES

Data Sets—All of the CPTAC Phase I data sets used in this work
are publicly available at https://cptac-data-portal.georgetown.edu/
cptacPublic/. This site provides direct links to download the study
data. Hereafter, data are referenced according to designated CPTAC
Study number. Descriptions of the CPTAC yeast reference material,
and SOPs used to acquire the data, can be found elsewhere (12).
Briefly, the data for Study 6 were collected in the following order with
a blank in between each study sample: (1) Sample 1B-NCI-20, (2)
Sample 6-QC2 yeast only, (3) Sample 6A yeast � UPS1 at 0.25
fmol/�l, (4) Sample 6B, yeast � UPS1 at 0.74 fmol/�l, (5) Sample 6C,
yeast � UPS1 at 2.2 fmol/�l, (6) Sample 6D, yeast � UPS1 at 6.7

1 The abbreviations used are: MS1, full MS scan; MS2, tandem MS
scan; MS/MS, tandem MS scan; NCI, National Cancer Institute; NIST,
National Institute of Standards and Technology; NIST MSQC, NIST
Mass Spectrometry Quality Control (Software); SOP, standard oper-
ating procedure; CPTAC, Clinical Proteomics Technology Assess-
ment for Cancer; MD, mean of deviance; ROC, receiver operating
characteristic; RT, retention time; PSM, peptide-spectrum match;
SILAC, stable isotope labeling with amino acids in cell culture; GUI,
graphical user interface.
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fmol/�l, (7) Sample 6E, yeast � UPS1 at 20 fmol/�l, (8) Sample
6-QC1, UPS1 only at 20 fmol/�l. All yeast samples (prior to spike-ins)
contained trypsin-digested yeast lysate at 60 ng/�l. A standard injec-
tion volume of 2 �l was used for all samples. All platforms used the
same prepacked columns and a nano-ESI source. The Study 8 data
were acquired without the use of the CPTAC SOP, according to indi-
vidual lab protocol. The yeast sample was run in two amounts, 120 ng
and 600 ng, which are referred to hereafter as ‘low’ and ‘high’,
respectively.

Data Processing—All calculations on MS data files presented in
this work were made by the NIST MSQC pipeline (v. 1.2.0) (13). All of
the intensity values were extracted directly from output .msqc files
using a parser written in Perl (available by request). The major
changes from the previously published version of the software include
the following: (1) the replacement of ReAdW4Mascot2.exe with a
more refined program for processing MS1 data (ProMS), (2) the
addition of MSPepSearch (v. 0.9.0) as the default search engine, (3)
the introduction of a ‘full’ mode for providing peptide/protein relative
quantitation information in the report. Several new metrics were also
added that were used in this report. These include a calculation for
the median intensity deviation.

The NIST MSQC pipeline is driven by a Perl program, which controls
component programs in the following order: (1) ReAdW4Mascot2 for
extracting spectra and retention times from RAW files to mzXML and
MGF, (2) a search engine (MSPepSearch, SpectraST or OMSSA), (3)
ProMS (optional but recommended), (4) nistms_metrics for calculating
metrics and statistics within and between series, (5) merge_pep_results
for final formatting of the result files. All command-line arguments and
options for running the pipeline can be found at http://peptide.nist.
gov/metrics or by running the pipeline without arguments. The newest
version of the pipeline also comes with a GUI and WindowsTM in-
staller. Additionally, MSFileReader from Thermo Fisher (http://
sjsupport.thermofinnigan.com/public/detail.asp?id�703) can be
used, allowing users without an installation of XCaliburTM to operate
the pipeline. As with earlier versions, the pipeline requires an instal-
lation of Perl and runs only on the WindowsTM operating system.
Thermo Fisher LTQ, LTQ-Orbitrap, LTQ-FT and QExactiveTM data
files can be analyzed. A version utilizing ProteoWizard libraries for use
with other vendor data files is under development. And at the time of
writing, the pipeline was compatible with Agilent QTOF files.

