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Abstract

A key step in the analysis of circadian data is to make an accurate estimate of the underlying period. There are many
different techniques and algorithms for determining period, all with different assumptions and with differing levels of
complexity. Choosing which algorithm, which implementation and which measures of accuracy to use can offer many
pitfalls, especially for the non-expert. We have developed the BioDare system, an online service allowing data-sharing
(including public dissemination), data-processing and analysis. Circadian experiments are the main focus of BioDare hence
performing period analysis is a major feature of the system. Six methods have been incorporated into BioDare: Enright and
Lomb-Scargle periodograms, FFT-NLLS, mFourfit, MESA and Spectrum Resampling. Here we review those six techniques,
explain the principles behind each algorithm and evaluate their performance. In order to quantify the methods’ accuracy,
we examine the algorithms against artificial mathematical test signals and model-generated mRNA data. Our re-
implementation of each method in Java allows meaningful comparisons of the computational complexity and computing
time associated with each algorithm. Finally, we provide guidelines on which algorithms are most appropriate for which
data types, and recommendations on experimental design to extract optimal data for analysis.
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Introduction

Circadian biology has been studied since the 18th Century and

has been an area of increasingly active research across an ever

wider range of organisms since the 1950’s. Circadian clocks have

now been identified across the whole Tree of Life in organisms

ranging from cyanobacteria [1,2] through to mammals [3,4]. In

order to improve understanding of the various clock mechanisms

and of their significance, models of the circadian clock have been

developed for many organisms. These models vary from simple 3

protein post-translational oscillators, for instance the Kai A, Kai B,

Kai C clock of Synechococcus elongatus [5] to the more complex

integrated feedback and feed-forward loops of the mammalian

circadian clock [3,4]. The various models can be tested through

simulation, experimentation or both.

One of the key steps in identifying the molecular components of

the various clocks is to examine the rhythmicity, or arhythmicity,

of time course data obtained either from simulations or

experiments. If the data are found to be rhythmic then it is vital

to be able to make an accurate estimate of the underlying period.

Key components in the clocks of all species have been discovered

by forward genetic approaches, starting from the identification of a

single individual with an altered period among a large population

(for example [6]). Reverse genetic or drug screens for RNAi probes

or chemical compounds that alter circadian properties use very

similar, large-scale period assays [7,8]. There are many different

techniques and algorithms for doing the analysis required, all with

different assumptions and with differing levels of complexity.

Many of the algorithms are available as parts of software packages

which can be either proprietary or freely available; some of these

will be discussed later. Choosing which algorithm, which

implementation and which measures of accuracy to use can offer

many pitfalls, especially for the non-expert.

Advances in experimental techniques have facilitated the

execution of long, circadian timeseries experiments. This creates

new challenges in the form of data processing and data

management. BioDare (Biological Data Repository) was devel-

oped under the multi-site ROBuST project (http://hallidaylab.

bio.ed.ac.uk/ROBuST.html) to address such issues, and continued

under the TiMet project (http://www.timing-metabolism.eu).

BioDare is an online service which allows data-sharing (including

public dissemination), data-processing and analysis, with the main

focus on time-series data produced in circadian experiments from

model species. One of the most important aspects of the data

processing capability is its period analysis facility. Rhythmic data

analysis was initially performed using the FFT-NLLS algorithm

[9]. We have since added five other analysis methods: Enright and

Lomb-Scargle periodograms [10,11], mFourfit [12], MESA [13]

and Spectrum Resampling [14], which we introduce below.

Having provided six different analysis methods, several broadly-

relevant questions arose, including: which method is the best?

Which method should I use for our data? How often do I need to

sample my data? Can I analyse only X days of data [where X is a
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small number]? Here we report a detailed assessment of the

selected period estimation algorithms, to address these and related

questions. The results have broad relevance, as the algorithms

tested represent a spectrum of popular period analysis techniques.

The direct motivation was an objective evaluation of the methods

available in BioDare. The guidelines are particularly relevant to

BioDare users but do not include any BioDare-specific protocols,

which are published elsewhere [15].

This paper starts with a brief review of the six methods and

some of the alternatives. The work presented here used our own

implementations of the six algorithms, which were re-factored into

Java. This allowed us not only to make minor adjustments to the

code but also allowed meaningful comparisons of the computa-

tional complexity and computing time associated with each

algorithm.

Many previous studies have measured the performance of

algorithms by evaluating them on real data. In such an approach,

the underlying period is not known a priori. To avoid this problem

we generated synthetic data sets that allow us to quantify an

algorithm’s performance. We focus on stationary data (with

constant period), which is the most common analytical approach,

although period is not always stable in free-running biological

systems [16]. We examined the six methods not only in terms of

the accuracy of the period estimate, but also in terms of speed.

This latter factor is becoming increasingly important as recent

advances in assay technology and computing power have led to an

almost exponential growth in the complexity of experiments and

the size of the resulting data sets. For example, molecular genetic

experiments using reporter genes such as Luciferase can now

routinely generate total volumes of data that were once the

exclusive preserve of animal activity monitors or electrophysio-

logical readings.

Having assessed the six algorithms under a variety of conditions,

we offer some guidelines as to their use, to extract the maximum

useful information from experimental data.

Algorithms
There is a plethora of different techniques available for the

analysis of the periodicity of time-series data, e.g. [17,18], and

these techniques can be categorized in a variety of different ways:

parametric vs. non-parametric; Fourier-transform based tech-

niques vs. non Fourier-transform based etc. In deciding which

algorithms to evaluate we tried to include algorithms from a

variety of different categories and took as our starting point several

of the key algorithms already used in the analysis of circadian data.

In the following sections we describe the chosen algorithms,

focusing on the overall concepts behind each method rather than

mathematical/technical details, which can be found in the original

papers.

Enright developed conceptually the simplest method for analysis

of rhythmic biological data, referred to as the Enright Period-
ogram [10]. Periodic data of known period could be split into

sections with the length of the sections matching the underlying

period. Each section should contain similar portions of data, as the

rhythmic data must contain a repeating pattern. Overlaying the

sections will produce a clear waveform (with peak and trough), in

which the trough time-points coincide and give a low sum across

sections, peak time-points coincide and give a large sum, and the

resulting waveform will have large amplitude. However, if the data

were split in sections where the length does not correspond to the

underlying period, then the peaks and troughs will not coincide

and summing the sections together will result in a small-amplitude

signal. This observation lies at the heart of the method. To analyse

data with unknown period, the algorithm steps through a series of

test period values, for each of them performs the procedure

described above, and selects the period that gave the averaged

waveform of the highest amplitude. To test the statistical

significance of the period, Sokolove and Bushell [19] modified

the calculation of the amplitude of the resulting waveform. This

method, known as the Chi-square Periodogram, was implemented

in BioDare and is here referred to as EPR.

EPR has the advantage of being intuitively straightforward and

computationally simple. Its main limitation is that the step size

between periods that can effectively be tested is constrained by the

duration and sampling frequency of the input data.

Another general approach to period estimation is based on the

idea of curve fitting. If the measured time series can be represented

by a function (curve) of known period, the period of the data can

be assumed to be equal to the period of that function. The

challenge lies in finding such a function. Typically a model-based

approach is used, i.e. a function is chosen that depends on

parameters that determine not only its period but also its shape. In

a ‘naive’ approach, all possible combinations of the function’s

parameters can be tested; for each combination, the function’s

time-series values can be calculated. The set of parameters which

gives a time-series closest to the original data is chosen. In general,

there is an untenably large number of parameter combinations, so

such a naive approach is not feasible. Fortunately, there are known

mathematical techniques to find optimal parameters, for example

linear- and non-linear least-squares fitting [20]. Many methods of

period analysis adopt this scheme, though they differ in the model

functions and the selection procedures.

mFourfit [12] is one of the curve-fitting methods. It was

developed for use with data obtained under entrained conditions,

where the phase of entrainment was of particular interest. Stable

entrainment implies that the underlying signal will have a single

period, namely the period of the entraining cycle T. The waveform

may be complicated but it is assumed to be the same in each

entrained cycle (like the sections into which EPR splits data).

mFourfit’s model function consists of a main cosine component

of phase Q1, amplitude A1 and period t. Up to 4 additional cosine

components may be included, each with its own phase and

amplitude but with a period that is a simple fraction of the main

period t, from t/2 to t/5:

f (t)~Cz
X5

i~1

Ai cos (
2p(t{Qi)

t=i
)

(where Ai is the amplitude of each cosine, Qi its phase and t/i its

period)

Using the sum of 5 cosines allows for the construction of quite

complicated shapes, while the constraint that all components have

period t or a fraction guarantees that the resulting shape has

exactly the length of t. Rather than trying to estimate the period

directly, upper and lower boundaries for the period are set by the

user and the algorithm then steps through the range of periods in

pre-defined increments. For given period t, mFourfit finds all the

parameters for each cosine using ordinary least-squares covari-

ance. This step establishes ‘the best shape’ of length t that can

represent the given data (Note 1). Then, for each period, mFourfit

calculates a sum of squared differences between the input data and

the theoretical time series generated using the calculated

parameters. After iterating through all periods within the

boundaries, the period that fits the data with the lowest sum of

differences can be determined. This method combines the ‘naive’

approach, checking all potential period values one by one, with

selecting model parameters using the least square scheme.

Period Estimation Methods for Circadian Data
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mFourFit also tries to minimise the number of cosine

components necessary to reproduce the data shape, in order to

reduce the model complexity for each tested period. During period

selection, both the fitting error and the model complexity are taken

into account, with preference given to periods that yield simpler

models.

The main advantage of mFourfit is that it provides the same

best-fit waveform for each cycle, which better reflects the

underlying biology of an entrained system. The major disadvan-

tage is that the mFourfit algorithm is designed always to return a

period (without any significance measure), even if the input time

series is arrhythmic. We use the abbreviation MFF to refer to

mFourfit method.

Another method that is based on curve fitting is FFT-NLLS
[9,21]. This was originally developed at the NSF Centre for

Biological Timing in Virginia, to analyse circadian data obtained

in free-running conditions (i.e. without entrainment), particularly

in genetic screens to identify mutant organisms with altered

period. Here, the data are also modelled by a sum of cosine

functions, in the form of:

f (t)~cz
XN

i~1

ai cos
2p(tzwi)

ti

� �

(where: ti, Qi, ai are period, phase and amplitude of each cosine

component, c is the offset)

The main differences between FFT-NLLS and MFF are that

the periods ti of each cosine are independent of each other in FFT-

NLLS and the number of cosines N can be up to 25. The

unconstrained periods and the large number of components mean

that almost any curve can be represented by this model. For

example, a long period cosine could model a data trend, a mid

range cosine would match the ‘main’ oscillation in the data, and

very short period cosines could represent sudden changes in the

data or even noise. In reality, 5 components are sufficient to model

correctly most biological data.

FFT NLLS starts with a model with a single cosine and

determines the parameters (t1, Q1, a1, c) using a non-linear least

squares fitting algorithm. This procedure is repeated using models

with additional cosine components (increased N), until adding an

additional cosine term does not improve significantly the resulting

fit. The precise details of the algorithm can be found in [9]. Once

the best model and its parameters have been found, the period is

taken to be the period of the cosine component lying within a user-

defined range of likely circadian periods (typically 15–35 h). If

more than one cosine component belongs to the circadian range,

the user has to decide which to select. Conventionally the

component associated with the smallest relative amplitude error

(defined as the value of the amplitude error estimate divided by the

amplitude value) is chosen.

FFT NLLS performs an additional operation, namely finding

confidence levels for period, phase and amplitude for all of the

cosine components of the best model. This is done by determining

the maximum size of perturbation which can be introduced into

individual parameters before the resulting fit significantly deviates

from the original.

