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Abstract

Bacteria often face complex environments. We asked how gene expression in complex conditions relates to expression in
simpler conditions. To address this, we obtained accurate promoter activity dynamical measurements on 94 genes in E. coli
in environments made up of all possible combinations of four nutrients and stresses. We find that the dynamics across
conditions is well described by two principal component curves specific to each promoter. As a result, the promoter activity
dynamics in a combination of conditions is a weighted average of the dynamics in each condition alone. The weights tend
to sum up to approximately one. This weighted-average property, called linear superposition, allows predicting the
promoter activity dynamics in a combination of conditions based on measurements of pairs of conditions. If these findings
apply more generally, they can vastly reduce the number of experiments needed to understand how E. coli responds to the
combinatorially huge space of possible environments.
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Introduction

Bacteria respond to their environment by regulating gene

expression [1–5]. Gene expression is determined by global factors

such as the cell’s growth rate and overall transcription and

translation capacity [6–10], together with specific factors such as

transcription regulators that respond to specific signals.

The environments that bacteria encounter are often complex,

made up of combinations of many biochemical components and

physical parameters. For example, natural habitats of bacteria

include the soil [11,12] and the human gut [13–15]. Complex

conditions are also of interest in applications such as food science

and bioenergy [16–20]. It is therefore of interest to understand

how cells respond to complex conditions. However, experimental

tests run up against a combinatorial explosion problem: in order to

test all combinations of N factors, one needs 2N experiments. For

example, a food scientist that seeks to test bacterial gene expression

in all possible cocktails of 20 ingredients at two possible doses

needs more than a million experiments, 220 = 1,048,576 experi-

ments. If four doses are considered, 420,1012 experiments are

needed. Important recent advances on bacterial gene expression

made by Gerosa et al [7] and Keren et al [10] do not overcome

this concern, because one still needs to measure expression in each

combination of conditions. Thus, the search for simplifying

principles is important.

One such simplifying principle was suggested in a study of the

protein dynamics in human cancer cells in response to drug

cocktails [21]. Protein dynamics in a drug combination were well

described by weighted averages of the dynamics in the individual

drugs. This feature was termed linear superposition (also known as

convex combination or weighted average). Furthermore, it was

found that measuring dynamics in drug pairs could be used to

predict the dynamics in drug triplets and quadruplets. This opens

a possibility for avoiding the combinatorial explosion problem: To

predict gene expression in all possible combinations of N drugs it is

sufficient to measure all N(N-1)/2 pairwise combinations instead

of 2N. For example, the response to all combinations of 20 drugs

can be well approximated by measurement of the 190 pairwise

combinations, rather than over a million combinations. The

number of necessary experiments is reduced by more than 5000

fold.

Here, we asked whether the linear superposition principle might

apply also to understanding the response of E. coli to combinations

of growth conditions. Since we consider the transcriptional

response of bacteria to natural stress conditions, rather than the

proteomic response of cancer cells to anti-cancer drugs, this study

explores this principle in a very different biological context. We

used a promoter library to obtain accurate dynamics of 94

promoters as bacteria grew from exponential to stationary phase in

all possible combinations of a set of nutrients and stresses. We find

that dynamics in a mixture of conditions is, for most genes and

conditions, well described as a linear combination – a weighted

average – of the dynamics in the individual condition. The weights

sum up to approximately one. We also found that part of the

reason for this feature is that promoter activity dynamics for each

gene seem to be quite limited, and are explained effectively by one

or two principal components. Using linear superposition, we

employ mathematical formulae that allow predicting the dynamics

in cocktails of conditions based on measuring pairs of conditions.

This suggests that the combinatorial explosion problem may be
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circumvented, to understand and predict bacterial responses to

complex conditions.

Results

Promoter activity dynamics in combinatorial conditions
was measured using an E. coli reporter library

We studied 94 genes and 2 control strains (see Materials and

methods), in a 96 well plate format. We chose 94 genes which

represent a wide range of biological functions (Table S1), and

which have a strong detectable fluorescence signal in a range of

growth conditions (more than 2 standard deviation above

background).

We measured promoter activity of these genes as a function of

time using the E. coli reporter library developed in our lab [22]

(Figure 1a). Each reporter strain had a rapidly maturing GFP

variant (gfpmut2) under control of a full length intragenic region

containing the promoter for the gene of interest, on a low copy

plasmid (Figure 1a). Promoter activity was measured as the time

derivative of GFP fluorescence accumulation divided by cell

density, as described [23–25] (Methods). Using this approach, the

temporal dynamics of promoter activity can be measured at high

accuracy [26–28].