Normalization and Variable Ranking—Normalization is the process
of removing systematic bias in order to make runs more comparable.
In this work, the data are ‘normalized’ based on the assumption that,
on average, the peptide ion intensities do not change between runs.
‘Runs’ in this work denote technical replicates, replicates of the same
sample between laboratories, or replicates of similarly engineered
samples with known differences (as in the case of CPTAC Study 6.)
Although the CPTAC data do not represent true biological experi-
ments, they do represent best-case-scenario and a starting point
from which further development of the aforementioned computational
methods can be initiated.

Ideally, log2 ratios of peptide ion intensities (M) between any two
technical replicates should either equal a constant value of 0, or
log2(x) if runs have a known x-fold concentration difference. M
values should then distribute randomly around the reference level
without any significantly discernible pattern. However, in practice,
many factors cause systematic bias in experimental data acquisi-
tion. An example of this is pen location during production of oligo-
nucleotide arrays. Often, this extraneous variability is confounded
with the biological variability of interest in the sample. It is thus
necessary to remove systematic bias before proceeding to any
relative quantification.

A collection of normalization methods borrowed from microarray
analysis has been tested on proteomics data (9). These methods

include mean/median removing, linear regression, locally-weighted
regression and quantile techniques. However, in all but one case, only
abundance (the average of peptide intensity between the two tech-
nical replicates in comparison) is used for normalization. In the current
work, it was observed that abundance is not the only source of
systematic bias. Therefore a scheme was developed to include a set
of identified bias variables for effective data normalization. A detailed
description of model development follows.

Let Mj
�1� be the initial log ratio of intensities for peptide ion j in a

given pair of runs, j � 1, … , N and N is the number of detected
peptide ions. The normalization procedure starts with modeling the
log ratio of intensities by

Mj
�1� � fp

�1��xp� � Mj,p
�2� � �0,p

�1� � �1,p
�1� xp � �

k�1

K

uk,p
�1��xp � �k�� � Mj,p

�2�

(Eq. 1)

In Equation 1, xp is the pth variable in the P variables of interest, P �
1, K, P. The function fp

�1�� � � is the regression function with variable xp.
Both the simple linear and p-spline models are considered for fp

�1�� � �.
The parameters �0,p

�1� , �1,p
�1� , and uk,p

�1�’s are the regression coefficients in
the model fp

�1�� � �. The knots (�k’s �k � 1, K, K� are selected according
to (14). The function �x � �k�� � 0 if x � �k and x � �k if
x 	 �k. The regression residuals Mj,p

�2� are then the normalized log
ratios after adjusting for variable xp’s impacts.

Each variable is fitted with individual fp
�1��xp� using the appropriate

semiparametric (the p-spline) or simple linear regression models ac-
cording to Equation 1. A deviance measure is designed to select the
best normalization variable at each step. The goal is to select the
variable that is most significantly related to systematic variation in the
log ratio of intensities. The deviance for variable p at step 1 with
function fp

�1�� � � is defined as

Devp
�1� � �

j�1

N

�Mj,p
�2��2, (Eq. 2)

where Devp
�1� is the deviance for variable p at step 1 and Mj,p

�2� is the
residuals from the regression model. The best variable selected at step
1 is the variable p* minimizing Devp

�1�. The normalized log ratio of inten-
sities is then defined as Mj,p*

�2� and the optimal deviance is Devp*
�1�.

The above procedure is repeated P times (the number of variables
included), with the selected variable at each step removed from the
following steps. Generally, at step s (s � 1, 2, L, P), the remaining
variables xp’s are fit into

Mj
�s� � fp

�s��xp� � Mj,p
�s�1� � �0,p

�s� � �1,p
�s� xp � �

k�1

K

uk,p
�s� �xp � �k��

� Mj,p
�s�1� (Eq. 3)

The best variable selected at step s is the one minimizing the
deviance

Devp
�s� � �

j�1

N

�Mj,p
�s�1��2 (Eq. 4)

The ranking of the variables is based on the order they were
selected in the above iterative procedure, and their impacts are
measured by the reduction in deviance �Dev(s) � Devp

�s� � Devp*
�s	1�,

where Devp*
�s	1� is the sample variance of the original M when s � 1

and the deviance obtained at the selected variable p* when 1
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 s � P. The final normalized log ratio of peptide ion intensities is
Mj

�P�1�, j � 1, L, N. R code for performing these calculations is
available at http://homepages.uc.edu/
wang2x7/.