The non-linear least squares procedure that calculates the

parameters only works well if sensible initial values are provided.

In order to obtain the initial values of the period and phase, a Fast

Fourier Transform (FFT) is performed on the input time series

[22]. The underlying principle of this common method is

explained under MESA, and one of its limitations under Spectrum

Resampling, below. Its relevance here is only to learn initial period

values from the data, rather than using default or user-defined

values. The initial values are then improved by the NLLS iterative

numerical search. Hence the full name of this technique: the Fast

Fourier Transform Non-Linear Least Squares algorithm, abbre-

viated NLLS in the Results.

The main advantages of FFT-NLLS are reported to be that the

algorithm works well on relatively short and/or noisy data series; it

gives confidence levels for period, phase and amplitude; and that

the algorithm can identify (and report) arrhythmic data if no

period can be identified with sufficiently high confidence. The

postulated disadvantage of the algorithm is that it potentially has a

limited ability to fit rhythmic data with non-sinusoidal waveforms.

Maximum Entropy Spectral Analysis (MESA) [13] uses a

completely different approach based on stochastic modelling. The

algorithm was championed for use in biological data analysis by

Dowse [23] and has been used subsequently in marine biology to

investigate swimming rhythms and vertical migration [24,25].

MESA first fits an autoregressive model to the data. This model

assumes that the value at a given time point is the combination of a

number of previous values plus some stochastic process (noise):

X½t�~a1X½t� 1�za2X½t� 2�za3X½t� 3�z:::

zanX½t�N�zg

(where: ai are model coefficients, X[t-i] is the data value at

previous time point t-i, g is noise, N is the length of the model)

Model coefficients can also be considered as the coefficients of a

prediction filter (PF) of length N, where the next value can be

predicted using the previous values. Such equations can be written

for each data point and filter coefficients that minimise the

difference between the predicted and original values can be found

using a least-squares approach.

It is possible to obtain a frequency spectrum for the data by

using the prediction coefficients. In general, a frequency spectrum

characterizes the presence (contribution) of each frequency within

the signal, with the most common example being the Fourier

Transform power spectrum [22]. Since frequency is the inverse of

the period, finding the maximum in a frequency spectrum also

identifies the strongest period of the data. Determination of a

spectrum and finding its associated peak lie at the foundation of all

frequency spectrum-based methods, such as the FFT.

In the MESA approach, the spectrum is constructed using the

formula (the scaling constant is removed):

S(v)&
1

1{
XN

k~1

ake{ivk

�����
�����
2

(where ak are the PF coefficients and v is circular frequency:

v= 2p/t, t is period)

The PF length (N) is crucial to the output of the analysis; if the

filter length is too low, resolution and important detail can be lost.

However, if N is too high, artificial peaks may appear in the

spectrum. Although there are procedures to determine the optimal

value of the model length, usually manual selection of the

minimum value of N is necessary. Once the model length, N, is

established, corresponding PF coefficients can be found, the

spectrum S is then calculated using the formula above and the

period corresponding to the highest value of S is selected.

The main advantages of MESA are that it does not model data

assuming any a priori shape of waveform, and it has much better

precision than Fourier transform based methods. The drawbacks

Period Estimation Methods for Circadian Data
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are its dependence on the correct choice of model length and the

lack of a significance/confidence measure.

Another spectral analysis technique is the Lomb-Scargle
periodogram [11]. This method also creates a spectrum

representing the significance of each frequency in the analysed

data. As before, the period corresponding to the peak is chosen as

the output of the method. The very simplified formula for the

spectrum is:

S(v)&

(
XN

i~1

x(ti)cos(vti))
2

XN

i~1

cos2(vti)

z

(
XN

i~1

x(ti)sin(vti))
2

XN

i~1

sin2(vti)

(where: x(ti) is the value at time ti, N number of data points, v is

the circular frequency: v= 2p/t, t is the period).

It can be instructive to examine this formula to determine why it

reflects the presence of a given periodicity in the data. In the first

term the measured data are convolved with the cosine function (for

each time point, the recorded value in data is multiplied by the

corresponding value of a cosine at this time point). Assume a long

data series of period T and phase 0, and consider the result of

convolving the data with the equivalent cosine, cos(2p/T). Each

time the data has its maximum value so does the cosine and the

result of repeated multiplication followed by summation will be

high, whereas each time the cosine has a negative value the data

has its lowest value, and a small value will be subtracted from the

sum. Thus the overall sum in the numerator will have a relatively

high value. If the same data is convolved with a cosine of period

other than T, the cosine no longer peaks at times nT and hence,

the elements in the nominator sum will start to cancel each other,

leading to a smaller summation than the previous case. The

denominator value is a scaling factor which reflects how much

‘value’ the cosine contributed at the given times. The second sine-

based term will behave similarly but with rhythmic data of phase

T/4. The combination of both cosine and sine terms can measure

contributions to the frequency regardless of the data phase (see

MFF note 1).

The main advantage of this method is that, unlike most of the

spectral methods (for example MESA), it can handle non-evenly

spaced data. We refer to this method as LSPR.

Spectrum resampling [14], abbreviated as SR in this

manuscript, was developed to improve period estimation when

the data are non-sinusoidal. The approach uses a power spectrum

created by carrying out a Fourier Transform on the time series.

The Fourier Transform and its discrete implementation, the

Fast Fourier Transform (FFT), are standards in timeseries

processing [22]. Similar to the LSPR, the FFT finds frequency

contributions by convolving cosine and sine functions with the

analysed signal. However, the spectrum obtained using the FFT

cannot be directly used for period estimation of circadian data,

due to its poor frequency precision. The precision varies across the

spectrum, and is directly correlated with the input data length: to

obtain a precision of less than an hour around 24 h periods, there

must be over 1000, hourly-sampled time points, i.e. more than one

month of measurement. In most cases, biological data must be

padded to artificially extend the length of the time series prior to

FFT analysis.

The main idea behind spectrum resampling is to find a period

‘‘between the cracks’’ of the original FFT spectrum. The algorithm

starts by calculating an ordinary FFT power spectrum. The initial

spectrum is smoothed using kernel smoothing. Kernel smoothing

can be explained as a more sophisticated form of moving average.

Each data point is averaged with scaled values of its neighbours.

The kernel method ensures that more distant neighbours

contribute less to the average.

The smoothed spectrum forms the basis for the algorithm. Noise

is added to the base spectrum, this creates a new sample spectrum,

which is successively smoothed, and the frequency value corre-

sponding to the maximum peak in the smoothed spectrum is

recorded. This procedure of adding noise to the base spectrum,

smoothing, and recording the peak is repeated 1000 times (a

process known as boot-strapping).

The recorded peak frequencies are averaged and the mean

value is converted to the corresponding period and reported as the

data period. For example, if the data has a true period of

24.5 hours, but the precision in the FFT spectrum is limited to

about 1 hour around this period due to the data length, each

bootstrap iteration could produce period values of 23, 24, 25 or

26 h. The average bootstrap period can be 24.5 (for example 500

peaks at 24 and 500 at 25). The distribution of period values

recorded during the bootstrap iterations provides a confidence

interval for the period estimates.

The main advantage reported for this algorithm is that it was

designed to be more robust to noise and non-sinusoidal time series.

The disadvantage is that, because it uses boot-strapping, it is very

computationally intensive.

These six methods represent a broad range of the many

published approaches to period estimation. EPR is distinct; LSPR,

MESA and SR represent spectrum-based methods, while MFF

and NLLS are representative examples of curve-fitting methods

(for example, the popular Halberg’s cosinor procedure [26] is

equivalent to MFF with only one cosine). Autocorrelation has not

been considered as MESA has been recommended as its

replacement, especially for the short data series investigated here.

We omitted two classes of methods that deserve a longer

comment: wavelet-based and Bayesian methods. Simple wavelet

methods use wavelet transforms as low/high pass filters, which

smooth the data and remove trends: such signal pre-processing is

not our focus here. The processed data are then analysed with a

standard method, for example a simple peak finding algorithm

[27]. Alternatively, a continuous wavelet transform may be

performed and then changes of period over time can be extracted

from the transformation results [28]. Those methods are well

suited for non-stationary periods which, although common in

biological systems, are not our current focus. Taking into account

the lack of evidence that wavelet methods are superior in analysis

of stationary periods and the poor support for wavelets currently

available in Java, we judged that at this stage, the extra effort

necessary to implement such methods for BioDare was not

proportional to the potential gain.

Bayesian methods are attractive as they provide well defined

confidence levels for period estimates [29,30]. However, due to

their computational complexity we deemed them unsuitable for

general use in BioDare. If we consider the typical number of

sampling iterations performed by the algorithms (typically above

10,000), we would expect Bayesian methods to be 100 times slower

than SR, already the slowest algorithm considered. Furthermore,

the documentation of the published algorithms did not allow easy

re-implementation.

Implementations
Hand in hand with the choice of algorithm goes the choice of

implementation. This paper uses our implementations of the six

algorithms in Java, which have been incorporated into the online

BioDare repository. As mentioned briefly in the introduction,

Period Estimation Methods for Circadian Data
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period analysis is only one of many BioDare features. The main

features of BioDare are:

– an online repository for experimental data accompanied by

extensive metadata including details about environmental

conditions and biological material used

– rhythm analysis and period estimation using the mentioned

algorithms

– generation of secondary data (normalized, detrended, averaged

…)

– graphical output of data, secondary data and rhythm analysis

– simple text-based search throughout metadata

– search for data based on biological sample, assay and

conditions

– data aggregation and export

– group-based privacy settings for collaborative research followed

by public dissemination.

BioDare was designed to offer flexibility and adaptability to new

techniques, data types, experimental designs and use cases. Thus

all experimental metadata and system data is stored in XML

documents, allowing easy conversion between formats using

XSLT. Furthermore, as XML is human readable it speeds up

debugging and testing. Java was chosen as the programming

language for its self-documenting character, simple error tracing

and large number of supported standards and technologies.

The user enters the experiment description in Pedro (a tool that

can generate forms which are then populated using the

information required by XML document definition) and exports

them to XML format. The XML metadata are transformed with

XLST to BioDare internal representation and mapped to Java

objects for further manipulations using JAXB. The numerical time

series are read from Excel files using the Apache POI library.

Subsets of the metadata and the time series are stored in a MySQL

database using JPA for Java to DB mapping.

Period analysis is controlled by separate subsystem called

JobCenter, which allows simultaneous analysis submission by

multiple users for multiple data sets. Its main functions are:

queuing and housekeeping of the submitted jobs, dispatching

analysis to the correct implementation (which can be local or

remote using a WebService interface) and sending back completed

results. In order to increase the overall performance, JobCenter

takes advantage of multiprocessor servers and processes time series

in parallel (in the current set-up, 4 time series are analysed in

parallel).

BioDare can be found at http://www.biodare.ed.ac.uk, and its

source code can be accessed from http://sourceforge.net/

projects/biodare. Publicly-accessible data are available to browse

and download using the ‘‘public’’ account, while the ‘‘demo’’

account allows users to test the analysis methods.

There are also alternative software packages that offer access to

period analysis methods (typically EPR, LSPR, and FFT-based),

some of which are listed here. Clocklab is a commercial package

produced by Actimetrics (www.actimetrics.com/ClockLab/), Cir-
cadian Rhythm software is a non-commercial suite of programs

developed by Refinetti (http://www.circadian.org/softwar.html),

Circwave and Chronoshop are available at (http://webpage2.

woelmuis.nl/downloads.htm). MFF and NLLS are provided in

BRASS developed by Paul E. Brown with the Millar group

[31,32], which is available from (www.amillar.org) but is

superseded by BioDare for almost all applications.