We aimed at understanding the promoter activity dynamics in

growth media composed of combinations of chemical conditions.

For this purpose we chose 4 elementary conditions. Each

condition is based on a chemically defined medium, M9+0.2%

glucose as the carbon source. In each elementary condition one

supplement is added (A) 0.05% casamino acids, (B) 3% ethanol,

(C) 10 mM hydrogen peroxide H2O2 (D) 300 mM NaCl salt. In all

four conditions, cells reached a similar final optical density (OD),

with different growth rates (Table S2).

We studied combinations of these conditions by mixing the

appropriate supplements into the standard medium. Thus,

condition A+B is standard medium supplemented with 0.05%

casamino acids and 3% ethanol (Figure 1b). In total, we studied all

four single conditions, all six pairs, all four triplets and the

quadruplet A+B+C+D (The different growth rates of all combi-

nations is given in table S2).

In each condition, we measured promoter activity of the 94

genes at an 8 minute resolution, throughout batch culture growth,

including exponential growth phase and stationary phase.

Depending on the growth rate in a given condition the stationary

phase was reached after 8 to 22 hours of growth. Each experiment

was repeated on four different days.

Promoter activity dynamics across conditions is
described by one or two principal components

We observed that promoter activity dynamics of a given

promoter can vary both in shape and in amplitude across different

growth conditions. Using principal component analysis we can

identify the typical shapes of every promoter across conditions. In

figure 2 we show the activity dynamics of fliY in all measured

conditions (Figure 2a) and its two principal dynamic curves PC1

and PC2 (Figure 2b). We found that each promoter can be well

described by two principal component dynamic curves, which

explain 80–99% of its variance (Figure 2c). In more than 93% of

the promoters, the two first PCs explain 90% or more of the

variance (Figure 2c). Because of the 2PC property, each promoter

activity curve is a linear combination of its two PCs to a good

approximation. The first two PCs explain much more variance

than expected in randomized data (See Figure 1 in Text S1).

About one third (30/94) of the promoters were well explained

by one principal component in all measured conditions (Figure 2f).

The dynamics of these promoters thus had a rather constant shape

in different conditions, and differed only in amplitude. For

example one PC explains 98% of the variance in the s70 activated

ribosomal promoter rrnB (Figure 2d,e). The other 2/3 of the

promoters, explained well by 2PCs, showed condition-dependent

shape changes in their dynamics. The low number of principal

component curves needed in order to explain the promoter

activity dynamics could be a result of general nonspecific

transcription for promoters with only one PC (with only change

in amplitude with different growth rates), and could be condition

dependent yet limited in number for promoters with two principal

component curves.

We find that for 76% of promoter activities, the first PC is

highly correlated (R2 above 0.8) with instantaneous growth rate

(See Figure 6a,b,c in Text S1). This may relate to a principal

component analysis by Bollenbach et al [29] that instead of

considering dynamics, considered a single point at exponential

growth in response to antibiotic combinations. The first PC

correlated with growth rate and the second with drug specific

effects. The second PC in our dataset varies more widely in shape

between different promoters (See Figure 6d in Text S1).

Dynamics in a combination of conditions is well-
described by a linear superposition of dynamics in the
individual conditions

We now use the 2PC property to understand how promoter

activity dynamics in a mixed condition PA+B relate to the dynamics

in each supplement alone, PA and PB. Since a promoter can be

described as a linear combination of the same 2PCs in any

condition, we expect the combined PA+B to be a combination of

the one-supplement conditions PA and PB:

PAB(t)~wAPA(t)zwBPB(t)

Where the best fit weights are wA and wB. To find the best fit

weights we aligned the dynamics in conditions A, B and A+B

according to a shared axis of generations (log2 OD(t)=OD0ð Þ – see

Author Summary

Bacteria face complex conditions in important settings
such as our body and in biotechnological applications
such as biofuel production. Understanding how bacteria
respond to complex conditions is a hard problem: the
number of conditions that need to be tested grows
exponentially with the number of nutrients, stresses and
other factors that make up the environment. To overcome
this exponential explosion, we present an approach that
allows computing the dynamics of gene expression in a
complex condition based on measurements in simple
conditions. This is based on the main discovery in this
paper: using accurate promoter activity measurements, we
find that promoter activity dynamics in a cocktail of media
is a weighted average of the dynamics in each medium
alone. The weights in the average are constant across time,
and can be used to predict the dynamics in arbitrary
cocktails based only on measurements on pairs of
conditions. Thus, dynamics in complex conditions is, for
the vast majority of genes, much simpler than it might
have been; this simplicity allows new mathematical
formula for accurate prediction in new conditions.

