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Abstract

The advance in technological tools for massively parallel, high-throughput sequencing of DNA

has enabled the comprehensive characterization of somatic mutations in large number of tumor

samples. Here, we review recent cancer genomic studies that have assembled emerging views of

the landscapes of somatic mutations through deep sequencing analyses of the coding exomes and

whole genomes in various cancer types. We discuss the comparative genomics of different

cancers, including mutation rates, spectrums, and roles of environmental insults that influence

these processes. We highlight the developing statistical approaches used to identify significantly

mutated genes, and discuss the emerging biological and clinical insights from such analyses as

well as the challenges ahead translating these genomic data into clinical impacts.

Introduction

While it is recognized that cancer is a collection of complex pathological entities with

diverse biological capabilities1, much of our current understanding of cancer genetics is
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grounded on the principle that cancer arises from a clone that has accumulated the requisite

somatically-acquired genetic aberrations, leading to malignant transformation2. Progression

of such a transformed clone to disseminated disease has previously been thought to be a

linear process driven by serially acquired new mutations, including base pair substitutions,

small insertions and deletions (indels) of bases, chromosomal rearrangements, and gains and

losses in gene copy number3. However, recent insights have emerged from comprehensive

genomic characterization using next-generation sequencing (NGS) technologies, which has

allowed for the sequencing of the coding portion of the genome through hybrid-capture

whole-exome sequencing (WES) or nearly all base pairs in a tumor-normal pair by whole-

genome sequencing (WGS) (Box 1) (reviewed in4,5), revealing unanticipated complexities

in the patterns of somatic alterations in cancers.

Prior to the more widespread use of NGS technologies, studies using PCR-amplification and

Sanger-based capillary sequencing methodology were limited by cost and throughput,

dictating either one of two study designs: a limited number of genes sequenced in a large

cohort or all coding genes sequenced in a small number of samples. Mutations in many of

the known cancer genes, so-called ‘mountains’ (genes altered in a high percentage of

tumors), were discovered by focused sanger sequencing or cytogenetic analyses, some of

which express mutated proteins that have become successful drug targets2,4. The first efforts

to interrogate the complete protein coding sequence of the cancer genome of colon, breast

and glioblastoma necessitated the generation of up to 208,311 primer pairs6,7 for Sanger-

based sequencing. These pioneering studies led to the identification of a highly recurrent

mutation in a novel oncogene, isocitrate dehydrogenase 1 (IDH1)6, involved in both cell

metabolism8,9 and DNA methylation10, reinforcing the promise of unbiased genomic

sequencing in the identification of novel genetic driving events in human cancers.

The advancement in NGS technology has allowed the cancer research community to employ

systematic sequencing to identify additional ‘mountains’, which include the discovery of

frequent mutations in epigenetic regulators and pre-mRNA splicing machinery in many

cancers (Figure 1 and described in detail below), and so-called ‘hills’ (genes altered less

frequently in cancer). Furthermore, these efforts have uncovered various mutational

mechanisms underlying tumorigenesis and progression, such as chromothripsis11,12,

chromoplexy13,14 and kategeis15-17. Following the launch of the Cancer Genome Project

(CGP) in the United Kingdom in 2000 and The Cancer Genome Atlas (TCGA) in the United

States in 2006, the International Cancer Genome Consortium (ICGC) was created in 2007 to

coordinate the generation of comprehensive catalogues of genome alterations from 52

different cancers18. To date, disease working groups from TCGA and ICGC have released

comprehensive genomic analyses for a number of cancer types19-33. In addition, a major

ongoing effort is to molecularly characterize rare malignancies and cancers that are common

in diverse geographical regions in different populations, such as gastric cancer34,35, viral

hepatitis (B or C) associated hepatocellular carcinoma (HCC)27,36-38, and parasite-induced

cholangiocarcinoma (CCA)39.

The general approach to sequencing and bioinformatics analysis, as well as the potential of

large-scale cancer genomics by NGS, has been discussed in depth in recent review

articles2,4,5,40,41. Here, we attempt to keep pace with the explosion of NGS studies by
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summarizing a selection of findings from recently published genomic studies (2008 to July

2013), with a focus on analysis of genes targeted by point mutations (base pair substitutions)

and indels. We review WES and WGS studies that have provided the clearest landscape of

somatic mutations in major adult tumor types (majority of which involve deep sequencing

analyses of the coding exomes and whole genomes of 20 or more samples per study), TCGA

and ICGC publications, as well as a few examples of rare malignancies and cancers more

prevalent in diverse geographical regions (a selection of studies is summarized in Table
1). We discuss our current understanding of the mutational landscapes of these different

tumor types and underscore the biological insights into the etiology of cancer gained through

integrative and pathway analysis with various genomic platforms, while highlighting the

challenges of identifying driver mutations and functional validation of significantly mutated

genes (SMGs). While structural rearrangement can also be identified through NGS, the

analytics for defining such structural alterations are much less matured, thus we will not be

covering this important aspect of genomic alterations in detail in this review.

Features of somatic mutation genomic studies

Mutation rates and spectrum across cancer types

A meta-analysis of 2,957 whole exomes and 126 whole genomes from 27 cancer types

performed at the Broad Institute, recently illustrated the mutational heterogeneity in diverse

cancer types42. First, the variation in mutation frequency can partly be explained by cancer

type. For example, the mutation rates for pediatric and haematological cancers possess the

lowest mutation rates (~1 mutations/Mb for chronic lymphocytic leukemia (CLL))30,

compared to cancers where environmental mutagens are known to increase the mutation

burden, such as melanoma and lung cancer (~15 mutations/Mb for melanoma)43. In

addition, mutation rates can vary tremendously within a cancer type, often due to the degree

of exposure to an environmental mutagen, or dependent on which genes are mutated (e.g.

tumors possessing mutations in mismatch repair genes). Second, the mutation spectrums

also vary across cancer types. For example, clustering analysis on all possible mutations

(considering context of flanking residues) demonstrated natural groupings of mutation

spectrum and cancer types consistent with known signatures of carcinogenesis mechanisms:

lung tumors possess a high fraction of G>T transversions, attributable to exposure of

polycyclic aromatic hydrocarbons from tobacco smoke; melanomas possess a high fraction

of C>T transitions in dipyrimidines caused by UV-induced DNA damage and misrepair;

gastrointestinal tumors (oesophageal, colorectal and gastric) possess a high frequency of

transition mutations at CpG dinucleotides that may be a reflection of elevated methylation

levels in these tumors22; cervical, bladder, some head-and-neck and breast cancers possess

frequent mutations at Cs in the context of TpC, characteristic mutations caused by the

APOBEC family of cytidine deaminases15-17; and leukemic samples (acute myeloid

leukaemia (AML) and CLL) possess A to T mutations in the TpA context42. Finally,

analysis of WGS confirmed mutational heterogeneity across the genome that is heavily

influenced by two factors: gene expression level and DNA replication time. In light of this

known mutational heterogeneity, correcting for such factors has been shown to be important

in determining SMGs42,43.
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Approaches to identify cancer-associated genes

Identifying which mutations are likely to be ‘drivers’ in pathogenesis and elucidating how

mutated genes affect the biology of a given tumor, are fundamental challenges in cancer

genomics. Statistical tools to identify SMGs that possess a higher mutation rate than the

expected (calculated/estimated) background mutation rate (BMR), indicating positive

selection during tumorigenesis have been developed by a number of groups (Box 2).

Following the recent surge of WES and WGS studies, a more comprehensive census of

human cancer genes has emerged. However, this is just the first step in the translation of

these findings to clinical benefits for patients. Additionally, many of the published studies

have collected data on other genomic dimensions (e.g. DNA copy number, DNA

methylation, mRNA and miRNA expression profiles), which can be used for integrative

analysis (Box 3) and for elucidating mechanisms of disease pathogenesis; we highlight a few

informative examples of such integration in the sections on specific cancers.