Materials and Methods

In order to evaluate the performance of any period estimation

algorithms it is, of course, necessary to know the period a priori.

This means that it is not practical to use real biological data for

any initial algorithm evaluation. Thus different artificial data sets

were generated and used to compare the different algorithms. In

all cases the time series were stationary so that the underlying

period is constant.

The first group of data sets comprised so-called mathematical

test signals which, whilst not biologically meaningful, allow the

algorithms to be tested against artefacts such as sudden changes in

amplitude.

The mathematical test signals comprise:

N a pure cosine of known frequency, and hence known period;

N a pulsed waveform which comprises pulses of a Gaussian

waveform with a standard deviation of (period/7);

N a double pulsed waveform which comprises two periodic

Gaussian waveforms, the first is as in the single pulse waveform

and the second is a Gaussian waveform of a quarter of the

amplitude of the first Gaussian waveform, shifted by period/3

relative to the original Gaussian and with a narrower standard

deviation of (period/9);

The second group of time series were designed to be more

representative of biological systems whilst still allowing exact

knowledge of the underlying period. This group comprised

simulated clock data generated using a delayed negative feedback

loop (DNFL) model. This model, which is similar to the clock

model used by Goldbeter [33] and which was developed by Monk

and Heron [34,35], generates synthetic mRNA and protein data.

By varying the parameters of the model it is possible to produce a

range of periodic but non-sinusoidal waveforms including asym-

metric cycles similar to those found in biological systems. Here we

use parameter sets identical to those used in [14] to produce two

sets of time series. The first comprised time series with a moderate

level of asymmetry and the second comprised time series with a

moderate shoulder. Examples of both the mathematical test signals

and the DFNL time series are shown in Figures 1A, 1B and full

details of the parameters can be found in [14].

Once the basic time series had been generated, noise was added.

The noise was additive and was either uniform noise or walking

noise. Uniform noise is drawn from a uniform distribution and the

amplitude of the noise is defined as a percentage of the amplitude

of the original time-series. This would be characteristic of the noise

in a measurement system. Walking noise is additive and uniform,

but this time the distribution of the noise is restricted so that the

current data point lies within a limited range of the previous data

point (Figures 1C, 1D). This would be more representative of noisy

signals in nature, where noise affects an underlying biological

system with a characteristic timescale greater than the sampling

interval. The level of noise added is defined as the percentage of

the amplitude of the original test signal (typically 30%, 80% or

160%), and is referred to in the text as, for example, 80% walking

noise.

To assess applicability of the methods to the analysis of real

biological systems, we also tested data sets obtained by in vivo

imaging of transgenic Arabidopsis thaliana plants. Each transgenic

line carried a luciferase reporter gene, in which a promoter of a

gene of interest (termed the marker) is fused to the luciferase

protein sequence. The expression of the luciferase protein was

monitored by low-light imaging of seedlings, as described by

Gould et al [36]. We analysed data acquired from transgenic

Period Estimation Methods for Circadian Data

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e96462

http://www.biodare.ed.ac.uk
http://sourceforge.net/projects/biodare
http://sourceforge.net/projects/biodare
www.actimetrics.com/ClockLab/
http://www.circadian.org/softwar.html
http://webpage2.woelmuis.nl/downloads.htm
http://webpage2.woelmuis.nl/downloads.htm
www.amillar.org


plants having: CAB, CAT3, CCA1, CCR2 and TOC1 constructs

[12]. During the whole measurement the plants were exposed to

24 h light/dark cycles, however some experienced 6 hours of light

(short days: SD) while others received 18 hours (long days: LD).

Plants in these conditions are expected to be stably entrained, with

a period close to 24 h. Combining the 5 markers and 2

experimental conditions yielded 10 data sets with distinctive

waveforms.

We report two metrics: the mean period and the mean absolute

error, which is defined as absolute difference between the

calculated value and the expected period (the means are calculated

over the replicates in the tests data sets). The expected period value

is 24.08 h for moderate asymmetry signal and 24.0 h in all the

other cases. The mean period is abbreviated as MP in the tables

and figures; absolute error (AE) refers to the mean absolute error.

When discussed, statistical significance was determined by

performing t-tests with alpha = 0.05.

All the algorithms were implemented in Java using the Apache

Math library for matrix operations, least-squares solving and FFT

transform. The implementations are wrapped into web services

using JAX-WS so they can be deployed on remote servers and

linked with BioDare using the SOAP protocol. We introduced

small modifications to the original algorithms, described below. All

our implementations conduct detrending prior to analysis (cubic

polynomial for SR, linear for the other methods).

Our implementation of EPR always uses spline interpolation to

transform input data to time series with 0.1 hour data interval.

This data step matches the 0.1 h period scanning step size. This

approach has advantages over the original method when

determining the spectrum power for a fractional period (for

example 24.1), see SI (Doc S1) for more details.

For the MESA method, we initially followed Dowse [37] in

using the Andersen algorithm [38] but it gave us poor period

estimates probably due to its known numerical instability. The

Barrodale implementation of MESA [39] addressed those issues,

so this approach was selected, with a bi-directional prediction

filter. However, that implementation underestimated the length of

the internal prediction model. The minimal model lengths that

gave good period estimates for our test data were therefore

determined empirically and found to be specific for each sampling

frequency.

The LSPR was implemented using the algorithm described by

Glynn et al. [40].

We introduced two modifications to the SR algorithm. Firstly,

when performing kernel smoothing only the close neighbourhood

of the current point is taken into account instead of the whole time

series. The size of the neighbourhood is determined by the

bandwidth under consideration, and it is equal to the distance at

which the ‘kernel’ value is smaller than 10214. This reduces the

asymptotic computational cost from O(N2) to O(N). The second

modification concerns the selection of the optimal bandwidth, as

we sample a smaller range of candidates than in the original paper.

We compared the results obtained with the modified code against

the estimates obtained using the original and found that neither

modification influenced the period estimates, but both substan-

tially reduced the computation time.

Results

To evaluate the algorithms supported in BioDare, and to

suggest guidelines for their use in circadian research, we compared

the performance of Chi-square Periodogram (EPR), mFourfit

(MFF), FFT-NLLS (NLLS), Maximum Entropy Spectral Analysis

Figure 1. Examples of artificial time series used in the analysis. A) the three mathematical test signals: cosine, pulse and double pulse (dbl.
pulse). B) the two model-derived (DNFL) time series: moderate shoulder (shl.) and moderate asymmetry (asym.). C, D) the same test signals with 80%
walking noise added.
doi:10.1371/journal.pone.0096462.g001
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(MESA), Lomb-Scargle periodogram (LSPR) and Spectrum

Resampling (SR).

1. Impact of increasing levels of noise
We first examined the impact on rhythm analysis of a limited

number of data points and increasing noise levels. Period

estimation was carried out using only 3 days of data with sampling

every hour, i.e. only 72 data points. The six algorithms were

compared for different levels of noise (30%, 80%, 160% and

300%) and both uniform and walking noise were used. Figures 2,3

and Tables 1, 2 (full data are in SI Tables S1, S2) show the results

for 5 different input signals. 3 mathematical test signals: cosine;

pulse and double pulse: and two sets of artificial mRNA data, one

with moderate asymmetry and one with a shoulder in the data,

accompanied by the aggregated results from all the waveforms.

128 replicates with different noise samples were analysed by each

algorithm. We report two metrics: the mean period MP (over the

128 replicates) and the mean absolute error AE, which is defined

as absolute difference between the calculated value and the

expected period (24.08 h for simulated mRNA data with moderate

asymmetry and 24 h for the rest).

Period estimates depended upon the shape of the input signals

and noise levels, with considerable differences among the

algorithms. Analysis of method accuracy (how close the mean

period was to 24 h) showed that MESA, MFF, NLLS gave the best

period estimates for both low and high noise levels. EPR could

either over- or under-estimate the mean period depending on the

shape (Fig 2A,D), giving this method the largest estimation errors

for high noise (Fig. 2C,E), whereas SR and LSPR (for double

pulse, shoulder and moderate asymmetric shapes) tended to

overestimate the period values (Fig. 2C,D,E). Double pulse and

moderate asymmetry data were the most challenging, with the

largest estimation errors (Fig. 2C,E). As expected, the average

error increased with the level of noise, as individual input data

traces were more severely distorted. However, the mean period

reported by each of the methods was quite resilient to the amount

of uniform noise added. There was little difference between the

mean periods for 30% to 160% noise levels (relatively flat lines for

the first 3 points in Fig. 2 with exception of 2E). EPR was the most

sensitive to the amount of noise, and SR responded strongly to the

highest 1.5 level. The MESA method gave the best results

compared to the other algorithms for the highest noise level (MP in

range 23.97-24.30), whereas EPR and SR performed poorly in this

test (MP for EPR between 24.5 and 25.9, AE .1). Changes in

period estimates due to the addition of the walking noise were

more pronounced, but similar trends were observed (see SI,

Figures S1, S2).

These results highlight the importance of measuring biological

replicates when dealing with noisy data, as the mean period over

the ‘population’ properly matched the underlying period even for

substantially distorted signals. In general, MESA, MFF and NLLS

offered comparable accuracy.

2. Impact of different signal durations
The next analysis examined the effect of different signal

durations on period estimation. Here the results of period

Figure 2. Impact of increasing levels of uniform noise on period estimation. Data sets with different noise levels (30%, 80%, 160%, 300%)
were analysed using all the methods and the mean period was plotted. Data sets were created by adding noise at the level indicated to the hourly-
sampled template of 3 days duration. The templates were: A) cosine data, B) pulse data, C) double pulse data, D) DNFL shoulder data, E) DNFL
asymmetry data (expected period is 24.08 h), F) aggregated results from all the shapes.
doi:10.1371/journal.pone.0096462.g002
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estimation using 3, 5 and 10 days of data, all sampled every hour

and with 160% walking noise added. The same input signal shapes

were used, each with 128 replicates with different noise samples.

Figures 4, 5 and Tables 3, 4 show the results of the analysis (full

results set in SI Tables S3, S4).

As expected, accuracy of the period estimate improved and the

error decreased as the duration of the time series, and hence the

number of samples and cycles, increased. All methods gave almost

perfect period estimates for 10 days of data (discrepancies below

0.1 h are insignificant in circadian applications as the typical

biological variation is larger than 6 minutes). MESA tended to

underestimate periods values (Fig. 4C, F) and its results for long

data were statistically different from the other methods for all

signal shapes apart from the simple cosine. Detailed examination

of 3 days data with walking noise added revealed that MFF was

the most accurate method for short timeseries (Fig. 5B–F),

followed by NLLS and MESA, and the difference between those

methods often was not statistically significant. The SR and EPR

were the least suitable for analysis of such short data series, their

absolute error values were in the range (0.6–1.2 and 0.5–0.9

respectively). In general SR overestimated period value (MP in the

range of 24.3–24.9 h).

The acquired data suggests 5 days as a reasonable duration for

circadian experiments aiming to estimate period. Compared to 10

days of data, 5 days data length is more technically feasible and

should limit the impact of physiological changes in the studied

samples. At the same time, the calculated mean period values lay

close enough to the expected 24 hours and individual errors were

below 0.2 h, which should be sufficient for typical applications.

For 5 days data duration, MFF was generally the most accurate

method (MP 24.060.05 for all shapes apart from asym., AE<0.2),

followed by NLLS, LSPR and MESA.

3. Impact on period estimation of varying the sampling
frequency

In the third investigation we tested the influence of sampling

frequency on the accuracy of period estimation. We used data with

a noise level kept at 80% and we varied the sampling frequency

between every 6 minutes, every hour and every 2 hours. The

results are shown in Figures 6, 7, 8 and Tables 5, 6 (full results set

in SI Tables S5, S6).