Bacterial Response in Complex Conditions
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Materials and methods and Text S1 Extended methods). Using a

generation axis helped compare conditions despite variations in

growth rate. We performed linear regression of PAB based on PA

and PB. These weights are constant over time. Similarly, dynamics

in three and four supplements can be represented as linear

combinations of the one supplement dynamic:

P1:::N (t)~
X

w
(1:::N)
i Pi(t)

We determined the best fit weights wi
(1…N) using an error-in-

variables linear regression [30] (where wi
(1…N) is the weight

contributed by condition i which best fits the combined condition

1…N – see Text S1). To measure how similar a linear

combination is to the measured combination dynamics we

compute the relative fit error between the two (Text S1). Linear

combination describes the dynamics well (relative error 10% see

Text S1), as expected.

So far, these findings are consistent with the 2PC finding.

However, we find information beyond the 2PC property, when we

examine the sum of the weights in these equations. We find that

the sum of weights wA+wB in each fit is distributed around one

(See Figure 2 in Text S1), with a standard deviation of 0.6. The

weights are usually positive (76%.20.05). This means that the

linear combination is approximately a weighted average (see also

[29]).The same applies to three and four supplement mixtures. We

therefore tested a simpler model, named linear superposition, in

which the weights are constrained to sum to one, and be positive:

PAB(t)~wABPA(t)z(1{wAB)PB(t), 0ƒwABƒ1

Here the dynamics in the mixture conditions is a linear

combination of the individual supplement conditions but with only

one free parameter wAB, with the constraint that wAB ranges

between 0 to 1.

In most conditions, the linear superposition model gives a better

score in describing the data in tests that take model simplicity into

account (Akaike information criterion [31], which sums the log

likelihood of the model fit and the number of model parameters,

see Text S1). The linear superposition model also gave better

predictions than a multiplicative superposition model (in which

Figure 1. Schematic overview of workflow for measuring promoter activity dynamics and the analysis testing linear superposition
of dynamics in different conditions. (a) E. coli reporter strains were grown in defined media conditions in 96-well plates and promoter activity –
the rate of GFP accumulation per cell – was found as a function of time. (b) Promoter activity dynamics was measured in four conditions and all of
their possible pair, triplet and quadruplet combinations. (c) We tested whether the dynamics in a combined condition is a linear combination
(weighted average) of the dynamics in each individual condition. We further asked whether the weights sum up to one, signifying a linear
superposition. (d) Finally, we asked whether dynamics in triplet and quadruplet conditions can be predicted based on dynamics in pairs of conditions.
doi:10.1371/journal.pcbi.1003602.g001

Bacterial Response in Complex Conditions
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log PAB(t)ð Þ~(1{wAB
B ) log PA(t)ð ÞzwAB

B log PB(t)ð Þ, See Text

S1). A representative sample of promoter dynamics and the

corresponding linear superposition model is shown in figure 3. The

mean fit error is 12%, with 86% showing less than 20% fit error.

This compares well with the day-to-day experimental error

estimated from 4 day-to-day repeats, with average error of 14%

(See Figure 3 in Text S1). A table with the weights and errors for

all promoters and conditions is provided in the SI (Table S3).

The linear superposition model does not fit the dynamics
of the lacZ gene in diauxie conditions

We also sought conditions where linear superposition does not

apply. We found one such condition using the classic diauxic shift

experiment [32–34]. In this case, bacteria grow on a combination

of two sugars, glucose and lactose. They begin to utilize the

preferred sugar, glucose, and only when glucose is depleted switch

to using the second sugar, lactose. The cells thus delay the

production of the lactose utilization system – the lacZ promoter –

until glucose concentration becomes low[23]. Then, cells switch to

growth on lactose and express lacZ vigorously.

Considering glucose and lactose as conditions X and Y, one

does not find that lacZ is a linear combination in the combined

condition X+Y. This is because under glucose alone, lacZ is weakly

expressed (Figure 4), and under lactose alone it is strongly and

constantly expressed (Figure 4). Linear combination would mean a

constant expression at some intermediate value. In contrast, in X+
Y, lacZ expression is strongly time dependent (Figure 4). Such an

effect is expected whenever two conditions interact to regulate

genes sequentially [17,35], rather than simultaneously. Another

example we found is the metabolic operon nudC, which showed

behavior similar to lacZ, and a poor fit to linear combination (See

Figure 4 in Text S1). A table with the weights and errors for all

promoters in the diauxic shift is provided in the SI (Table S4).