Landscape of somatic mutations in solid tumors

Glioblastoma

The Sanger-sequencing of 20,661 protein coding genes from 22 glioblastoma samples

mentioned above revealed a recurrent heterozygous IDH1 mutation targeting amino acid

R132 in 12% of samples, which correlated with improved patient survival6. In parallel,

glioblastoma was the first cancer to undergo comprehensive genomic characterization by

TCGA Research Network, which used a targeted approach consisting of Sanger-based

capillary sequencing of 601 selected genes in 91 glioblastoma tumor–normal pairs to

identify somatic mutations, which revealed frequent mutations in the phosphatidylinositol 3-

kinase (PI3K) regulatory subunit, PIK3R124. The targeted sequencing was complemented by

analyses of DNA copy number, mRNA expression and DNA methylation from 206

glioblastomas. Integrative analysis demonstrated statistically significant deregulation of the

RTK–RAS–PI3K, p53, and RB signaling pathways in glioblastoma24. This study set the

framework for comprehensive multi-dimensional genomic characterization in large-scale

studies (Box 3). Investigation of RNA sequencing (RNA-seq) data from glioblastomas also

revealed translocations involving fibroblast growth factor receptor (FGFR) genes to the

transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, in

approximately 3% (3/97) of cases44. Glioblastoma cells expressing the fusion demonstrated

sensitivity to FGFR kinase inhibition in preclinical assays44. The examples above

demonstrate the power of unbiased genomic sequencing in the identification of clinically

relevant genetic changes.

Clear-cell renal cancer

Somatic or germline inactivating mutations in the tumor suppressor gene, von Hippel–

Lindau (VHL), a master regulator of HIF transcription factors and the hypoxia response, are

found in most clear-cell renal-cell carcinoma (ccRCC) cases (somatic mutations reported in

>55% of sporadic ccRCC)45,46. However, studies from model organisms have pointed to the

requirement for additional genetic alterations to drive tumor development. Indeed, focused

Sanger sequencing revealed mutations in neurofibromin 2 (NF2) and in genes involved in
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histone methylation and demethylation: SETD2, JARID1c (also known as KDM5C) and

UTX (also known as KMD6A)46 (Box 3 and Figure 1a). A follow-up WES analysis led to

the identification of the second most frequently mutated gene in ccRCC, polybromo 1

(PBRM1)47, which possessed truncating mutations in 41% (92/227) of cases. PBRM1

encodes for the chromatin-targeting subunit of the PBAF SWI/SNF chromatin remodeling

complex, which regulates transcription and has essential roles in maintenance of stem

pluripotency (reviewed in48) (Figure 1a). The importance of the PBAF complex was

initially suggested from studies that found inactivating mutations in its core component,

SMARCB1 (SNF5), in rhabdoid tumors49,50. PBRM1 mutations were found in the context of

loss of heterozygosity, and functional data supported its role as a tumor suppressor,

suggesting PBRM1 represents the second major genetic event that cooperates with VHL in

ccRCC47. A second WES study identified frequent mutations in the two-hit tumor

suppressor BRCA1-associated protein-1 (BAP1) in ccRCC, previously found to be

frequently mutated in uveal melanoma51 and pleural mesothelioma52, that functions as a

deubiquitinating enzyme and regulator of histone H2A lysine 119 ubiquitination53 (Figure
1a). Interestingly, mutations in BAP1 and PBRM1 were anti-correlated, and tumors

possessing BAP1 mutations were associated with high tumor grade53,54. Recent efforts from

a larger WES/WGS study55 and TCGA19 confirmed PBRM1, SETD2, KDM5C and BAP1 to

be significantly mutated in a cohort of 417 ccRCC tumors, as well as a novel hotspot

mutation in a component the VHL E3 ligase complex, TCEB119,55. Importantly, TCGA was

able to show widespread DNA hypomethylation in SETD2-mutant tumors and

transcriptional network analysis suggest mutations in the chromatin remodeling complex

(PBRM1, ARID1A, and SMARCA4) are linked to RAS signaling, immune function, DNA

repair, β-catenin and TGF-β signaling. RNA-seq analysis also revealed recurrent SFPQ–

TEF3 fusions found by in 5/416 samples, all five lacking a VHL mutation19.

Head-and-neck squamous cell carcinomas (HNSCCs)

A first global view of the somatic mutations in HNSCC was published in two studies in

2011, based on WES characterization of 32 and 74 HNSCC tumor–normal pairs,

respectively56,57. Epidemiologically, tobacco use, alcohol consumption, and infection with

human papilloma virus (HPV) are known major risk factors for HNSCC. These studies

reported that tumors isolated from patients with a history of tobacco use possessed higher

mutation rates than those from non-smokers, that HPV-associated tumors possessed far

fewer mutated genes, and that mutations in TP53 and HPV infection were mutually

exclusive56,57. These observations demonstrate how environmental causes of cancer leave

footprints in the genome, and these may offer hints to the molecular mechanism of

pathogenesis.

In terms of genes that are frequently mutated in HNSCC, Agarwal et al.56 identified 6

recurrently mutated genes based on the frequency of mutations, and Stransky et al.57 defined

39 SMGs using the MutSig algorithm (Box 2; Supplementary Figure 1). Stransky et al.

also looked for enrichment in functional gene sets among the list of SMGs and discovered

that the highest scoring set was involved in epidermal development, particularly in

squamous cell differentiation, pointing to disruption of the stratified squamous

differentiation program as a candidate route to HNSCC.
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Both studies identified previously unrecognized NOTCH1 mutations in HNSCC in

approximately 10-15% of samples. Although oncogenic activating NOTCH1 mutations have

been observed in a number of hematological malignancies29, the mutations in NOTCH1

identified in HNSCC possessed characteristics indicative of loss of function (LOF)

mutations, hence suggesting a tumor-suppressive role in this cancer. Phenotypes observed in

mice are consistent with the idea that Notch1 can function as a tumor suppressor58. γ-

secretase inhibitors target NOTCH downstream signaling, but the clinical development of an

inhibitor in humans has been halted, partly due to an increased association with skin cancer

risk59. This example highlights the increasingly recognized context-dependent nature of

cancer gene functions and that different mutations of the same gene likely confer different

cancer-relevant biological activities (Box 4), adding to the complexity of applying genomic

information in therapeutic decisions.

Ovarian cancer

Integrated analysis of high-grade serous ovarian adenocarcinoma (HGS-OvCa) by TCGA

included mRNA, miRNA, promoter methylation and DNA copy number analyses from 489

tumors as well as WES data on 316 of these samples25. Although 9 SMGs were identified

using two algorithms (MutSig and MuSiC), the landscape of somatic mutations in this

cancer type was dominated by near universal presence of TP53 mutations (found in 96% of

samples). However, there was also evidence for substantial complexity, with multiple

infrequently SMGs identified (Supplementary Figure 1). The HGS-OvCa genomes had

many somatic copy-number aberrations (SCNAs), with 113 statistically significant recurrent

SCNAs as defined by the statistical approach, GISTIC. This level of SCNAs was greater

than that for other reported TCGA studies (for glioblastoma, colon, breast and lung

cancers)22-26.

Melanoma

The discovery of the BRAF V600E mutation in over 50% of melanomas in 200260 and the

subsequent development of an inhibitor to treat patients with BRAF-mutant metastatic

disease is the proof-of-concept for genomics-informed personalized therapy. It is known that

an additional 20% of melanomas are characterized by recurrent NRAS hotspot mutations;

however, the driver mutations in the remaining melanoma cases remain poorly understood.

The search for additional driver mutations in melanoma has been complicated by the fact

that melanoma has the highest basal mutation rate of any cancer sequenced to date43,61,62,

which can be almost entirely attributable to the abundance of UV-induced C>T transitions in

dipyrimidines. As a result, identifying SMGs is highly susceptible to discovery cohort bias.

