Skip to main content
. 2014 May 8;9(5):e96462. doi: 10.1371/journal.pone.0096462

Table 5. Impact of sampling frequency on period estimates (data sets with walking noise).

Shape1 Method 0.1 (3.0)2 1.0 (3.0)2 0.1 (5.0)2 1.0 (5.0)2 2.0 (5.0)2 2.0 (10)2
cos EPR 23.62 23.63 23.93 23.89 23.88 23.97
cos MFF 23.96 23.88 24.02 23.99 23.97 24.00
cos NLLS 23.89 23.84 23.98 23.96 23.96 24.00
cos MESA 23.81 23.87 23.95 23.94 23.95 23.99
cos LSPR 23.91 23.87 24.01 23.99 23.98 24.00
cos SR 24.2 24.25 24.11 24.09 24.07 24.01
asym EPR 24.54 24.48 24.06 24.1 24.09 24.08
asym MFF 24.16 24.05 24.09 24.06 24.03 24.09
asym NLLS 24.11 24.11 24.11 24.12 24.12 24.09
asym MESA 24.00 24.00 24.01 24.02 24.03 24.06
asym LSPR 24.65 24.55 24.28 24.28 24.24 24.13
asym SR 24.53 24.57 24.23 24.22 24.21 24.07
all EPR 24.02 23.99 24 23.98 23.98 24.01
all MFF 24.02 23.96 24.03 24.01 23.99 24.02
all NLLS 23.98 23.92 24.01 23.99 23.99 24.01
all MESA 23.89 23.91 23.96 23.95 23.96 23.99
all LSPR 24.22 24.14 24.1 24.09 24.07 24.03
all SR 24.40 24.40 24.16 24.14 24.13 24.01

Data sets with different time intervals and selected durations were analysed using all the methods and the mean period value is reported in the table (standard deviations are omitted for clarity). Data sets were created by adding walking noise of 80% of the original signal amplitude to the templates of different duration and time interval between points. The underlying period was 24.08 h for asym data and 24.00 h for the other signals. 1) The base shape of the signal: cosine (cos), pulse (pul); double pulse (dpl); shoulder (shl) and moderate asymmetry (asym), (all) represents aggregated results from all the sets. 2) the time interval (sampling frequency) in the data set and in brackets the data duration. See SI Table S5 for the full table.