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Abstract

As we saw at the 2013 Breath Analysis Summit, breath analysis is a rapidly evolving field.

Increasingly sophisticated technology is producing huge amounts of complex data. A major barrier

now faced by the breath research community is the analysis of these data. Emerging breath data

require sophisticated, modern statistical methods to allow for a careful and robust deduction of

real-world conclusions.
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The scientific program at the 2013 Breath Analysis Summit provided stimulating insights

into the wealth of information that can be gleaned from air exhaled by humans. Since

exhaled breath can be sampled continuously and non-invasively, there is great potential for

breath analysis to lead to the development of biomarkers with widespread clinical and public

health applications. Beyond breathalyzers in law enforcement, exhaled breath monitoring

has become routine in clinical practice for monitoring patients undergoing anesthesia. The

fractional concentration of exhaled nitric oxide (FeNO)—a marker of aspects of airway

inflammation—has been studied extensively in research settings and considered for clinical

applications in asthma. The breadth of developmental applications discussed at this year’s

summit was remarkable, ranging from diagnosis of diseases (e.g., lung cancer, tuberculosis)

to locating survivors trapped in rubble following natural disasters.

As an emerging field, breath analysis is rapidly evolving. Increasingly sophisticated

technology is producing huge amounts of increasingly complex data. Major data barriers

now faced by the breath research community include standardizing sampling protocols,
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optimizing study design, and appropriately analyzing the resultant data. In this perspective,

we focus on methods for data analysis. Emerging breath data require sophisticated, modern

statistical methods to produce valid and robust real-world conclusions. Statistical

methodology was memorably featured in the panel discussion on the Future of Breath

Analysis when it was said that "statistics will be the death of this subject". It is our opinion

that statistical approaches tailored to modern breath data will be a new beginning—rather

than an end—to breath analysis.

In our opinion, one historical source of criticism for proposed breath markers has been a

lack of proven translations to real-world settings. Improved statistical analyses of breath data

can increase the chances for successful translation of research findings to clinical and public

health practice. Many statistical methods relevant for modern breath data already exist and

are being regularly applied in other scientific disciplines. For example, the research

questions in breath metabolomics are similar to those in other omics research areas

(genomics, transcriptomics, proteomics, etc.). These other fields have at least partially

overcome these criticisms by moving from demonstrating separability to providing evidence

for predictability. There is strong potential to make strides in breath research by applying

these existing methods. In other cases, opportunities may exist for the development of new

statistical methods addressing unique features of breath data. Below, we briefly describe two

areas of breath research (single compound and multiple compounds analysis) in which

statistical methods offer great promise.

For single compound analysis, we focus on FeNO as an example. Society guidelines exist

for standardized assessment of FeNO at the 50 ml/s exhalation flow rate [1]. FeNO is flow-

dependent, which provides the possibility to partition FeNO into airway and alveolar sources

(quantified by “NO parameters”) using data on FeNO measured at multiple flow rates and a

statistical model that estimates the NO parameters from a deterministic model of NO

exhalation [2]. NO parameters have shown promise as a tool for studying several diseases

[3], but no guidelines exist for standardized assessment. Several important questions need to

be addressed before NO parameter guidelines can be developed.

Three of these open questions regarding NO parameters are inherently statistical and should

be addressed through interdisciplinary collaboration using rigorous statistical approaches.

First, increasingly complex deterministic models have been proposed [4–7], but there is no

agreement on which models adequately reproduce observed FeNO data in standard research

and clinical settings. This question can be partially addressed by comparing the goodness of

fit of the statistical models used to estimate NO parameters from each deterministic model to

observed FeNO data across a range of flow rates. Second, for any given deterministic model,

there is no agreement on the optimal statistical method to estimate NO parameters from that

model. For example, the numerous statistical methods proposed to estimate NO parameters

in the deterministic two-compartment model should be compared in terms of model fit as

well as bias and efficiency in estimation. Third, there is no agreement on the set of flow

rates at which FeNO should be assessed. Within a range of feasible flow rates, a set of

optimal flow rates—for a given statistical method and deterministic model—can be derived

according to standard criteria of statistical study design (e.g., to minimize the variance of

parameter estimates). Controversy in the field of multiple flow FeNO analysis related to
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these issues has left some researchers to simply use high flow FeNO as a proxy for alveolar