To overcome this challenge, statistically powered discovery cohorts of many patients and

modified analytics that take into account this high basal mutation rate have been needed to

make sense of the mutation data for this tumor type, as demonstrated by two recent studies

that analyzed WES data of cohorts of >100 tumor–normal pairs43,62 (Supplementary
Figure 1). For example, an algorithm called InVEx43 was developed to identify SMGs (Box
2). This method led to the identification of several novel SMGs, many of which harbored

hotspot mutations, a pattern of mutation that signifies strong biological selection. One of

these was a hotspot mutation in the Rho GTPase, RAC1, identified in both studies at a
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frequency of 4–9%43,62. This example illustrates that different numbers of samples and

analytical algorithms are required for different tumor types based on the status of the cancer

genome.

Lung cancer

Lung cancer is classified into two major histological types: small-cell lung cancer (SCLC)

and non-small-cell lung cancer (NSCLC). NSCLC is further subdivided into squamous cell

carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma subtypes. Significant

progress in personalized treatment for this disease has been made in recent years with the

demonstration that epidermal growth factor receptor (EGFR)-activating mutations or gene

fusion events involving the receptor tyrosine kinase gene ALK identify NSCLC patients who

are responsive to inhibitors of these tyrosine kinases (reviewed in63).

Recently, WES and WGS data have provided a more detailed view of the somatic

mutational landscape of various lung cancer subtypes: a combination of WES and WGS on

183 lung adenocarcinoma tumor–normal DNA pairs64, an integrated analysis of 178 lung

SCCs26, and WES of 53 SCLC samples65. These studies showed that lung cancer possesses

the second highest reported mutation rate after melanoma (mean mutation rate as high as

12.9 mutations/Mb for smokers), with strong mutation signatures associated with tobacco

smoke exposure (i.e. G>T transversions and C>T transitions in the setting of CpG

dinucleotides)26,64-66. In one study, the InVEx algorithm was used to address the challenge

of this high mutation rate and 25 SMGs were identified64 (Supplementary Figure 1). The

authors found that mutations in U2 small nuclear RNA auxiliary factor 1 (U2AF1) (Figure
1b) and TP53 correlated negatively with progression-free survival. Together with frequent

mutations in RNA binding motif protein 10 (RBM10), the mutations in U2AF1 point

towards a role for RNA splicing deregulation in lung cancer as seen in a number of

hematological malignancies (Figure 1b and described in detail below).

A modified version of MutSig was used26, which took into account gene expression level,

GC content, local gene density, and local relative replication time, to identify 10 SMGs in

the lung SCC TCGA study (Box 2; Supplementary Figure 1). These included previously

unreported LOF mutations in HLA-A and widespread TP53 mutations in nearly all samples

analyzed26. Integrative analysis identified pathways frequently deregulated in lung SCC,

which included confirmation of the oxidative stress response due to frequent mutations and

SCNAs in the CUL3 and KEAP1 components of an E3 ubiquitin ligase and its target

substrate, NFE2L2, in 34% of samples26 (Box 3). Finally, Rudin et al. took into account

gene expression levels in their significance analysis to identify 22 SMGs (Supplementary
Figure 1), including frequent mutations and SCNAs in SOX family members not previously

recognized in SCLC65. This series of analyses nicely illustrates the genomically distinct

nature of these three subtypes of lung cancer despite their common organ site involvement,

heralding the need for genomic classification to complement traditional histopathological

diagnosis.
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Prostate cancer

Frequent chromosomal rearrangements of ETS transcription factor genes with androgen-

responsive promoters, commonly through TMPRSS2–ERG fusions, were discovered as

driver events in up to 50% of prostate cancers in 200567. Recurrent somatic point mutations

were thought to play a less important role in prostate tumorigenesis, until two WES studies

shed light on novel SMGs in this disease. An analysis68 of WES data from 112 treatment-

naїve prostate adenocarcinoma–normal pairs identified 12 SMGs (Supplementary Figure
1); notably, SPOP, a substrate-binding subunit of a Cullin-based E3 ubiquitin ligase

complex, was mutated in ~13% of samples. A WES analysis69 on 50 lethal, heavily pre-

treated castration-resistant prostate cancers (CRPCs) and 11 treatment-naїve, high-grade

localized prostate cancers identified 9 SMGs. Integrating WES and copy-number data found

CHD1, an ATP-dependent chromatin-remodeling enzyme, to be frequently altered (Figure
1a). Interestingly, both SPOP-mutant and CHD1-deleted tumors lacked ETS-family gene

rearrangements, thus demonstrating how molecular characterization of sizeable tumor

cohorts can help identify novel genetic events defining a molecularly distinct subset of a

tumor type.

Colorectal and gastric cancer

A molecular characterization of colorectal carcinoma (CRC) by TCGA analyzed WES,

DNA copy number, promoter methylation, mRNA and miRNA expression from >200

samples22. Interestingly, the somatic mutation rates varied considerably among samples.

Approximately 16% of tumors were designated as hypermutated (having >12 mutations/

Mb). These were characterized by high levels of microsatellite instability (MSI), frequent

epigenetic silencing of the DNA mismatch-repair pathway gene, MLH1, mutations in other

mismatch repair genes or a DNA polymerase catalytic subunit, POLE, providing molecular

insights into the underlying causes for the elevated mutation rate. Interestingly, the

hypermutated samples possessed few SCNAs and harbored frequent concurrent BRAF

V600E mutations. After removal of non-expressed genes, MutSig and prior biological

knowledge were used to identify 15 mutated genes in the hypermutated cancers, and 17 in

the non-hypermutated samples, thought to be important for CRC (Supplementary Figure
1). The two signature genes of CRC, TP53 and the WNT signaling pathway antagonist APC,

were found to be more frequently mutated in the non-hypermutated tumors. Across the

hypermutated and non-hypermutated groups it was found that there was near universal

deregulation (92–97%) of the WNT signaling pathway and the PI3K pathways (~50%).

However, deregulation of the transforming growth factor-β (TGFβ) and RTK–RAS

signaling pathway was observed more frequently in the hypermutated subtype.

In another study, WES analysis70 of 15 MSI and 57 microsatellite stable (MSS) colorectal

cancer samples identified 23 SMGs in the MSS cohort. Interestingly, RNA-seq analysis

discovered recurrent gene fusions predicted to produce functional proteins involving R-

spondin family members, RSPO2 and RSPO3, in 3% (2/68) and 8% (5/68) of samples,

respectively. The RSPO fusions were found to be mutually exclusive with APC mutations,

and exogenous expression of plasmids encoding fusions were shown to activate WNT

signaling in a human colon cancer cell line. In a separate WGS study71, a recurrent fusion of

VTI1A and TCF7L2 (encodes a WNT signaling effector, TCF4 transcription factor) was
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found in 3/97 of colorectal cancer samples, and a colorectal carcinoma cell line harboring

the fusion was shown to be dependent on its expression for anchorage-independent growth.

These multiple findings of frequent deregulation of WNT signaling is consistent with other

evidence of APC as an initiating event in CRC and points to various components of WNT

signaling as drivers of this disease, particularly in the hypermutated subtype.

Gastric cancer has high prevalence in East Asia and WES analysis on >15 gastric tumors

was performed in two studies34,35. Both studies identified cell adhesion/junction

organization and chromatin modification as the most enriched pathways affected by SMGs

(Supplementary Figure 1). Interestingly, a member of the SWI/SNF chromatin remodeling

family, ARID1A, was found to be mutated more frequently and had decreased expression in

MSI (83%) and Epstein–Barr virus (EBV)-infected MSS (73%) gastric cancers, compared to

non-EBV-infected MSS cancers (11%)34. Alterations in ARID1A were also predictive of

improved disease-free survival, suggesting deregulation of the SWI/SNF complex represents

a unique mechanism of carcinogenesis associated with a distinct clinical behavior.

Breast cancer

Clinically, breast cancer is categorized into three basic groups: estrogen receptor (ER) and

progesterone receptor (PR) positive; ERBB2 (also known as HER2) amplified; and triple-

negative breast cancer (TNBC), which lacks ER, PR and ERBB2 overexpression. Recently,

a number of large-scale WES and WGS studies of breast cancer have developed new

algorithms to reconstruct the clonal evolution of the tumors (Box 5), shedding light on the

mutational processes responsible for the generation of somatic mutations in breast cancer in

addition to identifying SMGs that correlated with well-established clinically relevant

subtypes16,23,31,72-75.