Median Deviation—Median deviation is defined as the square root
of the ratio of the 25th percentile to the median peptide intensity ratio.
By using this statistic based on the center of the absolute deviations,
the method is not sensitive to one observation deviating from an
expected ratio of 1 and therefore provides a robust measure of the
distribution of the deviations.

RESULTS

Previous work on the reproducibility of proteomic analyses
by LC-MS formed the basis for this study (13). In that work, it
was noted that peptide ion intensities are valuable reporters of
overall reproducibility. Here, we describe their use as central
indicators of systematic bias. As with any data analysis pro-
ject in proteomics, software must be chosen that is capable of
extracting the required data from the instrument-generated
binary files. And for ion-current based label-free quantitative
studies, routines for performing the necessary calculations on
extracted ion chromatograms are also needed. While there
are many software programs available, we chose to continue
developing the tools within the NIST MSQC pipeline. As such,
ProMS replaces ReAdW4Mascot2.exe for calculating inten-
sity (Experimental Procedures). These values can now be
written to the NIST MSQC output using the command-line
option “–mode full” during processing.

Systematic Bias in the Peptide Ion Intensities—To begin
our studies, we chose test data from CPTAC Study 8 (no
SOP) and a subset of runs from Study 6 (SOP-controlled).
The data were all processed through the NIST MSQC pipe-
line (v.1.2.0) as described under “Experimental Proce-
dures.” In Study 8, three replicates of two amounts, 120 ng
(low) and 600 ng (high), of the yeast material (Sample QC2)
were analyzed in triplicate. The data from 6 different instru-
ments in five different laboratories were analyzed. Addition-

ally, data from Study 6 (yeast � UPS1) from two Orbitraps
were also analyzed. To visualize the raw intensities, and the
need for normalization, the distributions were plotted in
Fig. 1.

Several observations can be made from Fig. 1. First, the low
versus high runs from Study 8 can be easily distinguished
because of the five-fold difference in loading. The medians of
the boxplots for high runs range from 3.2–2.9 in LTQs and
4.4–5.1 in Orbitraps, whereas the medians of low runs range
from 2.6–3.2 in LTQs and 3.4–3.9 in Orbitraps. Second, the
interquartile range (IQR) of peptide ion intensities measured
on an Orbritrap is between 0.8–1.2, which is wider than IQR of
0.5–0.62 measured on an LTQ. Furthermore, even within the
same type of instrument, obvious differences in median in-
tensities and IQR exist between runs and between instru-
ments. For example, the boxplots for Lab 1 in Study 6 have an
average median around 4.3 with an IQR of 
1. The boxplots
for Lab 2 in Study 6 have a lower average median around 3.8
with IQR between 0.8–0.9. These results suggested the need
for a data normalization step prior to any interpretation of
differences within an experiment, and for normalization if data
are to be compared between labs for both LTQ and Orbitrap
instruments. Results on Orbitrap instruments are presented in
detail in the main text, whereas results on LTQ instruments are
included in Supplemental Data.

Systematic Bias as Identified by Relative Intensities—Next,
we used the relative intensities and a group of variables to
investigate systematic bias in the above data. Relative inten-
sity is defined as M � log2 (IR1/IR2), where IR1 and IR2 are the
MS1 intensities for the run R1 and R2, respectively. The
underlying assumption is that the majority of relative intensi-
ties do not change between runs, allowing the user to exam-
ine dispersion in the data. Fig. 2 shows the systematic biases
in M related to a group of selected variables.