NO [8] despite the limitations of this approach [9]. This is a symptom of the barrier to

progress resulting from lack of statistical contributions to this area. Careful statistical

consideration of important open questions in this field has the potential to move the field

forward. This work could draw on the relevant statistical methods developed for similarly

structured data in fields such as population pharmacodynamics [10]. Statistical methods

work on single compound analysis would be complementary to work on developing refined

mathematical models to represent physiological processes (e.g., recent work developing and

refining models of the exhalation kinetics of isoprene [11] and acetone [12]) and on

developing clinical and public health applications.

In multiple compound analysis, the goal is typically to identify the smallest subset of the

universe of exhaled compounds that can provide accurate (e.g. high sensitivity and/or

specificity) and robust (generalizable) predictions regarding clinical outcomes, such as

diagnosing or managing disease and drug response. Methodological challenges of these

analyses have been identified previously [13–14] and include: addressing sources of

extraneous variability (e.g. from physiological processes and sample storage), accounting for

important clinical and demographic characteristics that might be associated with both

exhaled compounds and disease (i.e., confounders), filtering out exogenous compounds

related to disease, controlling the inflated Type I error or “voodoo” correlations [15]

inherent to studying a large number of compounds in a small number of subjects, and

generalizing results from small, non-random study samples to larger populations. In our

opinion, the most important but most ignored issue is avoiding model overfitting.

Overfitting is a major concern when the number of study participants (N) is small (e.g.,

N<50 as in [16]) and the number of compounds (p) is much larger than N (p≫N as in [16–

19]). Due to the small number of participants in many pilot studies, prediction models are

often trained and tested on the whole dataset, leading to overfitted prediction models that are

not generalizable to the target population. In other words, just because we find a set of

compounds whose joint distribution may distinguish between two groups in a given dataset

(separability) this by no means allows us to draw the conclusion that we have found a robust

set of biomarkers for a certain disease (predictability). Permutation-based tests can be used

to compare the observed prediction accuracy to the distribution of the same statistic

calculated under the null hypothesis of no association between disease and compounds (i.e.,

using versions of the dataset where the disease status labels have been randomly permuted),

resulting in a non-parametric p-value for the significance of the prediction accuracy in the

given dataset (separability) [20–21]. When only a single dataset is available, cross-

validation is a simple and widely used method that produces measures of predictive

accuracy closer to what would be expected in an independent validation sample [17, 22–24]

(predictability rather than separability). However, the gold standard for evaluating

predictability is to apply the model to validation dataset(s) completely distinct from the

training dataset. Finally, note that if the study sample is biased (not a random sample of the

target population), the results of any analysis may not be generalizable to the target

population. This is a general problem we face with any scientific endeavor where early

developmental work is conducted in convenience samples and our knowledge of variability

in the overall population is still limited.
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Common statistical approaches to multiple compound analysis include: basic hypothesis

tests (e.g., t-tests or their non-parameteric analog Wilcoxon-Mann-Whitney (WMW) -U-

tests [16, 25–27]), basic correlation analyses (e.g., correlating amines in exhaled air with

uremic breath [27] or propophol concentration in blood and breath [28]), or principal

component analysis (PCA [29]). PCA is primarily used to reduce high-dimensional multiple

compound data to a small number of uncorrelated principal components that explain a

majority of the variation in the data which are then related to environmental factors or

disease (e.g., as in [18, 30]). PCA summarizes high-dimensional data, but it is not designed

to: (a) search for patterns of compounds in exhaled breath related to disease or (b) select the

smallest set of compounds necessary for high quality and robust predictions. Alternative

statistical methods are available that better address the research questions in multiple

compound analysis. For example, as an alternative to the usual approach of relating one or

more principal components to disease, linear discriminant analysis (LDA) is used to build

linear combinations of compounds that discriminate between class labels of interest (e.g.