The calculated mean periods and average errors were almost

identical for all 3 sampling frequencies, in the case of 5 days of

data with walking noise added (Fig. 6,7); the max difference

between the MP for each frequency was 0.08 (SR analysis of shl.

data). The sampling frequency had considerably less impact on

period estimates than data duration or level of noise. The results

for the data sampled 2-hourly over 10 days highlighted the

importance of the data duration. Their average error was lower

than for hourly or 6 minutes sampled 5 day data, although the

former consisted of exactly the same number of data points and

the latter had 10 times more (Fig. 7). In similar fashion, the

estimates for 3-day data with 6 minutes time interval (720

Figure 3. Impact of increasing levels of uniform noise on absolute error. Data sets with different noise levels (30%, 80%, 160%, 300%) were
analysed using all the methods and the absolute error is plotted. The absolute error is defined as the absolute value of the difference between
calculated period and the expected value (24.08 for asym. signal and 24 h for the others). Data sets were created by adding noise of specific level to
the hourly-sampled template of 3 days duration. The templates were: A) cosine data, B) pulse data, C) double pulse data, D) DNFL shoulder data, E)
DNFL asymmetry data, F) aggregated results from all the shapes.
doi:10.1371/journal.pone.0096462.g003
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Table 1. Impact of uniform noise level on period estimates.

Shape1 Method NL 30%2 NL 80%2 NL 160%2 NL 300%2

pul EPR 23.63 (0.07) 23.65 (0.21) 23.84 (0.72) 24.91 (2.21)

pul MFF 23.88 (0.07) 23.86 (0.22) 23.81 (0.46) 24.04 (1.11)+

pul NLLS 23.94 (0.08) 23.93 (0.19) 23.96 (0.41)+ 23.97 (1.37)+

pul MESA 23.98 (0.08) 23.93 (0.22) 23.89 (0.55) 24.13 (1.52)+

pul LSPR 23.95 (0.07) 23.96 (0.19) 23.99 (0.4)+ 24.07 (0.81)+

pul SR 24.29 (0.08) 24.29 (0.2) 24.28 (0.4) 24.18 (1.35)+

dblp EPR 23.88 (0.07) 23.88 (0.22) 24.05 (0.69)+ 25.63 (2.73)

dblp MFF 23.94 (0.06) 23.97 (0.21) 24.05 (0.45)+ 24.49 (1.78)

dblp NLLS 23.88 (0.13) 23.88 (0.26) 24.0 (0.58)+ 24.14 (1.9)+

dblp MESA 23.98 (0.1) 23.93 (0.27) 23.97 (0.71)+ 24.3 (1.95)

dblp LSPR 24.21 (0.09) 24.23 (0.25) 24.27 (0.51) 24.41 (1.1)

dblp SR 24.55 (0.1) 24.55 (0.25) 24.45 (1.2) 23.98 (2.73)+

all EPR 23.95 (0.36) 24.0 (0.49)+ 24.19 (0.82) 25.13 (2.16)

all MFF 23.93 (0.08) 23.95 (0.22) 23.98 (0.45)+ 24.2 (1.24)

all NLLS 23.98 (0.13) 23.98 (0.26) 24.06 (0.5) 24.12 (1.33)

all MESA 24.0 (0.1)+ 23.98 (0.24) 23.98 (0.57)+ 24.16 (1.42)

all LSPR 24.14 (0.25) 24.15 (0.32) 24.17 (0.48) 24.23 (0.89)

all SR 24.37 (0.17) 24.36 (0.27) 24.33 (0.69) 24.11 (2.39)+

Data sets with different noise level were analysed using all the methods. The mean period value is reported in the table (standard deviation is given in brackets). Data
sets were created by adding noise of specific level to the hourly-sampled template of 3 days duration. 1) The base shape of the signal: cosine (cos), pulse (pul); double
pulse (dpl); shoulder (shl) and moderate asymmetry (asym), (all) represents aggregated results from all the signals. 2) NL- noise level as the percentage of the original
signal amplitude. +) Means which are accurate, not statistically different from the expected period value, are marked with +. The underlying period was 24.08 h for asym
data and 24.00 h for the other signals. See SI Table S1 for the full results.
doi:10.1371/journal.pone.0096462.t001

Table 2. Impact of uniform noise level on absolute error.

Shape1 Method NL 30%2 NL 80%2 NL 160%2 NL 300%2

pul EPR 0.37 0.36 0.54 1.65

pul MFF 0.12 0.21 0.43 0.8

pul NLLS 0.08 0.17 0.33 0.72

pul MESA 0.07 0.18 0.43 1.04

pul LSPR 0.07 0.16 0.32 0.61

pul SR 0.29 0.3 0.38 0.75

dblp EPR 0.12 0.2 0.49 2.16

dblp MFF 0.07 0.17 0.37 1.1

dblp NLLS 0.14 0.23 0.47 1.03

dblp MESA 0.08 0.23 0.55 1.36

dblp LSPR 0.21 0.27 0.46 0.86

dblp SR 0.55 0.55 0.71 1.36

all EPR 0.29 0.35 0.61 1.66

all MFF 0.1 0.18 0.36 0.82

all NLLS 0.09 0.19 0.38 0.76

all MESA 0.07 0.19 0.43 0.99

all LSPR 0.2 0.25 0.38 0.67

all SR 0.35 0.36 0.48 1.06

Data sets with noise level were analysed using all the methods and the average absolute error is reported in the table. The absolute error is defined as the absolute
value of the difference between calculated period and the expected value (24.08 for asym signal and 24 h for the others). Data sets were created by adding noise of
given level to the hourly-sampled templates of 3 days duration. 1) The base shape of the signal: cosine (cos), pulse (pul); double pulse (dpl); shoulder (shl) and moderate
asymmetry (asym), (all) represents aggregated results from all the sets2) NL- noise level as the percentage of the original signal amplitude. See SI Table S2 for the full
table.
doi:10.1371/journal.pone.0096462.t002
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timepoints) were less precise than hourly-sampled, 5-day data with

only 120 measurements (Fig 6A–C).

Different conclusions could be drawn from the results obtained

for the data with uniform noise. In this case, frequent sampling

reduced the value of average error (Fig. 8, first two points in each

panel). This is the consequence of different impact of both forms of

noise on the waveform shape (see SI, Figure S3). Uniform noise

added to densely-sampled data preserves the underlying shape, as

there is high probability that the changes to the each of 10 points

per hour would cancel each other. In contrast, walking noise

‘propagates’ between the points, and the final waveform for the 0.1

and 1-hourly data were both similarly distorted. Nevertheless, the

results for 10 days data with 2 hour sampling interval were

generally equal or more accurate than for shorter timeseries

sampled every 6 minutes, despite having an order of magnitude

fewer data points.

MFF was the best method for the analysis of the most ‘sparse’

data (5 days, 2-hourly samples) with, followed by NLLS and

MESA, all 3 having MP in the range of 24.0060.05 h; the

difference between those methods was statistically significant only

for dbl. pulse and asymmetric data.

4. Impact of non-sinusoidal data
One of the reported advantages of techniques which do not try

to fit the data as a series of sines and/or cosines is that such

techniques are able to perform better when analysing non-

sinusoidal data. Looking back at results presented above, we could

not prove such claims. The more demanding time series were: the

double pulse mathematical test signal; and both simulated DNFL

RNA time series (asymmetric and shoulder data). Those signals

were neither constructed using trigonometric functions nor were

symmetrical. Nevertheless both MFF and NLLS typically offered

the best accuracy, which could be matched only by MESA from

the non-sinusoidal methods.

5. Impact of non-evenly sampled data
In a typical circadian experiment data are collected at constant

time intervals, however, due to technical problems, occasionally

some of the data points have to be omitted and the final time series

are no longer evenly spaced (for example, measurements of

luminescence often contain cosmic-ray-induced spikes which have

to be removed prior to period analysis). EPR, MESA and our

implementation of SR require evenly spaced input data. LSPR

and MFF do not have such restrictions, while NLLS is

intermediate, as its core cosine fitting is performed using arbitrary

input data times, but the initial parameters are established under

the assumption of a regular time interval.

In order to test influence of irregular time intervals on the

methods performance, we took hourly-sampled, 5-day-long data

sets and randomly removed 2, 12, 24 and 36 data points (1%,

10%, 20% and 30% of the original signals). We then analysed the

resulting time series using all the methods; in the case of EPR,

MESA and SR, a simple interpolation was performed to provide

the algorithms with necessary data regularity.

Unexpectedly, even the removal of the 30% of the time points

had no effect on either mean period or average error (Table 7),

Figure 4. Impact of different signal durations on period estimation. Data sets with different signal duration were analysed using all the
methods and the mean period value is presented for each test signal shape. Data sets were created by adding 160% walking noise to the hourly-
sampled templates of different duration. A) cosine data, B) pulse data, C) double pulse data, D) DNFL shoulder data, E) DNFL asymmetry data
(expected period is 24.08 h), F) aggregated results from all the shapes.
doi:10.1371/journal.pone.0096462.g004
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despite the fact that the altered timeseries typically contained 5-6-

hour gaps in their data. In this scenario, simple interpolation was

enough to rectify the limitations of EPR, MESA and SR methods,

without influencing their period estimates.

6. Influence of baseline trends
Period analysis methods usually assume only small variations in

signal level and amplitude. To meet this assumption, most

implementations have some form of detrending built into the

data pre-processing steps. However in our experience, biological

data from imaging experiments typically have significant baseline

trends as well as changes in amplitude (for example, dampening

due to the individual cellular rhythms losing synchrony). Thus, the

next investigation considered the influence of baseline and

amplitude trends on period estimation.

To examine the influence of baseline trends, 5 envelope shapes

were applied to the pulse waveform used in the previous analyses.

The envelopes comprised: linear increase; exponential increase;

inverse parabola; 2/3 inverse parabola; and 1/3 parabola, see

supplementary materials Figure S4 for more details and example

time series. The maximum amplitude of each of the envelopes was

varied from 0 (no baseline trend) to 100. In all cases the true

underlying period was 24 hours and the data were sampled every

hour for 5 days. 128 replicates were different noise samples (80%

walking noise) were used and the average period for the 128

replicates was calculated. The results are shown in Table 8 and SI

Table S7. In each case, the period estimates were accurate for

baseline trends of equal amplitude to the 24 h rhythm, but were

wildly overestimated when the algorithm confounded the trend

with the 24 h rhythmic signal.

The inverse parabola was the most challenging form of the

baseline trend for all the methods, while linear trend was correctly

removed by all the implementations, because they have a linear

detrending step built into the data pre-processing. The MESA

method was the most resilient to the presence of large-scale

baseline trends, with amplitudes up to 100-fold greater than the

24 h rhythmic signal (MP was in the range 24.060.2 for all trends

apart from parabola). The other spectral-based method, SR,

coped well with trends up to 20 times larger than the signal

amplitude. However, SR incorporates third-order polynomial

detrending in its data pre-processing, which the other methods

lack. The results suggested that the other algorithms attempted to

fit/report a large period component which corresponded to the

envelope of the baseline trend. The implementations of EPR,

LSPR, MFF were restricted to search for periods of up to

35 hours; for the large-amplitude trends, this value was reported

instead of the underlying 24 h oscillations. NLLS was the most

susceptible to the presence of trends. NLLS usually stopped after

fitting only one, long-period cosine component that represented

the trend, as the contribution of extra components with low

amplitude to the fit was rejected as insignificant.