FIG. 1. Raw peptide ion intensities from CPTAC Study 8 (no SOP) and a subset of runs from Study 6 (with SOP). Data in Study 8 include
2 LTQs and 3 Orbitrap instruments. Three experimental runs of two samples (2 �l injections), 60 ng/�l (“low,” filled boxplots) and 300 ng/�l
(“high,” unfilled boxplots) of the yeast material (Sample QC2) were included in the analysis of Study 8. For Study 6, a subset of runs on two
Orbitraps were also included. The runs were plotted in the order specified as below, each with three replicates: (1) Sample 6A yeast � UPS1
at 0.25 fmol/�l, (2) Sample 6B, yeast � UPS1 at 0.74 fmol/�l, (3) Sample 6C, yeast � UPS1 at 2.2 fmol/�l, (4) Sample 6D, yeast � UPS1 at
6.7 fmol/�l, (5) Sample 6E, yeast � UPS1 at 20 fmol/�l, (6) Sample 6-QC2 yeast only.
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Fig. 2A shows commonly used M-A plots for a comparison
of runs. In these plots, the y axis represents relative intensities
M and the x axis is used to order the peptides by average
abundance defined as A � 0.5 [log10 (IR1) � log10 (IR2)].
Specifically, these plots can be used to identify systematic
biases affecting absolute abundance (i.e. low signal and sat-
uration effects). The first panel of Fig. 2A shows data from two
technical replicates (the second and third runs in 300 ng/�l
yeast sample, high) on the same instrument (Orbitrap 65 in
Study 8). In the other three panels, M-A plots compare data
from the second run in high sample to the same run on each
of the three Orbitrap instruments used in Study 8.

Several observations can be made from this analysis. First,
as expected, replicate runs from the same instrument fit the
expected reference value (dashed line) much better than runs
compared between different instruments. Second, disper-
sions were on average, greater at lower A values. Third,
several inter-instrument (also interlaboratory) comparisons
exhibited nonlinear trends and global and/or local departures
from the expected reference value. Local deviations confound
simple global corrections (i.e. scaling) during normalization
because they are not representative of the entire run. It is also
important to note that no two comparisons displayed exactly
the same behavior, suggesting the importance of pair-wise

FIG. 2. Systematic biases in ion current measurements measured by the relative intensities (M) and its relationship with selected
variables. Relative intensity M is defined as the log2 ratio, M � log2 (IR1/IR2), where IR1 and IR2 are the intensities for the experimental run R1
and R2, respectively. The selected variables included the average abundance A � 0.5 [log10 (IR1) � log10 (IR2)], precursor m/z,
z/�peptide length, and retention time (RT). A, The relative intensity (M) versus abundance (A) within and across instruments. All runs are 300
ng/�l yeast samples (high). Panel 1: orbitrap 65 (2nd run) versus orbitrap 65 (3rd run); panel 2: orbitrap 65 (2nd run) versus orbitrap 86 (2nd run);
panel 3: orbitrap 65 (2nd run) versus orbitrap 56 (2nd run); panel 4: orbitrap 86 (2nd run) versus orbitrap 56(2nd run). B, relative intensities (M)
versus precursor m/z, z/�peptide length, and retention time (RT). All runs are from Orbitrap 65 in Study 8. The technical replicate pair is the 2nd
and the 3rd runs in the 300 ng/�l yeast samples (high). The fivefold difference pair is the 2nd run in the 300 ng/�l yeast sample (high) and the
2nd run in the 60 ng/�l yeast sample (low). The left column shows technical replicates pairs and the right column shows fivefold difference pairs.
These plots illustrate that systematic bias is more significant between the high and low samples with fivefold difference. C, Boxplots of the
relative intensities (M) under the three observed charge states (�2, �3, �4) on experimental runs from Orbitrap 65 in Study 8. The same
experimental runs were used for the pairs of technical replicates and fivefold difference as in B. The boxplot bounds in the form of [IQR
(median)] are as follows: technical replicates: �2 [0.58(0.03)], �3 [0.46(0.02)], �4 [0.49 (0.05)]; fivefold difference: �2 [0.84(	3.13)], �3
[1.05(	3.48)], �4 [1.20 (	3.61)]. The distribution similarity was tested by a two-sample Wilcoxon rank test. The distributions of M between the
charge states in high versus low samples (fivefold difference) were statistically different (p value �0.001) with the exception of �3 compared
with �4 (p value � 0.46). The distributions of M were not significantly different under different charge states for technical replicates (p value �
0.15).
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analyses, particularly if data between instruments are com-
pared. supplemental Fig. S1A in the Supplemental Data
shows the similar results on an LTQ instrument.