We note that all of the other 92 genes in our study showed good

linear superposition in the diauxie condition. This suggests that

linear combination might break down for specific genes where the

conditions have a nonlinear, sequential effect or more generally

distinct temporal dependence on their dynamics.

Using linear superposition, dynamics in triplets and
quadruplets can be predicted based on pairs of
conditions

We now use linear superposition to predict the dynamics in a

combination of conditions given only data on individual-supple-

ment dynamics, and data on pairs (that is, given the weights wi
(ij) in

pair conditions). Previous work by Wood et al [36], based on a

different approach, successfully predicted the growth-inhibitory

effect of antibiotic cocktails based on measurement of pairs of

drugs. Such predictions are potentially useful because, as discussed

in the introduction, it is much easier to measure all pairs than to

measure all possible cocktails of N conditions.

The predictions rely on the assumption of linear superposition,

specifically that weights sum to one. We apply the formula

developed by Geva-Zatrosky et al [21] for predicting protein

dynamics in cancer drug cocktails. The formula uses the fact that

a combination, say A+B+C, can be treated in three different

ways: a mixture of A+B and C, and equivalently as a mixture of

A+C and B, and as a mixture of B+C and A. Each of these three

possibilities can be described using superposition, and should

yield the same result. This provides enough equations to predict

the weights needed to calculate the triplet dynamics (See Text

S1).

Figure 2. Promoter activities of genes can be well-described by one or two principal components. (a) fliY promoter activity dynamics in
15 different measured conditions (15 combinations of conditions A,B,C,D). (b) First two principal components dynamics of fliY, according to principal
component analysis of fliY dynamics in all conditions and combinations. (c) Fraction of variance explained by the first two principal components for
all 94 promoters in 15 environments. Red arrows: fliY and rrnB with 91% and 99% explained variance. (d) rrnB promoter activity dynamics in 15
different measured conditions (e) The first PC of rrnB according to principal component analysis of rrnB expression dynamics in all conditions and
combinations. (f) Fraction of variance explained by only the first principal components for all 94 promoters in 15 environments. Red arrows fliY and
rrnB with 53% and 98% explained variance.
doi:10.1371/journal.pcbi.1003602.g002

Bacterial Response in Complex Conditions
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Figure 3. Promoter activity dynamics in combined conditions is diverse and well-described as a linear superposition of dynamics in
individual conditions. Six representative promoters are shown (each row belongs to one promoter. The Promoter name is indicated on the left).
First column shows individual and pair conditions A+B, second column shows a triplet condition (A+B+C), and the third column a quadruplet (A+B+
C+D). A = 0.05% casamino acids, B = 3% Ethanol, C = 10 mM H2O2, D = 300 mM NaCl, all added to M9+0.2% glucose defined medium. Dynamics in the
combined condition (blue curve) are well-described by the best fit linear superposition of individual condition dynamics (black curve). Error bars are
standard error between 4 independent experiments on different days.
doi:10.1371/journal.pcbi.1003602.g003

Bacterial Response in Complex Conditions

PLOS Computational Biology | www.ploscompbiol.org 5 May 2014 | Volume 10 | Issue 5 | e1003602



The formula predicts the linear superposition weights in an N-

supplement cocktail

P1:::N (t)~
X

w
(1:::N)
i Pi(t)

The prediction for the weights wi
(1…N) based on measurements

of the weights in all cocktails of N-1 supplements is [21]:

w
(1:::N)
i ~

w
(=j)
i {w

(=j)
i w

(=i)
i

1{w
(=j)
i w

(=i)
j

where the superscript (?j) relates to which supplement is missing

in the N-1 cocktail. When only pair data is available, this formula

is used iteratively: the triplets are predicted from pair weights, the

quadruplet uses these predictions for the triplets weights and so on.