In summary, it would appear that large-amplitude trends in the

baseline are challenging to all algorithms. It is worth noting that

such time series are representative of real biological data. As a rule

of thumb, if the trend in the data obscures the presence of the

oscillations to the human eye, it also distorts period estimates. Our

Figure 5. Impact of different signal durations on absolute error. Data sets with different signal durations were analysed using all the
methods and the average absolute error is presented for each test signal shapes. Data sets were created by adding 160% walking noise to the hourly-
sampled templates of different duration. A) cosine data, B) pulse data, C) double pulse data, D) DNFL shoulder data, E) DNFL asymmetry data, F)
aggregated results from all the shapes.
doi:10.1371/journal.pone.0096462.g005
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Table 3. Impact of data duration on period estimates (data sets with walking noise).

Shape1 Method 3 days 5 days 10 days

shl EPR 24.38 (0.52) 24.12 (0.23) 24.03 (0.07)

shl MFF 24.03 (0.51)+ 24.0 (0.21)+ 24.0 (0.07)+

shl NLLS 23.93 (0.7)+ 23.98 (0.33)+ 24.0 (0.11)+

shl MESA 23.85 (0.65) 23.87 (0.33) 23.92 (0.15)

shl LSPR 24.11 (0.65) 24.04 (0.32)+ 24.01 (0.1)+

shl SR 24.28 (0.91) 24.11 (0.33) 23.99 (0.11)+

asym EPR 24.82 (1.08) 24.18 (0.24) 24.08 (0.06)+

asym MFF 24.25 (0.57) 24.13 (0.21) 24.08 (0.07)+

asym NLLS 24.34 (0.85) 24.2 (0.37) 24.09 (0.11)+

asym MESA 23.97 (0.86)+ 24.01 (0.38) 24.03 (0.18)

asym LSPR 24.68 (0.78) 24.32 (0.34) 24.13 (0.1)

asym SR 24.83 (1.14) 24.29 (0.39) 24.07 (0.13)+

all EPR 24.23 (1.08) 24.01 (0.27)+ 24.0 (0.09)+

all MFF 24.02 (0.74)+ 24.01 (0.25)+ 24.01 (0.08)

all NLLS 23.95 (0.82)+ 24.01 (0.36)+ 24.01 (0.12)

all MESA 23.8 (1.07) 23.89 (0.37) 23.94 (0.19)

all LSPR 24.19 (0.88) 24.1 (0.35) 24.03 (0.11)

all SR 24.57 (1.1) 24.18 (0.4) 24.02 (0.17)

Data sets with different signal duration were analysed using all the methods. The mean period value is reported in the table (standard deviation is given in brackets).
Data sets were created by adding walking noise of 160% of the original signal amplitude to the hourly-sampled templates of different length. 1) The base shape of the
signal: cosine (cos), pulse (pul); double pulse (dpl); shoulder (shl) and moderate asymmetry (asym), (all) represents aggregated results from all the signals. +) Means
which are accurate, not statistically different from the expected period value, are marked with +. The underlying period was 24.08 h for asym data and 24.00 h for the
other signals. See SI Table S3 for the full table.
doi:10.1371/journal.pone.0096462.t003

Table 4. Impact of data duration on absolute error (data sets with walking noise).

Shape1 Method 3 days 5 days 10 days

shl EPR 0.49 0.19 0.05

shl MFF 0.39 0.17 0.05

shl NLLS 0.56 0.25 0.08

shl MESA 0.51 0.26 0.13

shl LSPR 0.53 0.26 0.08

shl SR 0.74 0.27 0.09

asym EPR 0.92 0.2 0.05

asym MFF 0.44 0.18 0.06

asym NLLS 0.72 0.3 0.09

asym MESA 0.69 0.3 0.15

asym LSPR 0.77 0.32 0.09

asym SR 1.03 0.33 0.11

all EPR 0.69 0.2 0.05

all MFF 0.49 0.2 0.06

all NLLS 0.64 0.28 0.09

all MESA 0.7 0.3 0.15

all LSPR 0.65 0.28 0.08

all SR 0.85 0.33 0.1

Data sets with different signal duration were analysed using all the methods and the average absolute error is reported in the table. The absolute error is defined as the
absolute value of the difference between calculated period and the expected value (24.08 for asym signal and 24 h for the others). Data sets were created by adding
walking noise of 160% of the original signal amplitude to the hourly-sampled templates of different duration. 1) The base shape of the signal: cosine (cos), pulse (pul);
double pulse (dpl); shoulder (shl) and moderate asymmetry (asym), (all) represents aggregated results from all the sets. See SI Table S4 for the full table.
doi:10.1371/journal.pone.0096462.t004
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recommendation, therefore, would be to examine the input time

series and apply an appropriate baseline detrending algorithm

before attempting to use any of the period estimation methods.

7. Influence of amplitude trends
Having examined the performance of the algorithms when

subject to baseline trends, the influence of amplitude trends was

then examined. Similar to the investigation into baseline trends, 5

envelope shapes were applied to the amplitude of the pulse

waveform. The amplitude envelopes comprised: linear decrease;

exponential decrease; parabola; 2/3 parabola; and 1/3 inverse

parabola. The slope of each amplitude envelope was varied from 0

(no trend) to 1 (the amplitude has decayed to zero after 5 days; see

supplementary materials Figure S5 for more details and example

time series). In all cases the true underlying period was 24 hours

and the data were sampled every hour for 5 days. 128 replicates

with different noise samples (all walking noise, 80% amplitude)

were used and the averaged period for the 128 replicates was

calculated. The results are shown in Figure 9 and Table 9 (SI

Table S8).

Overall, the most striking result is that even substantial, non-

monotonic amplitude trends do not pose a major challenge for

these algorithms. Dampening of the signal by 40% of its initial

strength (trend 0.4 in our notation) affected period estimates by

any of the methods by ,0.1 h, and ,0.5 h for trend 0.8. Unlike in

the case of baseline trends, SR and MESA had the largest

sensitivity to the amplitude trends, while MFF and NLLS were

usually the least sensitive.

These results suggest that no amplitude detrending is necessary

to estimate period, even if the recorded signal loses half of its

amplitude during the measurement interval. This is reassuring,

because pre-processing for amplitude detrending typically distorts

the shape of the data waveforms and is best avoided if possible.

8. Performance of the algorithms in classifying
arrhythmic signals

Another aspect of period analysis is distinguishing between

arrhythmic and rhythmic signals. However, the problem starts

even with defining the arrhythmic signal. Even randomly created

time series, can have some ‘structure’ due to its finite length,

furthermore any noise will demonstrate itself as a high frequency

component while a trend in the data will manifest itself in the low

frequencies. For that reason, rather than expecting a positive

identification of arrhythmic data, it is more reasonable to expect

the absence of a period in the range of interest: we term this the

weak arrhythmicity criterion. In this study, we define this range as

16–32 h; BioDare includes a similar, user-specified period

selection range (18–30 h by default), and period values outside

this range are ignored in summary statistics.

In the first experiment, we generated 100 time series with

uniform noise and analysed them with the six methods (Table S9

in SI). NLLS reported 21 series as arrhythmic, LSPR dismissed 99

Figure 6. Impact of sampling frequency on period estimation. Data sets with different time intervals and selected durations were analysed
using all the methods and the mean period value is plotted. Data sets were created by adding 80% walking noise to the templates of different
duration and time interval between points. The X axis represents time intervals with data duration in brackets. The underlying period was 24.08 h for
asym. data and 24.00 h for the other signals. A) cosine data, B) pulse data, C) double pulse data, D) DNFL shoulder data, E) DNFL asymmetry data, F)
aggregated results from all the shapes.
doi:10.1371/journal.pone.0096462.g006
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results for being below the significance threshold, while EPR

dismissed only 6 of them (see SI). The reported period values for

NLLS and SR were all (SR) or almost all (77/79, NLLS) outside

the circadian range, so both methods passed our weak arrhythmi-

city criterion. EPR identified 32% circadian periods, failing to

identify arrhythmia by the weak criterion. As MESA and MFF do

not have any significance test, we used them over a wider period

range (15–35 h), in case spurious periods were returned at one of

the boundaries. However, most of the periods found by MESA

(62%) and MFF (78%) were inside our range of interest (16–32 h),

so those methods also returned false positives by our weak

criterion.

There are two problems with this test. Firstly it is not realistic, as

biologists would not usually analyse obviously arrhythmic data but

signals with at least some oscillating pattern. Secondly, we cannot

objectively specify how many of the data series should fail, as we

cannot estimate their arrhythmicity independently: the reported

period values might correctly match structure in the data that was

introduced by the noise.

We addressed those problems by examining the performance of

all algorithms in classifying a class of arrhythmic signals that is

common in circadian experiments, where rhythmic amplitude

collapses within the time series. Clock-regulated molecular

rhythms often also respond to environmental light and/or

temperature signals. These responses are usually retained even if

the clock is otherwise disabled. Such molecular components

exhibit driven rhythms in a rhythmic environment, but become

arrhythmic in a constant environment. A transition from rhythmic

to constant conditions is therefore a common part of circadian

protocols, and a relevant case for analysis.

To simulate this we took two mathematical test signals of

known, 24 hour period, and we applied a linear dampening filter

to them, such that the amplitude of the signal was reduced to zero

after 1 day, 1.5 days, 2 days, 2.5 days, 3, 4, 5, or 10 days. Noise

was then added at 30% or 80% amplitude of the original time

series (see supplementary material Figure S6 for example time

series). The rationale for this was that there need to be at least 2

cycles (so in this case 2 days) of data for the data to be identifiably

periodic. Hence those time series which are reduced to zero after 1

day or 1.5 days should be classified as arrhythmic. For the data

with slower dampening, if a period is identified then this period

should be close to the known 24 hour period of the underlying

signal within the time series as it should dominate over the noise

factor. We define such a period as being ‘‘accurate’’ (defined as

60.5 hours from the expected 24 hour period). Any period values

which are in the circadian range but not ‘accurate’ can be treated

as false positives, because unlike in the previous experiment, we

know the underlying ‘structure’ of our signal. In this test we

assumed circadian range to be (18–30 h), while the methods were

used over the wider range of (15–35), again the reason for that was

the expectation of spurious periods returned at one of the

boundaries. The results are shown in Figure 10. When discussing

Figure 7. Impact of sampling frequency on absolute error (walking noise data set). Data sets with different time intervals and selected
durations were analysed using all the methods and the mean absolute error value is plotted. Data sets were created by adding 80% walking noise to
the templates of different duration and time interval between points. The X axis represents time intervals with data duration in brackets. The
underlying period was 24.08 h for asym data and 24.00 h for the other signals. A) cosine data, B) pulse data, C) double pulse data, D) DNFL shoulder
data, E) DNFL asymmetry data, F) aggregated results from all the shapes.
doi:10.1371/journal.pone.0096462.g007
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these results, we refer to data with the rhythmic signal reduced to 0

after the 2nd day as ‘2 days of data’, for example, though the full

time series spanned 5 days.

The EPR correctly rejected as insignificant data with only 1 or

1.5 cycles of oscillation and the lower 30% noise level

(Figure 10C,F). The rejection percentage was lower for the higher

noise and only 70% of periods for 1.5 days of pulse data were

marked as not significant (see SI Table S10). On the contrary,

LSPR dismissed more results when higher noise was applied,

reaching 70% for the double pulse, but only 60% for the single

pulse signal (Figure 10C,F). NLLS could not identify any of the

signals as arrhythmic. Hence, the significance threshold of the

EPR could act as a test of arrhythmicity.

Analysing period values and using our weak arrhythmicity

criterion, only MFF and MESA could not identify 1-day data as

arrhythmic (Figure 10B,E). However, for 1.5 days data all the

methods except EPR reported a majority of false-positive rhythms.