From previous work, it was known that varying the injection
amount leads to broad differences in a number of perfor-
mance metrics: in particular, the number of singly charged
relative to doubly charged peptide ion identifications in-
creases with injection amount, as does the average precursor
m/z (13). These observations indicate a reduced average pep-
tide ion charge state at higher injection amounts, most likely
because of limited proton availability during ESI.

With the intent of further investigating these observations
on the individual peptide-level, we compared data from the
Study 8 low and high samples to look for deviations in M from
the expected reference value, given no or a fivefold difference
in concentration between samples. In Fig. 2B, the technical
replicates pair includes the second and the third runs in the
300 ng/�l yeast samples (high); the fivefold difference pair
includes the second run in the 300/�; ng yeast sample (high)
and the second run in the 60 ng/�l yeast sample (low).
Peptides are ordered according to peptide properties cho-
sen here because they are known to be affected by sample
concentration.

In this analysis, all three variables, precursor m/z,
m/z, z/�peptide length, and retention time, showed strong
correlation with systematic biases, indicating that larger
peptides and those eluting late in the gradient are more
intense at higher concentrations. This suggests that sample
loading selectively biases the intensities of the peptides with
higher charge state potentials. The variable z/�peptide length is
the charge density standardized by the square root of the
peptide length. The square root was used because z/pep-
tide length exhibited strong correlation with the peptide
length, which was also included in the group of variables
discussed later.

To further investigate the possibility that loading systemat-
ically biases peptides with higher charge state potentials, M
values of the above runs in Fig. 2B were separated by charge
states. Fig. 2C summarizes the distributions of M values in
boxplots. For technical replicates (second and third run from
the high sample on Orbitrap 65), the median of boxplots on
the relative intensities under three charge states were all close
to the reference level 0 with IQR as 0.58, 0.46, and 0.49 for
2�, 3�, and 4�, respectively. For the pair with fivefold dif-
ference (second run from the high sample and second run
from the low sample on Orbitrap 65), the boxplots showed
variations in both the medians and the IQRs across charge
states. Charge state 2� had a median (-3.13) which was the
closest to the reference line (	log2(5)) with the shortest IQR �

0.84. For 3�, the median was 	3.48 with IQR � 1.05 and for
4�, the median was 	3.61 with IQR � 1.20.

To determine if the distributions were significantly different,
a two-sample Wilcoxon rank test was used because the bias
on M values under different charge states is not normally

distributed. As expected, the distributions between the
charge states in high and low samples (5-fold difference) were
statistically different (p value �0.001) with the exception of �3
compared with �4 (p value � 0.46). The distributions of
peptide ion intensities were not significantly different under
different charge states for technical replicates (p value �

0.15). These results indicated that precursor charge state is
an important variable to be considered during data normal-
ization, especially between different samples. Supplemental
Fig. S1B in Supplemental data shows the similar analysis on
an LTQ instrument.

Since retention time introduces a large systematic bias
when data from samples at different concentrations were
compared, median relative abundance deviations (Experi-
mental Procedures) were calculated for each retention quar-
tile from comparisons between the above runs on Orbitrap 65.
The high median deviations in M illustrated the higher varia-
bility during the fourth quartile of retention time (Q4) observed
for intersample comparisons in five-fold difference pair
(dashed lines) relative to technical replicates (solid lines) (See
supplemental Fig. S2 in the Supplemental Data). The investi-
gation on the median deviance suggested that, although com-
parisons between low and high samples are somewhat artifi-
cial, significant biases may be unwittingly introduced by small
loading differences, giving rise to retention time biases.

Development of a Normalization Model—The variables ex-
amined in Fig. 2B as well as abundance (A), peptide length,
and the number of mobile protons (precursor charge minus
number of H, K and R’s � 1) were used to develop a normal-
ization model (Experimental Procedures). The proposed
method is an extension of normalization using a linear regres-
sion model. But instead of using only abundance, several bias
variables are included as predictors. Supplemental Fig. S3
shows a schematic of the algorithm and supplemental Fig. S4
gives an example showing resultant regression curves and
deviance values during stepwise normalization using two runs
from Study 8.