Using this equation, with pair data only, we find good

predictions for the promoter dynamics. Representative dynamics

and predictions are shown in figure 5. The median relative error

between prediction and measurement is 27% for triplets and 34%

for the quadruplet (See Figure 5 in Text S1). These prediction

errors are about 2 times larger than the day-to-day experimental

error. To evaluate the predictive power of this formula we

compared it to what one could expect given no additional

information. For this purpose, we ‘predicted’ the dynamics for a

given promoter in condition X by randomly picking an exemplar

from the available set of measured curves for that promoter in all

conditions except X. We then averaged the error between these

‘predictions’ and the measurement in condition X. For example,

for a given promoter in condition A+B+C, we used the measured

curves in all 14 conditions except A+B+C, namely the 4 single

conditions (A,B,C,D), 6 pairs, 3 triplets after excluding A+B+C

and one quadruplet. We generated 14 errors and compared the

average error to the present formula prediction error. Our formula

predictions show about 2.3 times less error than the average error

for triplet conditions and about 1.5 times less error in the

quadruplet condition (Figure 6).

Discussion

We studied promoter activity dynamics in combinations of

conditions by means of fluorescent reporters. We find that almost

all promoters and conditions tested show a linear combination

property: the dynamics in a combined condition is a linear

combination of the dynamics in individual conditions. The weights

in the combination tend to sum to one, and thus combinations act

as weighted averages of individual conditions, a property called

linear superposition. Linear superposition allowed us to predict the

dynamics in triplets and quadruplet based on the dynamics in pairs

of conditions. This prediction formula offers a way to reduce the

combinatorial complexity of understanding complex conditions.

Genes regulated by specific signals that are strongly time

dependent in the complex environment, such as lacZ in a diauxic

shift experiment (Figure 4), may not display the linear superpo-

sition principle. Note that in the diauxie condition, 92 of the 93

other promoters did show linear superposition with good accuracy.

Almost all promoters in this study needed only two principal

components to explain their dynamic curves across conditions.

This finding is in line with studies on gene expression in a range of

organisms [37–41]. About one third of the promoters did not show

an environmental specific change in the shape of their dynamics

and were well explained by only one principal component

(Figure 2d–f). It would be interesting to extend this study to

investigate the biological meaning of these principal components.

It seems that the first PC captures general effects related to the

growth [29] (See Figure 6 in Text S1), and the second captures the

way that the specific regulation of the promoter changes its first

PC dynamics.

The fact that two PCs explain the data well means that

promoter activity in a mixed condition can be described as a linear

combination of the promoter dynamics in the basic conditions. A

further finding is that the sum of weights in this combination is

distributed around one. A model of linear superposition, in which

weights are constrained to be positive and sum to one, explain the

data very well in most conditions. This feature- sum of weights

equals one- is crucial to allow predictions of higher order

combinations. If the sum of weights was not constrained, one

would not have enough equations to predict the weights in a

cocktail.

The linear superposition property calls for a biological

explanation. One possible framework is the recently suggested

finding that when cells compromise between a few tasks, their

optimal solution is a gene expression profile that is a weighted

average of the optimal profiles for each individual task [42–44].

Testing this theory, which is based on a multi-objective

compromise between several tasks [45], also known as Pareto

optimality, would require understanding the tasks of the cells

under the present conditions. Pareto theory points to one possible

reason why linear combination might be optimal, which applies in

the limit of strong selection under environments which include

many combinations of conditions. How linear summation is

achieved is a mechanistic question which needs further research.

One way that a linear summation can be achieved is when

regulatory factors compete over a limiting component - for

example: s70 and sS compete over the RNA polymerase, such

that the fraction of s70-RNApol is equal to 1 minus the fraction of

sS-RNApol (here we neglected other s factors). Therefore, the

fraction of transcription allocated to growth (s70) and survival (sS)

genes follows a line in gene expression space [43]. The position on

the line is determined by the ratio of the two s factor

concentrations.

It would be interesting to extend this study to other genes,

conditions and organisms. It would be important to find conditions

where superposition breaks down, as for lacZ in the diauxie

conditions described here, to find the limitations of this approach.

This approach can be tested also in other levels of cell response, for

example one may ask whether linear superposition applies to

dynamics of metabolite fluxes [45,46]. It would be interesting to

Figure 4. An example of deviation from linear combination is
found in the LacZ promoter in a diauxic shift experiment.
Promoter activity dynamics in a mixture of 0.04% glucose and 0.4%
lactose (Blue line) is far from the best fit linear combination of dynamics
of glucose or lactose alone (Black line). Error bars are standard error
between three independent experiments on different days.
doi:10.1371/journal.pcbi.1003602.g004

Bacterial Response in Complex Conditions
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extend this analysis to situations in which cells show all-or-none

patterns of gene expression [35,47–49], and to enhance our

understanding of how bacteria compute [50]. If the present

approach for predicting dynamics in complex conditions applies

more generally, one may attempt to computationally navigate the

combinatorial huge space of possible environments, to search for

growth conditions with desired gene expression profiles.