For example, WES/WGS analysis of 65 TNBC cases75 identified 6 SMGs, confirming TP53

as the most frequently mutated gene in this subtype. Clonal frequency analysis provided

evidence that somatic mutations in TP53, PIK3CA and PTEN are clonally dominant in most

tumors in which they are found, consistent with a founder mutation status role in most, but

not all TNBCs.

The largest sequencing studies to date for breast cancer include WES of 79 ER+ and 21 ER-

breast tumors31, WES of 103 and WGS of 22 breast tumors from diverse subtypes72, and the

TCGA WES analysis of 510 breast tumors from 507 patients23. Although these studies used

diverse approaches to understand the mutational landscape of breast cancer, they shared

remarkable overlap in the SMGs that were identified (Supplementary Figure 1)23,31,72,

including nearly all genes previously associated with breast cancer, as well as novel SMGs

in the transcription factors TBX331 and CBFB72, and a recurrent, potentially druggable

MAGI3–AKT3 fusion in 3.4% (8/235) of samples72.

Finally in a study of the responsiveness of ER+ breast cancers (of both the luminal A and

luminal B expression subtypes) to estrogen deprivation, WES and WGS were performed on

pretreatment tumor biopsies from patients who were subsequently treated with the

neoadjuvant aromatase inhibitors73. The authors identified 18 SMGs by MuSiC, and found

that GATA3 mutations correlated with response to aromatase inhibitor treatment.
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Furthermore, integrative analysis of mutations, mRNA expression and clinical attributes

suggested that for patients with MAP3K1-mutant luminal A tumors, neoadjuvant aromatase

inhibitors would prove a favorable option, but not for patients with TP53-mutant luminal B

tumors73.

Pancreatic cancer

Recently, the ICGC published a WES and copy-number analysis from a prospectively

accrued cohort of 142 early (stage I and II) sporadic pancreatic ductal adenocarcinoma

(PDAC) samples21. MuSiC identified 16 SMGs (Supplementary Figure 1) and pathway

analysis of these genes using GeneGO ascertained known cancer pathways (such as the

G1/S checkpoint, apoptosis, and TGFβ signaling) as mechanisms important for PDAC

development, as well as a novel pathway involved in axon guidance. Importantly, expression

levels of two axon guidance genes, ROBO2 and ROBO3, were associated with patient

survival21. Forward genetics (in the form of a Sleeping Beauty transposon mutagenesis

screen in a mouse model of PDAC) and functional genomics (in the form of a shRNA screen

in pancreatic cell lines) were also leveraged to explore the functional relevance of SMGs

identified by sequencing. Thus, large-scale genomic analysis coupled with forward genetics

and functional genomics can provide insights into pathways not previously linked to cancer.

Liver cancer

Hepatocellular carcinoma (HCC) has a strong association with chronic liver disease such as

viral hepatitis (B or C) and aflatoxin B exposure, and is more prevalent outside of North

America and Europe. Four recent genomic studies27,36-38 using WES and WGS data from

discovery tumor cohorts varying from 4 to 27 samples have provided insights into the

genetic drivers in HCC arising from various etiologies. All the studies confirmed previously

known mutations in TP53 in HCC, but they also shed light on the importance of

deregulation by somatic mutations of genes involved in chromatin remodeling, the WNT–β-

catenin pathway, cell cycle control, the PI3K pathway, and oxidative and endoplasmic

reticulum stress pathway27,36-38 (Supplementary Figure 1). Although most of the

mutations were not associated with a specific type of chronic liver disease, in one study,

mutations in interferon regulatory factor 2 (IRF2) were exclusively found in hepatitis B

virus (HBV)-related tumors36. WGS has also revealed that the number of HBV integration

sites in HCC tumors was associated with poor survival, and identified recurrent integration

events in the TERT76, MLL4 and CCNE1 loci, which resulted in concurrent increase in gene

expression27,77, reaffirming the powerful analytical capacity of NGS to investigate the

potential role of pathogens in human cancers5.

One form of fatal hepatobiliary cancer that is highly prevalent in certain parts of Southeast

Asia, is cholangiocarcinoma (CCA) associated with ingestion of the Opisthorchis viverrini

parasite present in raw or undercooked fish. Interestingly, the biliary tree contains stem cell

compartments for the liver, pancreas and bile duct, and analysis of WES from 8

Opisthorchis viverrini-related CCAs identified a mutational landscape that appeared more

similar to PDAC than HCC (Supplementary Figure 1)39. This reinforces the importance of

genomic classification in diagnosis, as we begin to understand cancers on a molecular level

in addition to their organ-site and pathological features.
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Landscape of somatic mutations in hematological malignancies

Myeloid malignancies

Genomic characterization of hematological malignancies has been at the forefront in the

field of cancer genetics, and the most active in terms of clinical translation. Identification of

gene fusions as the predominant drivers of certain leukemias has led to the development and

clinical success of targeted therapies, including imatinib in chronic myeloid leukemia

(CML) and acute lymphocytic leukemia (ALL) cases with the BCR–ABL1 fusion and all-

trans-retinoic acid (ATRA) in acute promyelocytic leukemia (APL) cases with PML–RARA

fusion. However, substantial numbers of leukemias do not possess such gene fusions, and

the search for other genetic drivers led to the identification of somatic mutations in genes

such as FLT3, RAS, CEBPA, KIT, JAK2, RUNX1, TET2, ASXL1, EZH2, and TP53 prior

to the era of NGS-based studies78-82. The first WGS of a patient with French-American-

British (FAB) classification M1 acute myeloid leukemia (AML) not only confirmed

mutations in previously known genes, but led to the subsequent identification of new

somatic mutations in genes involved in DNA methylation, such as DNA methyltransferase

3A (DNMT3A), IDH1, and IDH2 (Figure 1a)83-86.

Although there is some inter-patient heterogeneity, frequency of somatic mutations

identified in myeloid luekemias is generally lower than that of solid tumors. The recent

TCGA WES and WGS analysis of 200 patients of de novo acute myeloid leukemia (AML)

revealed that an average of 13 coding mutations per sample (range: 0-51), and the mutation

rate was even lower in cases that harbor known fusion variants, such as MLL-X or PML-

RARA fusion33. In this study, MuSiC identified 23 SMGs that included known mutations in

AML, as well as mutations in the mRNA splicing machinery (U2AF1) (Figure 1b) or

cohesin complex (SMC1A, SMC3. STAG2, and RAD21) that were recently identified in

myeloid leukemias (Supplementary Figure 2)87,88.

WES analyses of myelodysplastic syndromes (MDS) have shown that the mutation rate is

similar to that of AML (median 9 mutations per sample), and share a similar spectrum of

mutated genes (Supplementary Figure 2)28,89. However, some genes and pathways are

overrepresented in MDS compared to AML and vice versa. For example, mutations in

spliceosome complex genes are more abundant in MDS than AML and approximately 40%

of MDS cases are found to have mutations in one of the spliceosome complex genes

(SF3B1, SRSF2, U2AF1, ZRSR2, SF3A1, PRPF40B, U2AF2, and SF1) in a mutually

exclusive manner, suggesting that deregulation in pre-mRNA splicing plays a crucial role in

MDS pathogenesis (Figure 1b)89,90. Recently, sequencing of longitudinal samples from

MDS patients identified hotspot mutations in SET binding protein 1 (SETBP1) that was

acquired during leukemic evolution to AML91. This data has set the framework for

elucidating the genomic basis of transformation from MDS to AML.