Examining the Results of the Normalization Model—Fig. 3
shows the densities of M values before and after normaliza-
tion using various approaches, including removing the mean
of log ratios (around 	2.7), regression against the abundance
(A) and the proposed semiparametric regression models. The
data used were a pair with fivefold difference from Study 8.
The comparison in Fig. 3 indicated that models using only
mean of M or abundance (A) as normalization factors, which
have been widely used in proteomics and on microarray data,
may have room for improvement when applied to peptide
abundance data derived from ion current measurements.

Examining the Influence of the Variables—To cover many
cases, the interlaboratory data from Study 8 were again used
to approximate the relative influence of these variables with
respect to peptide intensity deviations. The low and high
concentration runs within and between labs were all com-
pared. In this analysis, the frequency of each variable appear-
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ing in the rank 1 (most influential) position was calculated for
all pairs of runs (Fig. 4A).

Within labs, RT was consistently ranked as the most influ-
ential variable and among the most influential variables when
runs were compared between labs. The other two variables
that became influential were precursor m/z and the peptide
length. What is also notable from this analysis is the fact that
within labs, average abundance (A) - the standardly used
normalization variable - was never ranked as the most impor-
tant variable. RT, length and precursor m/z were the most
influential between labs. Again, although performing a differ-
ential expression analysis on runs between instruments (lab-
oratories) may be somewhat artificial, it nevertheless high-
lighted the most variable aspects of the data. Similar results
on LTQ instruments are included in supplemental Fig. S5A of
the Supplemental Data.

The magnitude of the bias accounted for by each of the
variables can be shown by the mean of the deviance (See Eq.
(2) and (4) under “Experimental Procedures”). Fig. 4B shows
the average of the mean of deviance (MD) within lab and Fig.
4C shows the average of the MD for each pair between labs.
Several observations were made from this analysis. First, MD
was larger for pairs across instruments than for those from the
same instrument. Second, the largest reduction of the MD
was introduced by the rank 1 variable. The remaining vari-
ables improved the MD only marginally. After removing sys-
tematic bias from the M values, the residual MD (RSE, white
bars) was comparable at the two concentration levels, al-
though pairs from the same labs had a smaller MD to those
pairs from different labs. Similar results on LTQ instruments

are presented in supplemental Fig. S5B and S5C of Supple-
mental Data.

The normalization algorithm developed for this work is di-
rectly applicable when the two runs are from an identical
sample or are from samples with a known overall concentra-
tion difference, such as Study 8 data sets. In these samples,
all peptide ions can be used in the normalization procedure
because they can all be assumed to be randomly distributed
around a known and identical reference level. When the two
runs from biologically different samples are analyzed, some
peptide ions are expected to remain quantitatively similar
(common peptide ions), whereas significant changes are ex-
pected in others. Those peptide ions, whose intensities are
suspected to be different under different biological condi-
tions, should not be included in the normalization and ranking
procedure, if possible. Their M values are adjusted by inter-
polation using the regression parameters obtained from the
normalization-ranking procedure with the common peptide
ions. The application of the proposed method to this type of
data is shown below using Study 6 mock biomarker data.

Normalization Lowers the False Positive Rate in Mock Bio-
marker Experiments—In order to assess the effectiveness of
the newly developed normalization method, we used data
from Study 6. In this study, several of the processed samples
contained the SigmaUPS1 proteins spiked into the yeast ref-
erence material at known amounts, sequentially differing by
factors of 3 (Experimental Procedures). To visualize the data
prior to normalization, we plotted the M values of the yeast
matrix peptide ions and Sigma UPS1 spike-ins separately
versus RT (Fig. 5) using a pair of runs from Sample 6C and

FIG. 3. The densities of the relative intensities M (M � log2 (IR1/IR2)) under different normalization methods. The data used in the pair
were the 1st run of 60 ng/�l yeast sample (low) and the 2nd run of 300 ng/�l yeast sample (high) on the ltq73 instrument in Study 8. The dark
gray curve (“two-dash”) is for the original relative intensities M (before normalization). The red curve (“dotted”) is for the scaled relative
intensities M by removing the sample mean of M (approximately 	2.7 for the data used). The blue curve (“dot-dash”) is the normalized
relative intensities M using peptide abundance (A) only. The purple curve (“long-dash”) is the normalized relative intensities M using Rank
1 variable only. The black curve (“solid”) is the normalized relative intensities M using all variables. The dashed gray line is the reference
line at log2(M) � 0.
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Sample 6D on Lab 1 in Study 6. The Sigma UPS1 peptides in
this plot are clearly separated from the yeast matrix peptides
and are present at close to the expected log2-ratio (approx-
imately 	1.58). However, because the spike-level is of rela-
tively high concentration, a clear RT bias is visible at the end
of the gradient.