MESA correctly assigned period values even for the signal which

disappeared completely after the3rd day, with less than 10% of

false positives for the lower noise case and 30% for the higher

noise (Figure 10A,B). Results from the other methods showed a

majority of false-positive rhythms detected when data were

dampened between 2 and 4 day.

The above results may seem to be in contradiction with the

study of amplitude trends, during which MFF and NLLS

performed better than MESA. However, in the former tests, the

signal oscillates during the whole 5 days, while in the current test,

the signal becomes a flat line after reaching the dampening

threshold (once the noise is discarded). MFF and NLLS try to fit

their model into this ‘flat’ section, which illustrates the main

weakness of the curve fitting methods. Indeed, when we reanalysed

4-day data (80% noise) after truncating them to 72 hours, the rate

of false positives for pulse and double pulse signals dropped to 13%

and 35% for FFT, and to 30% and 12% for MFF. We also

examined the estimation errors generated by the MFF, NLLS and

SR algorithms in an attempt to find a threshold or metric which

could be used to classify false positives but there was no pattern

which could be used (see below).

Although it was not primary goal of these tests, their results

revealed that MESA can give good periods estimates even for data

with less than 3 full cycles of oscillation and is resilient to

discontinuity of the signal. To some degree the EPR can act as an

arrhythmicity test. We would therefore recommend discarding any

signals that do not pass the EPR significance test.

9. Error measures
MFF, NLLS and SR provide various error measures in their

output, which could be used in further reasoning about analysis

results. MFF reports an Akaike Information Criterion value based

on the goodness of fit to the data, modified by the number of

cosine components used to model the data. We found it of limited

use, as it is confounded by how sinusoidal the timeseries is, rather

Figure 8. Impact of sampling frequency on absolute error (uniform noise data set). Data sets with different time intervals and selected
durations were analysed using all the methods and the mean absolute error value is plotted. Data sets were created by adding 80% uniform noise to
the templates of different duration and time interval between points. The X axis represents time intervals with data duration in brackets. The
underlying period was 24.08 h for asym. data and 24.00 h for the other signals. A) cosine data, B) pulse data, C) double pulse data, D) DNFL shoulder
data, E) DNFL asymmetry data, F) aggregated results from all the shapes.
doi:10.1371/journal.pone.0096462.g008
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than giving a direct indication of how reliable the period estimate

is. Both NLLS and SR calculate confidence intervals for their

period estimates.

We investigated whether these error values could help to

identify the false positives in the arrhythmicity tests described

above. We calculated separate statistics on the error values

reported for the false positive results and the accurate results

(defined as being 2460.5 h) Table 10. Unfortunately, no

difference could be observed between those groups. For example

SR reported about 30% false positives for pulse data dampened at

the 4th day. The average period confidence interval was about 1.3

for false positives and 1.2 for the accurate periods; similarly, the

values for NLLS were 0.9 and 0.8 respectively.

However, the values of confidence intervals can be used to reject

individual results above some threshold, though the appropriate

threshold is likely to vary among data sets. The mean periods

obtained for the data dampened at 5th, 4th and 3rd day, could be

classified as accurate, boundary and not-accurate. Hence, we

chose the average confidence interval for the 4-day data as the

guideline for the rejection threshold. We then reanalysed the

results, rejecting periods with confidence level above 1.2. As can be

seen in the Table 11 this procedure improved the accuracy of the

mean period. For example, applying this classifier to analysis of 3-

day data for the double pulse signal gave a mean period of 24 h

from NLLS analysis instead of 25 h. The mean period from SR

analysis was reduced to 24.42 from 24.83.

A final application of the error measures is for visualising results.

For example, NLLS calculates the relative amplitude error

(amplitude error divided by the amplitude value), which increases

from 0 to 1 as the amplitude nears statistical insignificance.

BioDare users regularly utilize RAE scatter plots after NLLS

analysis, which plot the RAE against the period value of individual

traces (see SI Figure S7 for sample graphic). Such plots quickly

highlight differences in the circadian system, for example between

wild-type and mutant samples.

10. Analysis of biological data
We analysed biological data obtained in luciferase imaging

experiments, which is a common assay in the circadian field. The

time series were obtained by measuring expression profiles of 5

different output genes in two light conditions (6 h light: 18 h dark

cycles, SD; 18 h light: 6 h dark, LD), yielding 10 data sets, each

with around 20 biological replicates. The selected data sets have

three important features for this study: firstly each output gene has

its own distinctive waveform (Figure 11) which is further altered by

the light conditions (compare Figure 11B,C with 11E,F); secondly

despite their different shapes, each timeseries is generated by the

same underlying biological clock; and finally all the signals should

have 24 h period as the system is being driven by the 24 h

light:dark cycle (Note 2). Figure 11 presents examples of data

traces for each output gene, together with waveforms fitted by four

analysis method. Table 12 contains calculated period values,

averaged over biological replicates.

The biological data exposed another weakness of SR method.

In the case of both CAT3 data sets, the average period estimated

by SR was considerably lower than 24 h. Inspection of the

individual results revealed that for many data traces SR reported

periods in the range of 12 h, reflecting the double peaks in CAT3

data (Figure 11B,E). The key advantage of SR, which lies in

finding the main frequency component, can also be a weakness if

this main component is not in the circadian range. In such

situations, NLLS found more than one frequency component but

gave priority to the circadian one, while MFF and EPR only

scanned for periods in the user defined range (here 15–35 h).
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Table 8. Impact of baseline trend on periods estimates.

Trend1 Method Level 02 Level 12 Level 52 Level 102 Level 202

exp EPR 23.88 (0.11) 23.87 (0.11) 23.65 (0.26) 23.05 (1.16) 35.1 (0)

exp MFF 23.98 (0.11) 23.94 (0.13) 23.38 (0.1) 22.95 (0.08) 31.87 (5.31)

exp NLLS 23.95 (0.15) 23.92 (0.14) 23.66 (0.28) 612.09 (657) 705.89 (227.48)

exp MESA 23.92 (0.15) 23.92 (0.15) 23.92 (0.15) 23.9 (0.16) 23.88 (0.17)

exp LSPR 24.01 (0.13) 23.92 (0.13) 23.45 (0.14) 22.88 (0.09) 35.63 (1.66)

exp SR 24.11 (0.15) 24.11 (0.15) 24.1 (0.15) 24.1 (0.15) 24.09 (0.15)

ipar EPR 23.88 (0.11) 23.8 (0.17) 34.61 (0.73) 34.62 (0.09) 34.6 (0.05)

ipar MFF 23.98 (0.11) 23.76 (0.04) 34.62 (1.65) 34.9 (0.03) 34.85 (0.02)

ipar NLLS 23.95 (0.15) 24.15 (0.25) 269.56 (77.77) 280.77 (23.87) 173.73 (120.04)

ipar MESA 23.92 (0.15) 23.98 (0.15) 23.98 (0.18) 24.19 (0.22) 24.69 (0.54)

ipar LSPR 24.01 (0.13) 24.31 (0.2) 34.88 (1.77) 35.3 (0.04) 35.31 (0.02)

ipar SR 24.11 (0.15) 24.1 (0.15) 24.07 (0.15) 29.57 (6.6) 46.88 (0.5)

Data sets with different levels of baseline trend and different trend forms were analysed using all the methods and the mean period value is reported in the table
(standard deviation is given in brackets). Data sets were created by taking a standard pulse signal data set (5 days data, hourly sampled, 80% walking noise level, 24 h
underlying period) and adding to it 5 different envelope shapes with increasing amplitude. 1) The trend/envelope shapes: linear increase (lin); exponential increase
(exp); inverse parabola (ipar); 2/3 inverse parabola (2/3ipar) and 1/3 parabola (1/3par). 2) The baseline level is defined as ration between trend total amplitude and the
original signal amplitude (0 no trend, 20 trend is 20 times higher than signal). See SI Table S7 for the full table.
doi:10.1371/journal.pone.0096462.t008

Figure 9. Impact of amplitude trends on period estimation. Data sets with different levels of amplitude trend and different trend forms were
analysed using all the methods and the mean period value is plotted. The amplitude trends were obtained by dampening the test data sets to the
stated level using different trend shapes/envelopes. Dampening was applied to a standard pulse data set (5 days data, hourly sampled, 80% walking
noise level, 24 h underlying period), using 5 different envelope shapes with increasing amplitude. The level of amplitude trend, i.e. the maximal
reduction of the original signal, is denoted as: 0, no dampening; and for example 0.6 for lin. trend means that at the end of 5th day, the signal is
reduced to 40% of its original value. The envelope shapes: A) exponential, B) linear, C) 1/3 parabola, D) 2/3 parabola, E) parabola, F) aggregated
results from all the shapes.
doi:10.1371/journal.pone.0096462.g009
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Figure 10. Performance of the algorithms in classifying arrhythmic signals. Data sets in which the rhythmic signal was reduced to 0 after a
given number of cycles were analysed using all the methods and the percentage of false positives is plotted. A false positive was defined as a period
value in the circadian range of interest (16–32 h) but not in the range of the true period (24.060.5 h). The test data were constructed by applying
linear dampening to standard pulse or double pulse signals (5 days data, hourly sampled) in such a way that the signal amplitude was reduced to
zero at 1, 1.5, 2, 2.5, 3, 4 or 5 days, thus preserving only the given number of original oscillations. 30% or 80% walking noise was then added. A), B)
pulse signal with 30% and 80% walking noise respectively, D), E) double pulse signal with 30% and 80% respectively, C), F) percentage of results
rejected by EPR and LSPR as being not significant for pulse and double pulse signal respectively.
doi:10.1371/journal.pone.0096462.g010

Table 10. Period and confidence intervals for strongly dampened data.

Shape1 Method Metric2 Dmp. 33 Dmp. 43 Dmp. 53 Dmp. 103

pul NLLS MP 24.71 (1.94) 24.02 (1.03) 23.89 (0.31) 23.96 (0.13)

pul NLLS CI (acc) 1.11 (0.27) 0.83 (0.14) 0.58 (0.08) 0.34 (0.04)

pul NLLS CI (false) 1.27 (0.5) 0.89 (0.17) 0.64 (0.18)

dblp NLLS MP 25.04 (1.99) 24.48 (1.36) 23.87 (0.51) 23.95 (0.18)

dblp NLLS CI (acc) 1.49 (0.31) 1.16 (0.28) 0.79 (0.13) 0.46 (0.05)

dblp NLLS CI (false) 1.52 (0.47) 1.21 (0.28) 0.85 (0.15)

pul SR MP 24.77 (0.74) 24.39 (0.4) 24.24 (0.26) 24.14 (0.14)

pul SR CI (acc) 1.67 (0.35) 1.2 (0.2) 0.95 (0.18) 0.78 (0.13)

pul SR CI (false) 1.74 (0.35) 1.3 (0.2) 1.03 (0.24)

dblp SR MP 24.83 (1.01) 24.42 (0.51) 24.25 (0.34) 24.15 (0.19)

dblp SR CI (acc) 1.61 (0.49) 1.19 (0.21) 0.96 (0.17) 0.81 (0.11)

dblp SR CI (false) 1.75 (0.49) 1.2 (0.21) 0.97 (0.18)

Data sets of strongly dampened data were analysed using SR and NLLS; the mean period and the mean confidence intervals are reported in the table (standard
deviations are in brackets). The data sets were created by linear dampening the standard test data (5 days duration, hourly sampled, 24 h underlying period) in such a
way that the signal reached 0 at the selected day, then uniform noise was added at 40% of the original amplitude. The results were classified to be accurate (acc) or false
positives (false) depending on their period value: accurate periods were 2460.5 h, while false positives were periods in the range (18–30 h) that were not accurate. 1)
Shape of the base signal before dampening: pulse (pul) and double pulse (dblp). 2) The reported values are mean period (MP), and mean confidence intervals for
accurate results (CI (acc)) and false positives (CI (false)). 3) Dampening level, represented as the day at which the initial rhythmic signal was reduced to 0, for example
Dmp. 4 means that at the end of the 4th day the signal was 0 and followed by a flat line (before adding the noise).
doi:10.1371/journal.pone.0096462.t010
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Interestingly, both MFF and EPR continued to correctly find 24 h

periods for CAT3 data even after changing the scanning range to

10–35 h, to allow 12 h periods to be returned.