Lymphoid malignancies

The pattern of driver mutations identified in lymphoid malignancies differs from that of

myeloid malignancies, although there is some overlap of mutated genes found in

CLL29,30,92-94, acute lymphoblastic leukemia (ALL)95-97, diffuse large-B-cell lymphoma
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(DLBCL)98-101, mantle-cell lymphoma (MCL)102, and multiple myeloma (MM)103,104

(Supplementary Figure 2). Examples of findings for CLL include three independent WES

and WGS studies29,30,92 that revealed known mutations in TP53105,106 and ATM107, and

previously unknown SMGs in NOTCH1, myeloid differentiation primary response gene 88

(MYD88), and the splicing factor SF3B1 (Figure 1b)29,30,92. In addition, WES and WGS

analysis from 91 CLL cases92 defined five core molecular pathways crucial for disease

pathogenesis: DNA damage repair and cell cycle control, NOTCH signaling, inflammatory

pathways, WNT signaling, and RNA splicing and processing pathways.

Some shared features have been reported in other lymphoid malignancies. For example,

RNA-seq has identified hotspot mutations in NOTCH1 in some cases of MCL, suggesting a

common role of NOTCH signaling deregulation in B cell malignancies102. MYD88

mutations were also observed in DLBCL99 and Waldenstrom macroglobulinemia108. The

landscape of somatic mutations has also been characterized in multiple myeloma in two

recent WES/WGS studies, confirming known deregulation of RAS, NF-κB, and histone

methyltransferase activity, while revealing previously unknown mutations in genes involved

in RNA processing and protein homeostasis103,104. The pattern of somatic mutations in

DLBCL is more complex99, but a significant number of cases harbor mutations in regulators

of histone and chromatin modification including MLL2, CREBBP, EP300 and activating

mutation in EZH2 (Figure 1a)98,100,101. Of interest, WGS of pediatric early T cell precursor

ALL revealed a similar somatic mutation landscape to that of myeloid leukemia, suggesting

that therapies effective for patients with myeloid leukemia might also be effective in this

aggressive form of pediatric leukemia97.

NGS also has the potential to reveal major actionable genetic alterations in rare cancers,

such as the discovery of NOTCH2 mutations in 25% of splenic marginal zone lymphoma

(SMZL)109, mutations in signal transducer and activator of transcription 3 (STAT3) in 40%

of large granular lymphocytic leukemia (LGL)110, and BRAF V600E mutation present in

100% of hairy-cell leukemia (HCL) samples tested to date111. The BRAF inhibitor,

vemurafenib, has already shown efficacy in the case of an individual with refractory HCL,

and Phase II clinical trials are ongoing to validate these findings (clinicaltrials.gov identifier:

NCT01711632)112 [link to http://clinicaltrials.gov/show/NCT01711632] These examples

show how systematic integration of data from diverse tumor types has the potential to

transform the diagnostic and treatment paradigm for a rare disease.

Genomically defined cancer subtypes

Cancer genomics has shown that histopathologically distinct cancer subtypes of the same

organ site often have divergent underlying genomic alterations. In addition to the examples

described above, TP53 is mutated in 96% of HGS-OvCa samples, but clear-cell and

endometrioid ovarian cancer tumors have lower rates of TP53 mutations and instead possess

frequent recurrent mutations in PIK3CA113 and ARID1A114,115, which were identified using

NGS technology. Most cutaneous melanomas are driven by BRAF or NRAS mutations; by

contrast ocular melanomas, have frequent hotspot mutations in the G-proteins GNA11,

GNAQ, and LOF mutations in deubiquitinating enzyme, BAP151,116,117. Recent

glioblastoma studies support the notion that pediatric and adult cancers need to be
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characterized separately at the molecular level, as pediatric and adult glioblastoma tumors

possess distinct genetic driving events, which includes mutations in ATRX, DAXX, and the

replication-independent histone variant, H3F3A, which were much more prevalent in the

pediatric setting (Figure 1a and Supplementary Figure 1)118.

Genomically defined cancer subtypes have been shown to carry diagnostic and/or prognostic

significance. One example of this is the V617F mutation in Janus kinase 2 (JAK2) in the

diagnosis of the myeloproliferative neoplasm, polycythemia vera (PV), the incidence of

which is estimated at 95% and is currently incorporated as one of the diagnostic criteria for

PV119. Based on recent findings, the BRAF V600E mutation might be used as a diagnostic

tool for HCL, a disease for which morphological diagnosis has been a challenge, but further

validation is required111. Classically, genetic information has been actively incorporated into

the diagnosis and prognostication of AML and MDS120,121. Chromosomal alterations

remain the strongest prognostic factor in both AML and MDS, but recent efforts

incorporating somatic mutations have shown promise in creating more sophisticated

prognostic models122-124. For instance, in intermediate-risk AML identified by the

conventional prognostic model, by incorporating information of additional genetic

alterations, which include the internal tandem duplication in fms-related tyrosine kinase 3

gene (FLT3-ITD) and mutations in NPM1, CEBPA, and MLL genes, physicians are able to

identify patients that will benefit from stem cell transplant during the first complete

remission125. Such prognostication studies help not only to identify “biological drivers” but

also to identify “clinically relevant drivers”.

Conclusions and future directions

A number of important future directions have emerged from the genomic studies described

above. First, the characterization of rare cancers and clinically important genetic subtypes,

such as NSCLCs that lack genetic aberrations in EGFR, KRAS and ALK or melanomas that

are wild-type for BRAF and NRAS will undoubtedly provide valuable information into the

genetic etiology of these cancers. Second, the analysis of somatic mutations has focused

almost entirely on the protein coding regions of the genome. However, projects such as the

Encyclopedia of DNA elements (ENCODE) are elucidating the functional elements encoded

in the roughly 80% of the genome that is non-coding, including promoter and enhancer

regions, providing a significant opportunity to understand the landscape of somatic mutation

across the entire genome126. In this regard, two groups have recently shown recurrent

mutations in the TERT promoter in approximately 70% of melanomas127,128, which

highlights the discovery potential in examining somatic mutations in non-coding regions in

cancer. Third, we need to begin to systematically explore the interaction of host genome

variation with the somatic genome of the tumor in ultimately influencing outcomes. Fourth,

recent studies have brought forward the important issue of tumor heterogeneity and the

clinical implications for targeted therapy129 (Box 5). In this respect, in addition to extending

genomic study design to include multi-region and longitudinal sampling of tumors, linking

of the complex genomic data to dynamic clinical history of that specific patient will be most

informative in guiding the analyses and extracting the most clinically relevant insights from

the cancer genomes. Such approaches will undoubtedly be essential for the study of drug

resistance mechanisms of cancer, which remains an important area of future focus. Lastly,
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we must not underestimate the challenge and necessity of deep biological investigation in

the search for efficient and effective translation of new genomic discoveries into clinically

impactful endpoints.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GLOSSARY TERMS

Next generation
sequencing (NGS)

All post-Sanger sequencing methods, most commonly referring to

massively parallel sequencing technology.

Hybrid-capture
sequencing

A target enrichment approach wherein custom oligonucleotides

(bait set) are designed and optimized to hybridize to specific

regions of the genome so specific fragments of DNA can be

enriched by hybridization for NGS sequencing.

Whole-exome
sequencing (WES)

Sequence by NGS all protein-coding exomes after capture

utilizing hybridization to a whole-exome bait set designed to

enrich DNAs in all protein coding portion of the genome. The

most common implementation targets miRNA genes in addition.

The size of the captured DNA is approximately 40 Mb.

Whole-genome
sequencing (WGS)

Sequencing of the entire genome, usually via a random fragment

(shotgun) and to sufficient coverage to ensure adequate

representation of all alleles. A variation specifically utilizing low-

coverage WGS is sometimes leveraged to assess rearrangements in

the genome.

Significantly
mutated genes
(SMGs)

A gene that possesses a somatic mutation rate above the calculated

background mutation rate (BMR) as determined by a given

statistical calculation.

Driver mutations Somatic mutations in a gene that confer a selective advantage to

cancer cells as reflected in statistical evidence of positive

selection. This is not a definition based on functional activity.

Passenger
mutations

Neutral mutations in a gene that do not provide a selective

advantage for cancer cells as reflected in lack of statistical

evidence for positive or negative selection. This is not a definition

based on functional activity.
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Hotspot mutations Recurrent mutations resulting in the same amino acid change in a

gene observed in cancer, signifying strong positive selection.