Study 6 data is a mock case for biologically different sam-
ples. That is the common peptide ions were known (yeast
peptide ions). In a real data set, this information is usually not
available. The selection of the common peptide ions for nor-
malization is another important issue in comparative proteom-
ics. Various methods have been developed in the literature
(11, 15, 16–18). In the following results, we normalized and
ranked the Study 6 data as if the identities of the yeast and
Sigma UPS1 proteins were not known like in many real data
sets. To select the set of common peptide ions, we used the
global rank-invariant set selection methods in (18).

To examine the ability of the model to separate known
spike-ins from matrix, each pair of runs from Sample 6C and

6D was normalized. In Fig. 6, the densities of the yeast (upper
panel) and Sigma UPS1 (lower panel) M values in a pair (Run
#8 of Sample 6C and Run #11 of Sample 6D on Orbitrap 65 in
Study 6) are shown for the cases before normalization, nor-
malization by abundance (A) only, by rank 1 variable only and
by all variables used, respectively. Biases in M values were
reduced more by the single rank 1 variable or by the combi-
nation of all six variables, than by that of the abundance (A).

Gain in the stage of data preprocessing directly lead to
better sensitivity and specificity for detection of the mock-
biomarkers. Supplemental Fig. S6A shows ROC curves using
fold-changes for spike-in concentration C versus D (Sample
6C with Run #7, 8, 9 and Sample 6D with Run #10, 11, 12 on
Orbitrap 65 in Study 6). This figure shows the false positive
rate (FPR � 1-specificity) and true positive rate (sensitivity),
when using fold-change thresholds ranging from 1.5 to 6 at
intervals of 0.5. Each of the runs from sample 6C (lower
concentration) was used in the numerator to calculate M in a
pair. The results are shown in panel (a) for pairs using run 7 as

FIG. 4. Ranking and mean deviances of the normalization variables. The data used were 19 experimental runs on the 3 Orbitrap
instruments from Study 8, including 60 ng/�l (low) and 300 ng/�l (high) yeast samples. A, The frequency of the variables as Rank 1 for runs
within the same lab or across different labs. B, The magnitude of the mean deviance adjusted by each variable, as well as the remaining mean
deviance (represented by RSE) when experimental runs were from the same labs. C, The magnitude of the mean deviance adjusted by each
variable as well as the remaining mean deviance (represented by RSE) when experimental runs were from different labs.
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the base run; (b) for pairs using run 8 as the base run; (c) for
pairs using run 9 as the base run. Normalization with all
variables lead to a higher true positive rate, especially for
fold-change thresholds below 4, and a consistently lower
false positive rate compared with the results before normal-
ization or normalization with the abundance (A) only. Also
notably, the ROC curves after normalization with all variables
did not vary much using different base runs, whereas base run
choice significantly affected the ROC curves for data before
normalization. At the true fold change (� 3), the FPRs were
improved dramatically after normalization with all variables
compared with those before normalization or normalization
with the abundance only, independent of the large differences
in base run (Table I).

A rigorous discussion and comparison of different common
peptide selection methods is beyond the scope of the current
study. For a simple comparison in the current report, we also
normalized and ranked variables based on known identities of
peptide ions. That is, only the yeast peptide ions were used in
normalization and ranking whereas the intensities of the
spike-in Sigma UPS1 peptide ions were interpolated based on
the models estimated using only yeast peptide ions. Results
are included in Supplementary Data (supplemental Fig. S6B
and supplemental Table S1). Though results still support the
normalization by all variables, the selection of common pep-
tide ions did have an impact on sensitivity and specificity in

FIG. 5. The relative intensities (M) versus retention time (RT) of
Sample 6C (yeast � UPS1 at 2. 2 fmol/�l) against Sample 6D
(yeast � UPS1 at 6.7 fmol/�l) in Study 6. The yeast matrix peptide
ions (unfilled circles) were expected to be centered on the reference
line at 0. The peptide ions for Sigma UPS1 spike-ins (filled gray
squares) were expected to be centered around the reference line at
log2(M) � 	log2(3) (approximately [	1.58]) because the Sigma UPS1
spike-ins differed by threefolds between the samples analyzed. Sys-
tematic bias existed in the observed peptide ions intensities for both
the yeast matrix and the Sigma UPS1.