disease vs. healthy), so it is more suitable for linear feature extraction and dimensionality

reduction [31]. Note that the aforementioned methods investigate linear relationships

between compounds and disease status, but they may overlook the nonlinear relations that

are more likely in complex biological systems [32]. Nonlinear relations have been

investigated recently in breath studies using other, well-established statistical learning

methods, [17, 33–37]. While some of these methods (e.g., support vector machines (SVM)

[38] or neural networks) may be criticized as producing “black-box” predictive models,

other methods exist that are more intuitive. The simplest is the decision tree [39]. In a

decision tree, the data is split at each branch according to the compound that best separates

the set of samples until each leaf node contains only one class. More sophisticated tree-

based methods (e.g., random forest [40] and boosting [24]), in simple terms, combine the

results of a set of decision trees to reduce the variance of a single tree and thereby

dramatically improve performance. They also provide a measure of variable importance for

each compound, which can be used for dimension reduction and to identify a set of

compounds that are potential biomarkers.
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In closing, the breath analysis is undergoing a period of change: from breath biomarker

discovery to biomarker validation, from separation (“Is there a difference?”) to

predictions (“Can we exploit it?”). This change is difficult but it offers an opportunity.

Interdisciplinary collaboration between breath researchers and statisticians can benefit

both fields, potentially offering a new beginning rather than the end of breath analysis.
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Table 1

Summary of statistical methods referenced for multiple compound analysis, including: whether the method

emphasizes separability (S) or predictability (P)* and typical number of samples (N) relative to the number of

compounds (p) in practice.

Method Application & Best practice S/P N/p

Hypothesis tests
e.g. t-tests or Wilcoxon-
Mann-Whitney-U-tests

Test whether a single compound is related to disease. When performing many
tests, correct for multiple-comparisons (e.g. using Bonferroni method) to control
overall Type-I (false positive) error.

S N = test dependent
p=1

Correlation e.g. Pearson
or Spearman

Statistic that quantifies the strength of the linear association between two
compounds.

- p=2

Principal component
analysis (PCA)

Method for identifying uncorrelated linear combinations of compounds that
explain the highest variability in the set of compounds, and which may help
indicate patterns. Often used for dimension reduction in large datasets, but may
lead to loss of information relevant for later prediction of disease.

- N/p > 10 suggested
but often p > N in

practice [41]

Linear discriminant
analysis (LDA)

Method somewhat analogous to PCA, but that searches for linear combinations of
compounds that best discriminate disease labels. Commonly used for dimension
reduction. Occasionally used for linear prediction.

S (P) N>p classically but
extensions allow

for N<p [42]

Decision tree Intuitive model for disease prediction based on binary splits on compounds. Model
simplicity comes at the cost of reduced predictive accuracy. Algorithms typically
include internal cross-validation or training/validation datasets for model selection.
Suffers from high variance: Small data set changes may lead to large changes in
the model.

(P) p>N**

Tree-based prediction
models
e.g. Random forest or
Boosting

“Black-box” models for disease prediction based on combination of decision trees
or other “weak learners”. Greatly improved predictive accuracy at cost of model
simplicity, but provides interpretable feature importance measures. Algorithms
typically include internal cross-validation or training/validation datasets for model
selection.

P p>N**

Other prediction models
e.g. SVM or Neural
networks

“Black-box” models for disease prediction based on other methods. Occasionally,
SVM versions perform significantly better than tree-based methods, strongly
depending on the nature of the data. Some provide feature importance. However,
interpretation is often difficult.

P p>N**

*
Predictability relies on cross-validation or distinct training/validation datasets.

**
Generally N>p but with special-purpose and highly application-specific tools for feature reduction, regularization and tree pruning, this can be

relaxed to p>N.
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