Materials and Methods

Growth mediums
All media were based on M9 defined medium (42 mM

Na2HPO4, 22 mM KH2PO4, 8.5 mM NaCl, 18.7 mM NH4Cl,

2 mM MgSO4, 0.1 mM CaCl). The media used in this study are:

Casamino acids (M9 minimal medium, 0.2% glucose, 0.05%

Casamino acids); NaCl (M9 minimal medium, 0.2% glucose,

300 mn NaCl); H2O2 (M9 minimal medium, 0.2% glucose,

10 mM H2O2); Ethanol (M9 minimal medium, 0.2% glucose, 3%

ethanol); and all 15 combinations: 4 single conditions, 6 pairs, 4

triplets and one quadruplet. For example Casamino acids+NaCl

(M9 minimal medium, 0.2% glucose, 0.05% Casamino acids,

300 mn NaCl). In addition we measured glucose alone (M9

minimal medium,0.2% glucose); Casamino acids with no glucose

(M9 minimal medium,0.05% Casamino acids); Low concentration

glucose (M9 minimal medium,0.04% glucose); Lactose (M9

minimal medium,0.4% lactose); Lactose with low concentration

glucose (M9 minimal medium,0.4% lactose, 0.04% glucose). In

each experiment the bacteria were cultivated in the presence

50 mg kanamycin/ml.

Robotic assay for genome-wide promoter activity
GFP levels were measured over time for 96 reporter strains

(Table S1), each bearing a green fluorescent protein gene (GFP)

optimized for bacteria (gfpmut2) on a low copy plasmid (pSC101

origin). All strains in this study were derivatives of wild type E. coli

K12 strain MG1655. Reporter strains were inoculated from frozen

stocks and grown over-night on M9 with 0.2% glucose and 0.05%

casamino acids for 16 hours in 600 ml high-brim 96-well plate and

reached a final OD of ,0.9. The 96-well plate was covered with

breathable sealing films (Excel Scientific Inc.). The 96-well plates

were prepared using a robotic liquid handler (FreedomEvo, Tecan

Inc). Overnight cultures were diluted 1:500 into the micro 96-well

experiments plates. The final volume of the cultures in each well

was 150 ml. A 100 ml layer of mineral oil (Sigma) was added on top

to avoid evaporation and contamination, a step which we

previously found not to significantly affect growth [25,28]. Cells

were grown in an automated incubator with shaking (6 hz) at

37uC. A robotic arm moved the micro 96-well plates from the

incubator-shaker to the plate reader (Infinite F200, Tecan Inc.)

and back. Optical density (600 nm) and fluorescence (535 nm)

were thus measured periodically at intervals of ,8 minutes until

reaching stationary phase with a final OD of ,0.15. Since the

overnight cultures on high-brim 96-well plate reached a higher

final OD equivalent to about 3 extra generations beyond the micro

96-well plates we obtain data for ,6 generations of growth.

Data analysis
Data was obtained from the plate reader software (Evoware,

Tecan) and processed using custom Matlab software. Background

Figure 5. Dynamics in triplets and quadruplet is well-predicted
by a formula that employs dynamics in pairs. Right column -
prediction of triplet A+B+C (combination of casamino acids, ethanol
and H2O2) – in orange line – follows the measured shape of the
dynamics – blue curve. Shown are six representative promoters. The
black curve is the best fit linear combination. Left column - same for the

quadruplet A+B+C+D (combination of casamino acids, ethanol, H2O2

and NaCl). Error bars are standard error between 4 independent
experiments on different days.
doi:10.1371/journal.pcbi.1003602.g005

Bacterial Response in Complex Conditions

PLOS Computational Biology | www.ploscompbiol.org 7 May 2014 | Volume 10 | Issue 5 | e1003602



fluorescence was subtracted from GFP measurements using a

reporter strain bearing promoterless vector U139 for each well.

Then, promoter activity was calculated using temporal derivative

of GFP computed by finding the slope of a sliding window of 17

data points of GFP fluorescence using regression, divided by the

mean OD over this window. Varying window size between 5 and

30 affects curve smoothness but does not change the conclusions of

this study.
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Table S1 A gene table with biological description of all

promoters.

(XLSX)
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