Cancer gene A gene is considered a cancer gene if it harbors a cancer driving

genetic aberration (note: cancer genes may possess both driver and

passenger somatic alterations) as defined by criteria that can

include statistical evidence of selection, recurrence pattern or by

functional activity.

Two-hit tumor
suppressor

The Knudson two-hit hypothesis was proposed to explain the early

onset of cancer in hereditary syndromes whereby inheritance of

one germline copy of a mutated gene in all cells substantially

increases the likelihood any cell undergoing mutation of the other

allele, thus giving rise to earlier onset disease compared to

sporadic forms of the disease. It specifically relates to the

necessity to inactivate both alleles of a recessive cancer gene.

Epstein-Barr Virus
(EBV)

Member of the Herpes virus family associated with the

development of particular forms of cancer.

Background
mutation rate
(BMR)

The rate of mutation in a tumor sample as a consequence of

exposure to environmental mutagens (e.g. UV exposure) and/or

random generation and misrepair processes.

CpG island
methylator
phenotype

A classification of cancers by their degree of methylation at CpG

rich promoter regions, first characterized in human colorectal

cancers, and often associated with distinct epidemiology,

histological and molecular distinct features.

Triple negative
breast cancer

One of the subtypes of breast cancer that is defined by the absence

of staining for estrogen receptor (ER), progesterone receptor (PR)

and HER2 (ERBB2) by immunohistochemistry.

Neoadjuvant
aromatase
inhibitors

Aromatase inhibitors used to treat estrogen receptor positive breast

cancer patients prior to surgical resection. This approach is applied

in cases where tumor size needs to be reduced for breast

conserving surgery. Neoadjuvant aromatase inhibitor treatment is

not considered a standard of care at this point and is conducted

under clinical trials.

Sleeping Beauty
Transposon System

A genetically engineered insertional mutagenesis system involving

synthetic DNA transposons, which can be applied to various

model systems to ascertain gene function.

Aflatoxin B Aflatoxin B is one of the mycotoxins that are produced by

Aspergillus Flavus. High-level exposure to aflatoxins is known to

cause acute liver necrosis or cirrhosis resulting in the development

of hepatocellular carcinoma (HCC).

Watson et al. Page 16

Nat Rev Genet. Author manuscript; available in PMC 2014 May 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



French-American-
British (FAB)
classification M1

FAB classification of acute leukemias was first proposed in 1976

by French-American-British cooperative group. It classified acute

myeloid leukemia (AML) into 8 different categories (M0-M7) and

acute lymphoblastic leukemia (ALL) into 3 different categories

(L1-L3) based on their morphological findings. The classification

was updated in 1989.

RNAsequencing
(RNAseq)

Whole-transcriptome shotgun sequencing of cDNA to determine

the sequence of RNA used for expression analysis and the

identification of gene-gene fusions.

Microsatellite
instability (MSI):

Is a hypermutable phenotype caused from germline, somatic, or

epigenetic inactivation in DNA Mismatch Repair (MMR) activity

Chromothripsis Greek for chromosome “shattering”, whereby up to hundreds of

genomic rearrangements take place in a single cellular crisis event

that develop from errors in mitosis that occur in approximately

2-3% of cancers.

Chromoplexy Greek for chromosome “weave” or “braid”. Analysis of prostate

cancer genomes revealed copy-neutral rearrangements consisting

of between 4-12 distinct breakpoint junctions, which tend to occur

at transcriptionally active portions of chromatin, forming a closed

chain called chromoplexy.

Kategeis Greek for “shower” or “thunderstorm”. A phenomenon, identified

in breast cancers, of localized hypermutations almost exclusively

involving C base pair substitutions at TpC dinucleotides. This

mutation pattern has been linked to the APOBEC family of

cytidine deaminases.

Actionable genetic
alterations

A genetic alteration with sufficient scientific evidence supporting

its use to inform a treatment decision
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Box 1: WES and WGS: complementarity and pitfalls

Briefly, to identify mutated cancer-relevant genes, the first step is to generate high

quality NGS data covering the genomic regions of interest (e.g. WGS or WES or targeted

panel of selected genes) from both the germline and tumor DNAs. Next, the sequencing

raw reads from the sequencers need to be mapped back to the reference human genome

so they can be properly “stitched” together to reconstruct the linear DNA sequence

corresponding to each chromosome. Once aligned, sophisticated analytical algorithms are

used to call sequence variants in the tumor DNA compared to the human reference

genome, and to determine whether a variant is “somatic” by comparison with the

germline DNA. Deep coverage (most WES and WGS studies aim for an average of 100-

to 150-fold and 30- to 60- fold coverage, respectively) is necessary due to the

heterogeneous nature of most tumors4,5,40,41. Tumors can be comprised of many

subclones129, possess gross numerical and structural chromosome abnormalities resulting

in large variation in actual DNA content (ploidy)130, and often reside in a community of

“genomically normal” non-cancerous cells, all of which reduce the sensitivity to detect

mutations. This can be further exacerbated in genomic regions of high GC content, which

typically results in low to absent coverage. Therefore, it is important that the analytics to

call a somatic mutation consider whether the genomic locus is adequately covered.
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Box 2: Determining significantly mutated genes and driver mutations

Significantly mutated genes (SMGs)

A number of statistical tools to identify SMGs that possess a higher mutation rate than

the calculated BMR have been developed7,131-135, which include MutSig24,26,136,

MuSiC137, and InVEx algorithms43. Recent analyses have illustrated how challenging

this task is in the context of tumors possessing a high and heterogeneous BMR26,43,64.

Controlling for type I errors (false positives) is difficult as mutations in a gene can occur

in excess of the calculated BMR if resident in a hypermutable region of the genome (a vs
b). Studies have shown mutation rates correlate across the genome with levels of

heterochromatin-associated histone H3K9me3 modification, gene expression due to

transcription-coupled repair, the size of genomic footprint of a gene, and replication time

of DNA during the cell cycle42,103,138-141. Statistical tests assuming a uniform BMR

across the genome may identify genes that are significantly mutated due to an elevated

locus-specific BMR and not because of positive selection of the mutated gene in the

tumor. SMG lists often include genes not expressed in the tumor (e.g olfactory receptors)

and extremely large genes (e.g. genes involved in muscle development)42,65. Ongoing

refinements in algorithms that take into consideration such factors to increase the

accuracy of BMR calculations42,43 are improving our ability to identify mutated genes

undergoing selection. For example, InVEx leverages sequencing data from intronic and

untranslated regions (UTRs) to infer locus (gene)-specific mutation rates. Based on the

assumption that mutations in intronic and UTR sequences are more likely under neutral

selective pressure, whereas coding mutations will undergo selection during tumor

progression, InVEx employs a permutation-based framework to determine whether the

observed coding mutations experience positive selection against the inferred gene-

specific BMR43. Recently, the algorithm MutSigCV42 has been developed, which

corrects for the mutation variation by taking into account patient-specific mutation

frequency and spectrum, as well as incorporating expression level and replication time.

WES and WGS analysis of a handful of samples has demonstrated the ability to discover

new ‘mountains in cancer’, such as the case of PBRM1 in ccRCC47. However, given

driver mutations can be present at low frequency in many cancer genes, the ICGC

calculated that 500 tumor samples are needed to detect, with 80% power, genes mutated

in 3% of samples assuming a typical BMR of 1.5 mutations/Mb4,18. As illustrated above,

sequencing more samples will not be the only solution, and applying evolving algorithms

are equally important.