Based on the average deviation from 24 h, EPR seemed to be

the best method (avg. deviation for all sets 0.12) and SR the worst

(1.43 for all sets, or 0.27 when CAT3 data were excluded).

However, half of the results of NLLS and MESA are statistically

indistinguishable from the 24 h mean, and the average deviation is

about 0.16 h. Also the results from NLLS, MFF and MESA were

generally not statistically different from each other, which means

that variation introduced by the biological replicates was larger

than differences between those methods. Similarly to the artificial

data, SR generally produced results which were statistically

different from the other methods.

11. Computational complexity
Although not as scientifically important as the accuracy, the

computation time of each algorithm is also an important factor

when comparing the period analysis methods. Large computation

costs may limit the utility of a method for large data sets or in

construction of processing workflows, such as data clustering.

An analysis of the computational complexity of the algorithms

was carried out by determining the number of operations required

for each algorithm. EPR, LSPR and MFF all have an asymptotic

cost of O(m*N), where N is number of data points and m the

number of period values tested (typically m is approximately 100

for EPR and 500 for LSPR and MFF). They differ though by their

scaling constants: EPR should have the lowest and MFF the

highest due to performing more costly matrix operations and

Table 11. Re-analysed results from the Table 10, using confidence interval threshold.

Shape1 Method Metric2 Dmp. 33 Dmp. 43 Dmp. 53 Dmp. 103

pul NLLS MP 24.22 (1.75) 24.01 (1.03) 23.89 (0.31) 23.96 (0.13)

dblp NLLS MP 23.96 (2) 24.46 (1.3) 23.85 (0.49) 23.95 (0.18)

pul SR MP 24.03 (0.42) 24.3 (0.34) 24.23 (0.25) 24.14 (0.14)

dblp SR MP 24.42 (0.75) 24.27 (0.42) 24.23 (0.32) 24.15 (0.19)

The same data sets as in the Table 10 were analysed by SR and NLLS. Traces for which predicted confidence intervals were higher than 1.2 were rejected, before
calculating the mean period of the remaining traces. 1), 2) and 3) as in the legend of Table 10.
doi:10.1371/journal.pone.0096462.t011

Figure 11. Examples of biological data. Selected traces of luciferase luminescence from transgenic Arabidopsis plants exposed to long day (LD)
and short days (SD) light conditions. The original data are accompanied by the fits generated by the EPR, MFF, NLLS, and SR methods. For clarity, each
time series was normalized to the maximum and then offset before plotting. The conditions and marker genes were: A) LD CAB, B) LD CAT3, C) LD
CCR2, D) LD TOC1, E) SD CAT3, F) SD CCR2.
doi:10.1371/journal.pone.0096462.g011
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trigonometric calculations. MESA asymptotic cost is O(M3*N),

where M is the length of the prediction model (in our tests for

hourly sampled data M was around 40). The published version of

Spectrum Resampling algorithm has cost of O(N2) due to the

costly kernel smoothing. However, our implementation approxi-

mates the smoothing by taking into account only a limited

neighbourhood and this reduces the cost to O(N). As the result the

cost of the present Spectrum Resampling implementation is

O(NlogN) as for longer data it becomes dominated by the

computation of the Fourier transform. In contrast to the other

methods, the computation cost of NLLS depends not only on the

length of data but also on the waveform (and hence the number of

parameters to be estimated) as well as the number of iterations

taken to achieve convergence of the parameters. Thus the basic

algorithm is linear in N, but the scaling constant varies enormously

across the range 17 up to 109 in the, highly unlikely, case where 25

cosines (and hence 76 parameters) are fitted to the data and it takes

500 (the maximum allowable) iterations for the parameters to

converge.

It should be noted that biological time series tend to have

limited duration and sampling resolution (typically less than 10

days of data, sampled no more than every 5 minutes), hence

consideration of the asymptotic behaviour of the algorithms may

be misleading as the ‘initial’ calculation steps or scaling constant

may dominate the computation time. Having all the methods

implemented in Java with the same setup, we had the unique

opportunity to compare directly the running times of the different

algorithms.

We first analysed synthetic data of different lengths to obtain the

relationship between the number of data points and computation

time. We generated a set of 7 time series each of 4000 hours and

sampled every hour. The set contained artificial waveforms of

different shapes including non-stationary period or large noise

level (see supplementary materials for more details on the

waveforms). The time series were trimmed to the selected lengths

and analysed with all the period estimation algorithms. The

processing time was recorded for the different lengths of time series

and the results were averaged over 3 independent runs. The results

are shown in Figure 12A.

All the methods with the exception of NLLS and SR show the

predicted linear dependence on the number of data points. MESA

is the quickest method, faster even than simple EPR most likely

because our implementation of EPR operates on 10 times more

data points and uses data structures instead of simple arrays as

MESA. As predicted, MFF has the most steep profile from the

methods of linear cost. As shown in Figure 12A, SR has a large

overhead for short data. This is because it requires a minimum of

1000 data points for the analysis and the shorter data are always

padded with zeroes up to this number. NLLS is fast for short data

series but it shows high variability in computational time when

longer data is used. For example, adding only one data point to a

time series can change the computation time 10-fold (see SI Doc

S2).

In order to test algorithm performance with typical biological

data, we randomly selected 2% of time series (corresponding to

about 3000 time series) stored in BioDare and analysed this subset

using all the different algorithms. The analysis time for each time

series was recorded and these times were summed to give total

analysis time. This was repeated 3 times on different randomly

selected data and the results are shown in Figure 12B. As expected,

MESA processed all the data the quickest, the rest of the ranking

was EPR, LSPR, NLLS, MFF and finally SR. SR was about 80

times slower than MESA. Even using the slowest algorithm, SR,

the whole content of BioDare repository can be analysed in about

15 hours (in our current setup BioDare analyses 4 time series in

parallel), which demonstrates that all the methods are suitable for

real-world applications.

Discussion

We have selected 6 methods which we believe represent popular

approaches to period estimation for general time series data. We

evaluated these algorithms under a range of conditions and for a

wide variety of input signals of known period. Whilst some of the

input signals were mathematical test signals, others were

representative of real biological data.

Overall, it was found that MFF, NLLS and MESA gave the

most accurate period estimates in almost all circumstances

Table 12. Analysis of biological data.

Data1 NLLS LSPR MESA MFF EPR SR

All2 24.05 (0.9)+ 24.27 (0.82) 24.06 (0.32) 24.15 (0.24) 24.11 (0.23) 23.13 (3.39)

LD CAB 24.37 (0.24) 24.63 (0.29) 24.35 (0.27) 24.36 (0.25) 24.35 (0.24) 24.51 (0.18)

LD CAT3 24.2 (0.27) 24.61 (0.32) 23.94 (0.3)+ 24.05 (0.04) 24.1 (0) 14.87 (4.56)

LD CCA1 24.08 (0.21)+ 24.31 (0.15) 24.05 (0.19)+ 24.1 (0.12) 24.09 (0.1) 24.26 (0.18)

LD CCR2 23.92 (0.34)+ 23.78 (0.3) 23.72 (0.22) 23.94 (0.21)+ 23.95 (0.2)+ 23.86 (0.27)

LD TOC1 24.11 (0.15) 23.89 (0.14) 23.93 (0.2)+ 24.13 (0.13) 24.06 (0.07) 24.15 (0.16)

SD CAB 24.05 (0.21)+ 24.13 (0.21) 24.05 (0.21)+ 24.07 (0.14) 24.11 (0.27)+ 24.23 (0.19)

SD CAT3 23.23 (2.79)+ 24.6 (2.48)+ 24.09 (0.36)+ 24.11 (0.07) 24.04 (0.06) 20.95 (5.3)

SD CCA1 24.11 (0.13) 24.23 (0.11) 24.23 (0.18) 24.2 (0.08) 24.08 (0.08) 24.39 (0.14)

SD CCR2 24.16 (0.44)+ 24.23 (0.49) 24.08 (0.4)+ 24.17 (0.44)+ 24.15 (0.46)+ 24.22 (0.43)

SD TOC1 24.23 (0.25) 24.37 (0.25) 24.12 (0.33)+ 24.32 (0.2) 24.17 (0.07) 24.23 (0.29)

NoCAT33 24.13 (0.29) 24.19 (0.37) 24.06 (0.31) 24.16 (0.26) 24.12 (0.25) 24.23 (0.3)

Biological data were analysed with all 6 methods, the mean period value is reported in the table (standard deviation in brackets). The expected period is 24 h as the
clock is entrained by a 24 h light:dark cycle. 1) The data were collected in two different conditions: LD and SD, monitoring 5 output genes in each of them. 2) (All)
represents aggregated results from all data sets. 3) NoCAT3 represents aggregated results from all data sets except the CAT3 marker. +) The cases for which mean
period is not statistically different from the 24 h are marked with +.
doi:10.1371/journal.pone.0096462.t012
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including so-called difficult scenarios, comprising short data sets

and/or noisy data and/or low sampling rates, and non-sinusoidal

signals. The difference between the accuracy of period estimates

obtained from these three algorithms and the EPR, LSPR and SR

is usually statistically significant in the less challenging conditions.

It would also appear that SR gives the least accurate period

estimate in the majority of cases.

In cases where there is a statistically significant difference in the

accuracy of the period estimate obtained from the three best-

performing algorithms, MFF tends to provide more accurate

period estimates than NLLS. This is probably because FFT-NLLS

algorithm attempts to ‘‘over-fit’’ by trying to fit a curve perfectly to

the signal shape, including noise components that vary among

cycles. MFF is constrained to fit a repeated pattern and so may be

less influenced by local signal variations caused by noise. All of our

test signals included a perfectly-repeating pattern of the type that

MFF assumes, whereas this cannot be always guaranteed in

biological data, for example if the physiological or developmental

state of the sample changes within the experiment.

Previous work [14] has suggested that SR is more robust to non-

sinusoidal patterns and observed noise than NLLS, which was also

the main reason for which SR was incorporated into BioDare.

However, we were unable to confirm such observations. After

investigation we noticed, that there is a crucial difference between

the way in which we and the other implementation handle the

results of the NLLS method. The NLLS algorithm can identify

multiple periodic components in the data, but in our approach it

first reports the periods which lie within the user-defined range of

interest (in the simulations reported here it was set to be between

15 and 35 hours). Costa et al. [14] did not apply such selection

mechanism, but instead selected the period of the cosine

component of the highest amplitude. We believe that it is usually

reasonable to pre-select the period to lie within a certain range, in

order to prevent the algorithm from selecting longer or shorter

term trends which could mask the underlying circadian period.

Typically the NLLS results contain a long period component that

describes the trend in the data. The current users of NLLS are

familiar this approach, as both BRASS and BioDare software

automatically select the periods in a user-defined range.

We considered the impact of both amplitude and baseline

trends on period estimation. Our results showed that even

substantial amplitude trends did not pose a major challenge to

the period estimation algorithm as long as about 3 full oscillations

were present. In contrast, apart from MESA, none of the other

algorithms was able to produce reliable period estimates in the

presence of large-magnitude baseline trends. NLLS was especially

susceptible to baseline trends as it tended to stop calculations after

fitting to the data trend.