FIG. 6. Densities of relative intensities M (M � log2 (IR1/IR2)) under different normalization methods for run pairs Sample 6C (yeast � UPS1
at 2. 2 fmol/�l) against Sample 6D (yeast � UPS1 at 6.7 fmol/�l) (3-fold difference) in Study 6. In normalization and ranking, common peptides
were selected based on the global invariant-ranking set (18). The top panel is for the yeast peptides ions, whose relative intensities were expected
to be centered on the reference line at 0. The bottom panel is for the Sigma UPS1 spike-in peptides, whose relative intensities were expected
to be centered on the threefold difference reference line at [–log2(3)] (approximately [-1.58]). The dark gray curve (two-dash) shows the original
relative intensities M (before normalization). The blue curve (dot-dash) represents the normalized relative intensities M using peptide abundance
(A). The purple curve (long-dash) is for the normalized relative intensities M using Rank1 variable only. The black curve (solid) is for the
normalized relative intensities using all variables.
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the biomarker discovery analysis. We suggest that the com-
mon set of peptide ions should be selected on the basis of
biological consideration (16) or internal standards if possi-
ble. Data-driven methods may be used but caution is
recommended.

DISCUSSION

The goal of this study was to identify and characterize
systematic biases present in proteomics data, and then to
attempt to develop a better normalization method. This was
accomplished by examining the effects of loading on individ-
ual peptide ions as well as by monitoring other unidentified
biases between technical replicates. Peptide property vari-
ables were used as reporters to identify biases which manifest
as functions of retention time or one of several other variables.
Callister et al. state that the most appropriate normalization
techniques are ideally developed following identification and
characterization of systematic biases (9). Here we described
peptides with higher charge state potentials to be more sen-
sitive to loading differences. Local deviations were also likely
related to electrospray issues.

We also demonstrated that systematic biases are almost
always present. Moreover, we observed that these effects are
not predictable and local, nonlinear corrections are almost
always necessary. A LOWESS regression model can be used
to overcome the nonlinearity. However, it involves the choice
of a fraction of neighboring samples (bandwidth) in the nor-
malization step. Berger et al. demonstrate that bandwidth
parameter choice significantly affects results (15). Semi-para-
metric regression avoids this problem by selecting the num-
ber of knots, resulting in statistical stability as long as the
knots are dense enough (17, 19). Additionally, the semipara-
metric regression models are constructed within the frame-
work of linear regression models. Linear model diagnostics
and evaluation methods can be directly used; its computation
can be easily implemented using the widely available mixed
model packages.

We have developed an iterative normalization that does not
require the user to be knowledgeable of the largest systematic
biases present in their data prior to normalization. This was
achieved by ranking variables along with stepwise normal-
ization. Although this model proved effect in the analysis of

the CPTAC Study 6 data, it will be necessary in follow-up
studies to examine the effectiveness in the face of biological
variability.

The products of this work are improvements to the NIST
MSQC pipeline, which now performs the necessary calcula-
tions to be used for label-free analysis, and the R code to
perform normalization. The pipeline has been tested with
Thermo LTQ, Orbitrap and FT, and to a lesser extent, with
Agilent QTOF and AB TripleTofTM 5600 data. The goal of this
work was to unveil systematic biases in these proteomics
data sets in order to help validate the appropriateness of
these methods for quantitative workflows. Without first under-
standing the effects of systematic biases, interpretation of
label-free data sets are subject to so-called “batch effects”
and other incorrect assumptions about the samples under-
lying the data. These anomalies can lead to costly testing of
irrelevant hypotheses, particularly in biomarker discovery
efforts. Just as in microarray experiments, these biases can
be effectively eliminated by applying appropriate statistical
methods.
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