Distinguishing driver from passenger mutations

A major challenge in interpreting and translating genomic discoveries is determining

whether SMGs prioritized based on statistical significance truly play functional roles in

processes important for tumorigenesis, and which mutations are modulating what gene

functions. There are at least three reasons why a gene is found to be significantly mutated

in a sequencing study. First, the identified mutations are technical artifacts. However, in

most cases these genes will be eliminated from the analysis by manual inspection and

verification studies. Second, the mutations in a gene are found to occur in excess of the
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calculated basal mutation rate (BMR) because they reside in a hypermutable region as

illustrated above. Third, a gene is found to be a SMG because it possesses driver

mutations that are selected during tumorigenesis, and warrants further functional

investigation (Box 4). Additional characteristics can provide supportive evidence of

driver mutations. Hotspot mutations and clustered mutations are strong indicators of

positive selection, especially when located in functional domains or affecting amino acid

residues shown to be important by 3D protein structures. The same mutations may be

found as drivers in other cancers. Evolutionary conservation of a mutated residue may

indicate importance of the mutational event. Algorithms that score mutational impact by

amino acid conservation can infer likely functional mutations in cancer genes142-144.

Similarly, the tool Cancer-Specific High-Throughput Annotation of Somatic Mutations

(CHASM) that separates candidate driver and passenger mutations based on machine-

learning of approximately 50 characteristics associated with cancer-causing mutations

can help identify driver mutations145.
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Box 3: Integrative and pathway analysis

Integration of multidimensional genomic data has been crucial to our understanding of

biologically and clinically relevant subtypes in cancer. An example of insights from

integrative analyses is the definition of four transcriptomic subtypes in glioblastoma

annotated as proneural, neural, classical and mesenchymal based on gene expression

profiles146. Integration with copy number and mutation data showed that the classical

subtype is enriched for EGFR alterations, whereas the mesenchymal subtype contains

cases with NF1 loss, and the proneural subtype has specific alterations in PDGFRA and

IDH1146. Similarly, analysis of promoter methylation alterations in 272 glioblastoma

tumors identified a subset of patient samples with characteristic promoter DNA

methylation classified as glioma CpG island methylator phenotype (G-CIMP) which is

associated with IDH1 mutations10. Consistent with previous studies, patients possessing

G-CIMP tumors tended to be diagnosed earlier in life, and showed better overall survival.

In recent ccRCC studies, integration of mutation and expression data provided insight

into potential mechanisms of novel SMGs in tumorigenesis. For example, NF2 mutations

were found in tumors possessing a non-hypoxic signature and were mutually exclusive

with VHL mutations, suggesting mutations in NF2 is a key driver event in this ccRCC

subgroup46. Conversely, significant co-occurrence of mutations in epigenetic regulators,

SETD2, JARID1C and PBRM1 were found in tumor possessing VHL mutations or

hypoxic expression signature, supporting the notion that mutations in this class of genes

may act as the second hit to widespread inactivation of VHL in ccRCC46,47. The authors

of the TCGA lung squamous cell carcinoma (SQCC) study observed many of the genes

involved in oxidative stress and squamous cell differentiation pathways frequently altered

by mutations, SCNAs, and identified genomic alterations associated with reported lung

SQCC gene signatures (classical, primitive, basal, and secretory)26. Similarly, authors in

the TCGA breast cancer analysis were able to show expression subtype-associated

enrichment for SMGs. Such associations include GATA3, high frequency of PIK3CA, and

likely inactivating MAP3K1 and MAP2K4 mutations in the luminal A expression

subtype, enrichment of TP53 and PIK3CA mutations in the HER2 expression subtype,

and a high frequency of TP53 mutations in the basal-like expression tumors.

The recent unbiased genomic characterization of a number of different cancers has

provided a view into the landscape of somatic mutation that has been valuable in

establishing correlations with other genetic aberrations, and has provided insights into

driving events in genetic subtypes of cancers that were not well understood.

Understanding the landscape can provide both mechanistic and biological insight into the

role of SMGs in a given cancer. Mutual exclusivity of genetic alterations is often seen for

somatic alterations that possess redundant biological effects in a given pathway. One

example is the mutually exclusive mutations in the CUL3–KEAP1 E3 ligase complex

and its target substrate NFE2L2 in the oxidative response pathway in lung squamous

carcinomas26,147. Based on this principle, the method Mutual Exclusivity Modules in

cancer (MeMO) can be used to identify candidate driver networks across a set of patient

samples148.
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The utility of testing whether known pathways are enriched in SMG lists has been

demonstrated in many studies, including the WES analysis of HNSCC that observed

deregulation of squamous cell differentiation via somatic mutations57, and the recent

ICGC pancreatic study that observed enrichment of mutations in genes in the axon

guidance pathway21. The reverse is also possible: identifying SMG networks using

computational strategies, such as HotNet, may help discover additional pathways that

otherwise would not have been identified using more traditional approaches149.
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Box 4: Functional validation of SMGs

Functional validation of SMGs and candidate driver mutations requires equal

consideration in the selection and interpretation of biological assays employed to

determine cancer relevance. In the case of newly discovered SMGs, it may not be entirely

clear what stage in the tumorigenic process the gene may play a role, or how easily a

gene's function can be measured by standard assays. The context and relevant cell lines

chosen to perform experiments are also crucial. The example of NOTCH1, which acts as

a tumor suppressor with loss-of-function mutations in some tumor types (a) and as an

oncogene with activating mutation in another tumor type (b), highlights the challenges in

functional validation of SMGs and candidate driver mutations identified by cancer

genomics. In addition, the genetic context of the biological system used to test the

function of a SMG is significant. For example, if functional assays are performed in

primary cells that have been immortalized by engineering specific genetic alterations, or

cancer lines possessing inactivation of a tumor suppressor or activation of an oncogene

that a candidate SMG may function through, a phenotype may not be observed due to

prior deregulation. Similarly, SMGs may require co-operation with additional cancer

genes to affect tumorigenesis or bypass oncogene-induced senescence. An example is the

lineage-specific melanoma oncogene, MITF, which, when overexpressed alone, did not

affect the proliferation or colony-formation of immortalized melanocytes in two-

dimensional culture but did so with co-expression of BRAF V600E mutant, which co-

occur at a high frequency in melanoma samples150. Biological assays may also provide

insight into the function of mutations that would not have been accurately predicted by

computational approaches. For example, PREX2A, a gene found to possess widespread

distribution of missense and truncating mutations discovered from WGS of 25 metastatic

melanoma–normal pairs indicative of a tumor-suppressive function61. However,

missense mutations were found to produce mild phenotypes in in vivo tumorigenic

assays, whereas, truncating mutations were shown to possess oncogenic activity that

could have only been elucidated through functional experiments. A similar observation

was made in the case of a p53-inducible phosphatase, PPM1D, where truncating variants

were shown to possess gain-of-function effects in functional studies151. The examples

highlighted above serve to remind us the need for improved methods to functionally

validate candidate cancer genes, such as the development of non-germline mouse models

that offer increased speed and reduced costs in developing more high throughput in vivo

models152.

Incorporation of forward genetics has been shown by researchers to aid in the

determination of the biological relevance of SMGs as demonstrated by the recent ICGC

pancreatic study21. Cross-species comparative oncogenomics is another approach that

can be employed to identify driving events. In contrast to humans, mouse cancer

genomes from genetically engineered mouse models have far fewer genetic alterations in

addition to the engineered cancer associated alleles4. The presence of homologous,

orthologous or paralogous somatic mutations for a given gene in samples obtained from

both human and GEM models may indicate strong selective pressure providing

evolutionary evidence that such a mutation is a driving event. This approach has been

successfully used by a number of groups to identify novel cancer genes targeted by
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SCNAs in different cancers153-155. More recently, WGS of mouse APL tumors was

performed to identify cooperating somatic mutations in a mouse model expressing a

PML-RARA fusion oncogene known to initiate APL in mice156. The authors identified a

deletion in a demethylase gene, Kdm6a, and a recurrent mutation in Jak1 V657F. The

human JAK1 V658F mutation has been previously reported in APL, demonstrating

analysis of WGS from GEM model tumors can be used as an unbiased approach for

discovering functionally relevant mutations.
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Box 5: Understanding the role of SMGs in intra-tumoral heterogeneity and
clonal evolution