Finally, we have shown that the algorithms examined here are

susceptible to false positives and will attempt to assign a period to a

data series even when the underlying data are arrhythmic.

Further, even examining the estimation errors associated with

MFF, NLLS and SR algorithms, there does not seem to be a

straightforward way of identifying these false positives. Only in

limited circumstances EPR and LSPR rejected results for

arrhythmic data based on the significance test.

Based on our results and analyses we would make the following

recommendations:

If possible, data should span at least 5 cycles to obtain an

accurate estimate of the period (where accurate is defined as

60.5 hours for a 24 hour period) in all conditions tested here. If

the objective is simply to classify the data as circadian or not, then

2 K cycles are sufficient. Accurate period estimates are possible

from 3 cycles of data in favourable conditions.

Increasing the sampling rate, where experimental assays permit,

does not offer substantial benefits in terms of improved period

accuracy. For circadian data, sampling every hour gives accurate

results. Analysis of transcriptome data suggested sampling every

2 h was sufficient in the different case of JTKcycle analysis [41].

It is important that baseline trends are removed prior to period

estimation. We recommend the routine use of pre-processing to

perform detrending and subsequent inspection of the resulting

time series prior to period analysis. BioDare currently provides

linear, cubic and local regression detrending.

Given the comparatively short processing time required for

typical biological time series, we recommend using, as a minimum,

both MFF and MESA to obtain a reliable estimate for the period.

Both methods demonstrated good accuracy but they are based on

completely different principles: MFF fits cosine-base curves, while

Figure 12. Methods computation time. A) Relationship between
the number of data points and computational time for the different
period estimation algorithms. The time series comprised artificial
waveforms of different shapes including non-stationary periods or
large noise levels were trimmed to the selected lengths and analysed
with all the methods. Error bars for NLLS results show half of the
standard deviation caused by analysis on different test data (there is no
variance for other methods). B) Total computation time (minutes) for
2% of all data currently stored in the BioDare repository. Three samples
of 2% of BioDare data (corresponding to 3000 time series, or 500,000
time points) were randomly selected and analysed using each method.
The analysis time for each time series was recorded and these times
summed to give total analysis time for that method; this was repeated 3
times for each data set. Averaged total time is presented, error bars are
ignored as there was no significant difference between the test runs.
doi:10.1371/journal.pone.0096462.g012
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MESA constructs a prediction model to perform spectral

analysis. Consensus between those methods is a good indica-

tion of accurate period estimation. We favour NLLS over

MFF, even though it gave slightly less precise results. NLLS

provides error measures for the period, phase and amplitude.

We routinely use those values to: a) weight the individual

estimates when calculating population-wide summary statistics,

b) reject individual results with high error levels, c) provide a

second dimension when visualising analysis results (see SI). For

more complete analysis, we recommend initial analysis using

EPR, in order to decide which signals are arrhythmic and

should be excluded from the processing by more accurate

methods. Pre-selection of rhythmic traces is already routine for

some model systems, for example in rhythmic locomotion

assays of adult Drosophila melanogaster. A repository such as

BioDare is extremely helpful in coordinating the results of

multiple analyses, and this benefit grows as the number of

different analyses increases. Further analytical methods will

doubtless be required in future. The flexible software archi-

tecture of BioDare is designed to integrate further analytical

methods, for example methods hosted as web services by the

international chronobiology community and their collabora-

tors.

Supporting Information

Figure S1 Impact of walking noise on mean period. Data

sets with different noise levels (30%, 80%, 160%, 300%) were

analysed using all the methods and the mean period was plotted.

Data sets were created by adding noise at the level indicated to the

hourly-sampled template of 3 days duration. The templates were:

A) cosine data, B) pulse data, C) double pulse data, D) DNFL

shoulder data, E) DNFL asymmetry data (expected period is

24.08 h), F) aggregated results from all the shapes.

(TIF)

Figure S2 Impact of walking noise on absolute error.
Data sets with different noise levels (30%, 80%, 160%, 300%)

were analysed using all the methods and the absolute error is

plotted. The absolute error is defined as the absolute value of the

difference between calculated period and the expected value

(24.08 for asym. signal and 24 h for the others). Data sets were

created by adding noise of specific level to the hourly-sampled

template of 3 days duration. The templates were: A) cosine data,

B) pulse data, C) double pulse data, D) DNFL shoulder data, E)

DNFL asymmetry data, F) aggregated results from all the shapes.

(TIF)

Figure S3 Difference between frequently sampled data
with uniform and walking noise added.

(TIF)

Figure S4 Shapes of baseline trends and examples of
data with baseline trends applied. A) Shapes of trend

envelopes, B - C) data with trends applied. The trend shapes: exp:

exponential; linear; inv. par: inverse parabola; 2/3 inv. par: 2/3

inverse parabola; and 1/3 par: 1/3 parabola.

(TIF)

Figure S5 Shapes of amplitude trends envelopes and
examples of data modified by them. A-E) Data with trends

applied, the trend shape and its levels are indicated on the graph.

F) Shapes of trend envelopes.

(TIF)

Figure S6 Data used for arhythmicity test.

(TIF)

Figure S7 Example of RAE plot for period analysis of
WT and 3 mutants.

(TIF)

Table S1 Impact of noise level on mean period.

(DOCX)

Table S2 Impact of noise level on absolute error.

(DOCX)

Table S3 Impact of data duration on mean period.

(DOCX)

Table S4 Impact of data duration on absolute error.

(DOCX)

Table S5 Impact of sampling frequency on mean
period.

(DOCX)

Table S6 Impact of sampling frequency on absolute
error.

(DOCX)

Table S7 Impact of baseline trends on mean period.

(DOCX)

Table S8 Impact of amplitude trends on mean period.

(DOCX)

Table S9 Analysis of white noise signal.

(DOCX)

Table S10 Analysis of strongly dampened signals for
arhythmicity test.

(DOCX)

Doc S1 Modification of EPR algorithm.

(DOCX)

Doc S2 NLLS computation time.

(DOCX)
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Notes

Note 1, in order to use the linear least square method, mFourFit models

the data as the sum of 5 cosines and 5 sines each having the same fractions

of period as described before but with no phase parameter. It is equivalent

approach due to the following relationship:

A cos (x{Q)~a cos (x)zb sin (x)

A~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2,

p
Q~ arctan ({b=a)

This transformation removes phase parameter and the resulting system can

be solved linearly.

Note 2, in these experiments, seedlings were grown under 24 light/dark

cycles throughout the measurement interval. One set of seedling samples

was exposed to 6 h of light and 18 of darkness (SD), the second set to 18 h

of light and 6 h of darkness (LD), corresponding to physiological winter

and summer day lengths, respectively. The plants’ clock is entrained by the

light input cycle, so we expect the plants’ rhythms to have a period close to

24 h.
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14. Costa MJ, Finkenstädt B, Roche V, Lévi F, Gould PD, et al. (2013) Inference on
periodicity of circadian time series. Biostatistics: 1–15.

15. Moore A, Zielinski T, Millar AJ (2014) Online Period Estimation and

Determination of Rhythmicity in Circadian Data Using the BioDare Data
Infrastructure, In: Staiger D. Plant Circadian Networks: Methods and Protocols.

Methods in Molecular Biology Series: Humana Press. in press.
16. Refinetti R (2004) Non-stationary time series and the robustness of circadian

rhythms. Journal Theoretical Biology 227: 571–581.

17. Refinetti R (1992) Laboratory instrumentation and computing: comparison of
six methods for the determination of the period of circadian rhythms. Physiology

& Behaviour 54: 869–875.
18. Lichtenberg U, Jensen LJ, Fausbøll A, Jensen TS, Bork P, et al. (2005)

Comparison of computational methods for the identification of cell cycle-
regulated genes. Bioinformatics 21(7): 1191–1201.

19. Sokolove PG, Bushell WN (1978) The Chi Square Periodogram: Its Utility for

Analysis of Circadian Rhythms. J. Theor. Biol. 72: 131–160.
20. Johnson M (2010) Essential Numerical Computer Methods. Elsevier.

21. Johnson ML, Frasier SG (1985) Nonlinear Least Squares Analysis. Methods
Enzymol 117: 301–342.

22. Bloomfield P (2000) Fourier Analysis of Time Series: An Introduction. Oxford:

Wiley-Blackwell.
23. Dowse HB, Ringo JM (1989) The Search for Hidden Periodicities in Biological

Time Series Revisited. J. Theor. Biol. 139: 487–515.
24. Trancart T, Lambert P, Rochard E, Daverat F, Coustillas J, et al. (2012)

Alternative flood tide transport tact in caradromous speciese: Anguilla anguilla,

Liza ramada and Platichthys flesus. Estuarine Coastal and Shelf Science 99:
191–198.

25. Darnell MZ, Rittschof D, Forward, Richard B (2010) Endogenous swimming
rhythms underlying the spawning migration of the blue crab, Callinectes

sapidus: ontogeny and variation with ambient tidal regime. Marine Biology

157(11): 2415–2425.
26. Halberg F, Tong YL, Johnson EA (1967) Circadian system phase, an aspect of

temporal morphology: procedures and illustrative examples. In: Mayersbach H,
editor. The Cellular Aspects of Biorhythms. Berlin: Springer. pp 20–48.

27. Leise TL, Harrington ME (2011) Wavelet-Based Time Series Analysis of
Circadian Rhythms. J. Biol Rhythms 26: 454–463.

28. Price TS, Baggs JE, Curtis AM, FitzGerald GA, Hogenesch JB (2008)

WAVECLOCK: Wavelet analysis of circadian oscillation. Bioinformatics
24(23): 2794–2795.

29. Bretthorst GL (1988) Bayesian Spectrum Analysis and Parameter Estimation,
Lecture Notes in Statistics, 48: Springer-Verlag.

30. Cohen AL, Leise TL, Welsh DK (2012) Bayesian statistical analysis of circadian

oscillations in fibroblasts. J. Theor. Biol. 314: 182–191.
31. Locke JCW, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, et al.

(2005) Extension of a genetic network model by iterative experimentation and
mathematical analysis. Molecular Systems Biology 1:13.

32. Southern MM, Millar AJ (2005) Circadian genetics in the model higher plant,

Arabidopsis thaliana. Methods Enzymol 393: 23–35.
33. Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving

cyclin and cdc2 kinase, PNAS 88: 9107–9111.
34. Monk NAM (2003) Oscillatory expression of Hes1, p53 and NF-kB driven by

transcriptional time delays. Current Biology 13: 1409–1413.
35. Heron EA, Finkenstädt B, Rand DA (2007) Bayesian inference for dynamic

transcriptional regulation: the hes1 system as a case study. Bioinformatics 23:

2596–2603.
36. Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, et al. (2006) The

molecular basis of temperature compensation in the Arabidopsis circadian clock.
Plant Cell 18: 1177–1187.

37. Dowse HB (2013) Maximum entropy spectral analysis for circadian rhythms:

theory, history and practice. J. Circ. Rhythms 11:6.
38. Andersen N (1974) On the calculation of filter coefficients for maximum entropy

spectral analysis. Geophys. 39: 69–72.
39. Barrodale I, Erickson RE (1980) Algorithms for least-squares linear prediction

and maximum entropy spectral analysis. Geophysics 45: 420–432.
40. Glynn EF, Chen J, Mushegian AR (2006) Detecting periodic patterns in

unevenly spaced gene expression time series using Lomb-Scargle periodogram.

Bioinformatics 22: 310–316.
41. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, et al. (2009)

Harmonics of Circadian Gene Transcription in Mammals. PLoS Genet 5(4):
e1000442.

Period Estimation Methods for Circadian Data

PLOS ONE | www.plosone.org 26 May 2014 | Volume 9 | Issue 5 | e96462