Several pioneering studies have leveraged the sensitivity of NGS to systematically

explore the heterogeneity inherent within the same tumor or the same patient, and how

such information can be used to infer the temporal order of acquisition of genomic

alterations (reviewed in detail129). Approaches used to measure tumor heterogeneity

include mathematical algorithms74,130, single cell sequencing157, longitudinal158(a) and

multi-region sampling159,160(b), whereby biopsies are taken from different portions of

the tumor or from metastatic lesions from the same patient. With such data, one can

reconstruct the life history of a tumor by mapping the distribution of clonal and subclonal

mutations and SCNAs (c). These analyses can inform whether SMGs are found in the

dominant clone, subclones, or in a corresponding metastatic tumor, which may infer its

prognostic importance and biological role in tumor progression. For example, WGS

analysis from 17 NSCLC tumor–normal pairs validated the presence of EGFR and KRAS

mutations in founder clones supporting their roles in cancer initiation161. Studies

employing longitudinal sampling involving biopsies taken at different time points during

the course of a disease (i.e. pre- and post-treated samples) have been useful in identifying

driver clones that play major roles in disease progression, or surviving clones in response

to therapeutic regimens by obtaining biopsies of cancer cells from patients before and

following treatment158. Recently, geographical sampling and multi-region sequencing of

primary renal carcinomas and associated distant metastatic sites demonstrated that 63–

69% of all somatic mutations were not detected across every tumor region, and gene

expression signatures indicative of both good and poor prognosis were detected in

different regions of the same tumor159. The insights gained from the study-design and

mathematical tools employed in these studies represent a major breakthrough in the

analysis of genomic data and should be considered and incorporated in all future genomic

analyses where possible.
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Online summary

• The emergence of next-generation sequencing (NGS) technology has made

important contributions to our understanding of cancer genomes.

• We present a current view of the mutational landscapes of diverse cancer types

• There are various challenges to identifying driver mutations and functionally

validating significantly mutated genes (SMGs).

• Whole-exome and whole-genome sequencing studies, and integrative analysis

with other genomic platforms have provided biological insights into the etiology

of cancer.

• Such studies are enabling classifications of cancers based on genetic alterations

rather than tissues of origin.
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Figure 1. Frequent mutations of epigenetic regulators and pre-mRNA splicing machinery in
cancers
Representative genes involved in (A) chromatin remodelling, histone and DNA methylation

(Me), acetylation (Ac), and ubiquitination (Ub), and (B) pre-mRNA splicing that were

identified to be recurrently mutated in various types of cancers by whole-exome and whole-

genome sequencing are displayed. Predicted consequences of mutations, either gain of

function (GOF) or loss of function (LOF), are also shown.
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Table 1

Overview of example cancer genomics studies for different cancer types.

Cancer type Mutation analysis: # of
samples

Highlighted or novel mutated genes References

Glioblastoma PCR amplify and sequenced
20,661 genes: 22

IDH1 • † 6

WES: 48 (6 matched normal
DNA) *pediatric GBM

H3F3A•†, ATRX/DAXX#, TP53
118

ccRCC WES: 7 PBRM1# 47

WGS: 1 BAP1# 53

WES: 106
WGS: 14

TCEB1•#, KEAP1#, TET2, mTOR† 55

WES: 417
WGS: 22

TCEB1•#, NFE2L2†, ARID1A#, mTOR† (Confirmed PBRM1#,

SETD2#, KDM5C#, PTEN#, BAP1#, TP53, PIK3CA•†)

19

HNSCC WES: 32 NOTCH1# 56

WES: 74 NOTCH1# 57

HGS-OvCa WES: 316 TP53 (universal) 25

Melanoma WGS: 25 PREX2a (see Box 4) 61

WES: 121 RAC1•†, PPP6C•, STK19•, ARID2# 43

WES: 147 (99 matched
normal DNA)

RAC1•†, PPP6C•#, ARID2# 62

Lung AC WES: 159
WGS/WES: 23
WGS : 1

U2AF1•†, RBM10#, ARD1A# 64

Lung SCC WES: 178 HLA-A#, NFE2L2†, KEAP1(#)
26

Small-cell lung cancer WES: 53 SOX family (+22 SMGs identified) 65

Prostate WES: 112 SPOP, FOXA1, MED12• 68

WES: 50 CHD1#, MLL2, FOXA1† 69

Colorectal WES: 224 ARID1A#, SOX9#, FAM123B# 22

WES: 72
WGS: 2

TET family, ERBB3†, ATM# 70

Gastric WES: 22 ARID1A# 34

WES: 15 FAT4#, ARID1A#, MLL3, MLL
35

Breast WES: 54
WES/WGS: 4
WGS:15

Confirmed TP53, PIK3CA•†, RB1#, PTEN# 75

WES: 31
WGS: 46

MAP3K1#, CDKN1B#, TBX3, RUNX1, LDLRAP1, STNM2, MYH9,

AGTR2, STMN2, SF3B1• and CBFB#

73

WES: 100 AKT2†, ARID1B#, CASP8#, CDKN1B#, MAP3K1#, MAP3K13#,

NCOR1#, SMARCD1#, TBX3

31

WES: 86
WES/WGS: 17
WGS: 5

CBFB# 72
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Cancer type Mutation analysis: # of
samples

Highlighted or novel mutated genes References

WES: 510 GATA3•, PIK3CA•†, MAP3K1#, MAP2K4# (BOX3)
23

PDAC WES: 142 EPC1, ARID2, ATM, ZIM2, MAP2K4, NALCN, SLC16A4,
MAGEA6, axon guidance pathway genes (SLIT/ROBO signaling)

21

HCC WES: 10 ARID2# 37

WES: 24 ARID1A#, RPS6KA3#, NFE2L2†, IRF2# 36

WGS: 27 ARID1A#, ARID1B#, ARID2#, MLL#, MLL3# 27

WES: 10 ARID1A# 38

CCA WES: 8 TP53, KRAS†, SMAD4#, MLL3#, ROBO2#, RNF43#, PEG3#,

GNAS•†

39

AML WGS: 24 SMC3#, SMC1A#, STAG2#, RAD21# 88

WGS: 50
WES: 150

Confirmed 23 SMGs; FLT3•†, NPM1, DNMT3A•#, IDH1/2•†,

TET2#, RUNX1*#, TP53#, NRAS*†, CEBPA#, WT1#, PTPN11†,

KIT*†, U2AF1, KRAS•†, SMC1A#, SMC3#, PHF6#, STAG2#,

RAD21#, FAM5C, EZH2•#, HNRNPK

33

MDS WES: 29 SF3B1•, SRSF2•, U2AF1•, ZRSR2, SF3A1, PRPF40B, U2AF2, SF1
89

WES: 9 SF3B1• 28

CLL WES: 5 NOTCH1 • † 94

WGS: 4 NOTCH1•†, MYD88•†, XPO1•†, KLHL6
29

WES: 88
WGS: 3

SF3B1• 92

WES: 105 SF3B1• 30

DLBCL WES: 6 MLL2#, CREBBP#, EP300# 100,101

WES or WGS: 13 MLL2#, MEF2B • † 98

WES: 55 MEF2B•†, MLL2#, BTG1, GNA13, ACTB, P2RY8, PCLO,

TNFRSF14#, BCL2#

99

MM WES: 16
WGS: 23
WES/WGS: 1

DIS3#, FAM46C, LRRK2, BRAF•†, IRF4†, 11 NFκB pathway
genes

103

Summarized information of whole-exome (WES) and whole-genome sequencing (WGS) studies of selected publications with highlighted novel
mutated genes indicated. ccRCC = clear cell renal cell carcinoma, HNSCC = head-and-neck squamous cell carcinoma, HGS-OvCa = high grade
serous ovarian carcinoma, HCC = hepatocellular carcinoma, AML = acute myeloid leukemia, MDS = myelodysplastic syndromes, CLL = chronic
lymphocytic leukemia, DLBCL = diffuse large B cell lymphoma, MM = multiple myeloma, MSI = microsatelite instable, MSS = microsatelite
stable. Predicted or reported consequences of mutations are shown: •hotspot identified, †activating, or likely activating #inactivating, or likely
inactivating.

•
hotspot identified

†
activating, or likely activating

#
inactivating, or likely inactivating
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